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Abstract 

Background Designing effective land management actions addressed to increase ecosystem resilience requires us 
to understand how shifting fire regimes are shaping landscapes. In this study, we aim to assess the link between fire 
regime and pre‑fire vegetation biophysical characteristics (type, amount, and structure) in controlling extreme fire 
behavior across Atlantic‑Transition‑Mediterranean bioregions in Spain marked by different summer drought condi‑
tions and dominant plant regenerative traits. We used remote sensing metrics to estimate fire severity and pre‑fire 
vegetation characteristics in eight study areas recently affected by large and highly severe wildfires under different 
environmental contexts. Furthermore, to account for fire regime attributes, we retrieved, for each target wildfire, 
the perimeter of the past wildfires that occurred between 1985 and 2022 and calculated fire recurrence, the time 
the since last fire (TSLF), and fire severity of previous wildfires (FSPW). The effect of fire regime attributes on pre‑fire 
vegetation was examined using generalized linear mixed models (GLMMs).

Results During the study period, fire recurrence decreased significantly in all bioregions analyzed. Fire severity 
increased under Atlantic conditions and decreased under Mediterranean environmental context, where the time 
since the last fire was the highest. Pre‑fire fuel type and amount were identified as primary drivers of fire severity, 
being both strongly modulated by fire regime but following distinct mechanisms depending on the environmen‑
tal context of each bioregion. In Atlantic sites, more frequent past wildfires of low to moderate fire severity were 
associated with a greater dominance of fire‑prone shrublands with moderate fuel amounts, which increases the risk 
of severe wildfires. Similar trends occurred in Transition and Mediterranean sites but under the previous occurrence 
of highly severe wildfires. Specifically, long times after highly severe wildfires (> 30 years) increased fuel amount 
in conifer‑dominated ecosystems in all bioregions analyzed, heightening susceptibility to extreme fire behavior.

Conclusions Our findings highlight that fire‑prone ecosystems need adaptative management strategies to mitigate 
the effects of fire regime changes, but these actions should be specific to the climatic and ecological context.
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Resumen 

Antecedentes El diseño de acciones efectivas de manejo de tierras para incrementar la resiliencia de los ecosis‑
temas, requiere que entendamos cómo el cambio en los regímenes de fuego está modelando los paisajes. En este 
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estudio, buscamos determinar la relación entre el régimen de fuego y las características biofísicas de la vegetación 
pre‑fuego (tipo, cantidad, estructura) en el control de fuegos de comportamiento extremo a través de las biorre‑
giones Atlántica‑Transicional‑Mediterránea de España, marcadas por diferentes condiciones de sequía durante el 
verano y las características vegetativas de las especies de plantas dominantes. Usamos las mediciones de sensores 
remotos para estimar la severidad del fuego y las características de la vegetación en el pre‑fuego, en ocho áreas afec‑
tadas por incendios grades y severos ocurridos bajo diferentes contextos ambientales. Además, para tener en cuenta 
los atributos del régimen de fuegos, recuperamos, para cada fuego seleccionado, el perímetro de los fuegos pasados 
que ocurrieron entre 1985 y 2022 y calculamos la recurrencia del fuego, el tiempo desde el último incendio (TSLF), y 
la severidad de los fuegos previos (FSPW). El efecto de los atributos del régimen de fuegos sobre la vegetación pre‑
fuego fue examinada usando modelos lineales generalizados (GLMMs).

Resultados Durante el período de estudio, la recurrencia del fuego decreció significativamente en todas las bior‑
regiones analizadas. La severidad del fuego creció bajo condiciones Atlánticas y decreció bajo contextos ambientales 
Mediterráneos, donde el tiempo desde el último fuego fue el más alto. Los tipos de combustibles en el pre‑fuego y su 
cantidad fueron identificados como los principales conductores de la severidad del fuego, siendo ambos fuertemente 
modulados por el régimen de fuego aunque siguiendo distintos mecanismos dependiendo del contexto ambiental 
de cada biorregión. En sitios Atlánticos, los fuegos pasados más frecuentes de moderada a baja severidad fueron aso‑
ciados con una dominancia mayor de arbustales propensos al fuego con cantidades moderadas de combustible, lo 
cual incrementa el riesgo de incendios severos. Tendencias similares ocurren en sitios de Transición y Mediterráneos, 
aunque bajo la ocurrencia de fuegos altamente severos. Específicamente, tiempos largos luego de fuegos altamente 
severos (> 30 años) incrementaron la cantidad de combustible en ecosistemas dominados por coníferas en todas las 
biorregiones analizadas, elevando la susceptibilidad a fuegos de comportamiento extremo.

Conclusiones Nuestros resultados enfatizan que los ecosistemas propensos al fuego necesitan de estrategias de 
manejo adaptativo para mitigar los efectos de los cambios en los regímenes de fuegos, aunque esas acciones debi‑
eran ser específicas dentro de los contextos climáticos y ecológicos.

Background
In the Mediterranean Basin, the occurrence of 
increasingly larger and more severe wildfires is a 
concerning issue that recurs every year (Duane 
et  al. 2021). This phenomenon is associated with the 
current levels of biomass accumulation prompted by 
land abandonment occurred across rural landscapes 
(Fernandes 2013), coupled with anthropogenic climate 
change (Turner 2010). Consequently, fire regime 
attributes (severity, extent, recurrence, fire-free interval, 
or fire return interval) are shifting (Pausas and Keeley 
2021). These next-generation wildfires are extremely 
challenging, as they are very difficult to control, exceed 
suppression thresholds (Belval et al. 2020), and represent 
an unprecedented socio-economic and environmental 
threat (Wunder et al. 2021), putting populated areas (e.g., 
wildland-urban interface) at risk and compromising the 
resistance and resilience of forest ecosystems.

In fact, during the period 2017–2022, wildfires burnt 
645,000  ha per year on average in southern European 
countries, including the most devastating wildfire 
seasons ever recorded in Spain (Chas-Amil et  al. 2020; 
Fernández-Guisuraga et  al. 2023a), Portugal (Rodrigues 
et  al. 2023), or Greece (Giannaros et  al. 2022) due to 
the overwhelming ecological and socio-economic 
impacts. The fire effects on ecosystems are defined by 

the concept of fire severity, a magnitude attribute of the 
fire regime that is intrinsically linked to fire behavior in 
extreme wildfires (Harris and Taylor 2017; Quintano 
et  al. 2018; Fernández-García et  al. 2022). It represents 
the degree of fire-induced ecological change in a system 
(Key and Benson 2006; Fernández-García et  al. 2018) 
and is operationally quantified by the aboveground 
and belowground biomass loss in the ecosystem 
(Keeley  2009). Examining the drivers contributing to 
extreme wildfires is essential for designing appropriate 
pre-fire management strategies. These strategies focus on 
mitigating fire risk by reducing ecosystem vulnerability 
while strengthening ecosystem resistance and resilience 
(Basset et  al. 2017; Fernández-Guisuraga et  al. 2021a; 
Rodrigues et  al. 2023). Primarily, the link between fire 
behavior and fire severity can be controlled by top-down 
(fire weather) or bottom-up (topography and pre-fire fuel 
characteristics) drivers (Harris and Taylor 2017; García-
Llamas et al. 2019). Biophysical characteristics of pre-fire 
fuel, such as type, amount, or structure, are susceptible 
to being managed and have also showed to be crucial 
fire severity drivers in southern European fire-prone 
ecosystems (Fernández-Guisuraga et al. 2023b).

Despite the undeniable and well recognized relevance 
of pre-fire vegetation characteristics, other mechanisms 
need to be considered as drivers of extreme wildfires 
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since they can provide a more complete overview of the 
potential ecosystem response to this type of disturbance  
(Fernández-Guisuraga et al. 2023b). In this sense, fire his-
tory has emerged as an important factor controlling fire 
severity because it determines not only fuel accumula-
tion but also the composition and structure of fire-prone 
plant communities (Parks et  al. 2014; Harris and Taylor 
2017; García-Llamas et  al. 2020), which have significant 
implications for land susceptibility to severe wildfires, 
in particular in the face of climate change (González-De 
Vega et al. 2016). In any case, up to the present moment, 
the complex relationship between fire legacies, pre-fire 
vegetation dynamics, and subsequent fire behavior (Parks 
et al. 2014; Steel et al. 2015) has not been unraveled. Most 
of the research carried out on this topic has focused on 
the evaluation of the direct effect of fire regime attributes 
on fire severity (Harris and Taylor 2017; García-Llamas 
et  al. 2019, 2020), but the interactions between fire his-
tory and pre-fire vegetation characteristics that deter-
mine the behavior of unprecedented extreme wildfires 
under different environmental contexts are still to be 
understood.

Temporal fire regime attributes, including fire recur-
rence (number of fires in a given period), fire-free inter-
val (time since last fire (TSLF)), and fire return interval 
(average period between fires), have been identified as 
key determinants of the composition, structure, and 
regeneration capacity of plant communities (Steel et  al. 
2015; Fernández-García et  al. 2018). These attributes 
can modify ecosystem resilience by either promoting 
the dominance of different biological adaptations to fire 
(e.g., resprouting reproductive strategy, development of 
fire-resistant tissues, or serotiny; Fernández-García et al. 
2020) or by leading to an increase in plant mortality and 
a decrease in regeneration in native forests (Huerta et al. 
2022). In particular, a high fire recurrence may reduce 
fuel accumulation and woody vegetation cover (Bassett 
et  al. 2017; Huerta et  al. 2021). Conversely, areas where 
wildfires occur infrequently present a significant poten-
tial for fuel build-up and the dominance of species with 
low fire resistance (Steel et al. 2015; Gil-Tena et al. 2016), 
thereby increasing the likelihood of large and severe wild-
fires (Viedma et al. 2020). Despite this, the impact of fire 
recurrence on fire-prone landscapes is greatly influenced 
by environmental conditions and dominant regenerative 
plant traits (Pausas and Keeley 2014; Fernández-García 
et  al. 2020). Specifically, in Mediterranean ecosystems 
characterized by warmer and drier climates, particularly 
during summer, frequent fires lead to a modification or 
even loss of post-fire recruitment capacity in obligated 
seeders, such as conifer species, especially when interact-
ing with high-severity wildfires (Fernández-García et  al. 
2019). In such cases, a decline in plant photosynthetic 

capacity is also anticipated, either due to direct effects 
such as aboveground biomass consumption or indirect 
effects such as a decrease in nutrient availability, poten-
tially diminishing long-term productivity (Keeley et  al. 
2012; Pausas and Keeley 2021). However, these changes 
are not as evident in humid regions, such as the Atlan-
tic side of the Iberian Peninsula, where post-fire cli-
mate conditions quickly promote vegetation recovery 
(Fernández-García et  al. 2018). Within this context, the  
role of fire severity of previous wildfires (FSPW) in post-
fire vegetation recovery (Reyes and Casal 2008; Crotteau 
et al. 2013; Huerta et al. 2021, 2022) also needs consider-
ation, as it strongly interacts with fire recurrence, impact-
ing both plant community composition and structure, 
as well as ecosystem and landscape functioning (Bassett 
et al. 2017; San-Miguel et al. 2017). This interaction leads 
to the conversion of vegetation types and a decline in 
the diversity of fire-sensitive species (Fernández-García 
et al. 2020; García-Llamas et al. 2020). In this regard, fire 
severity may impede the development of species favored 
by undisturbed forest structures or promote vegetation 
types associated with open environments (e.g., shrubs or 
grass species). Compared to drier environments, these 
effects are less pronounced in highly productive settings, 
such as Atlantic sites (Pausas and Keeley 2014).

Few studies have examined the links among contem-
porary attributes of the fire regime (specifically fire 
size and proportion of area burned at high fire sever-
ity) and drivers of fire behavior in southern European 
countries (Fernández-Guisuraga et al. 2023b). In North 
America, some studies have assessed the relationships 
between fire legacies and the behavior of subsequent 
wildfires (Parks et al. 2014; Steel et al. 2015). Temporal 
attributes of fire regimes, including fire recurrence and 
TSLF, have been considered in recent research to deter-
mine their influence on ecosystem services provision 
in Spanish Mediterranean forests (Moghli et  al. 2022). 
However, exploring how different environmental condi-
tions influence vegetation responses and susceptibility 
to severe subsequent wildfire remains to be explored 
in the Mediterranean countries of Southern Europe. 
The main novelty of our research is that it could dis-
entangle the complex interactions between fire regime 
attributes and pre-fire vegetation dynamics in different 
environmental contexts (in terms of regenerative traits 
of dominant species, soil type, altitude, fire history and 
climate) driving the behavior of the unprecedented 
extreme wildfire events that occurred in the Spanish 
Iberian Peninsula in the last decade (e.g., Chas-Amil 
et  al. 2020; García-Llamas et  al. 2020; Llorens et  al. 
2021; Fernández-Guisuraga et  al. 2023a), providing 
valuable insights for adaptive pre-fire fire management 
strategies.
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Based on the above, the main objective of this study 
is to assess the link between fire regime attributes and 
pre-fire vegetation characteristics in controlling extreme 
wildfire behavior in landscapes prone to severe wild-
fires in different bioregions (from Atlantic, wetter, to the 
Mediterranean, with drier conditions) of the Spanish 
Iberian Peninsula. Specifically, we aim to (i) analyze fire 
history trends across different environmental conditions 
over a 35-year period, (ii) determine which pre-fire veg-
etation characteristics drive fire severity under different 
environmental contexts, and (iii) explore how fire regime 
attributes (fire recurrence, time since last fire (TSLF), and 
fire severity of previous wildfire (FSPW)) shape pre-fire 
vegetation characteristics across landscapes prone to 
high fire severity in different bioregions. According to 
previous research, we hypothesize that different environ-
mental contexts will imply substantial variation in both 
the effects of fire regime attributes on pre-fire fuel char-
acteristics and subsequent fire behavior control (Keeley 
et  al. 2012; Fernández-García et  al. 2019; Huerta et  al. 
2021). In this sense, in Mediterranean ecosystems, where 
climate is becoming hotter and drier, higher fire sever-
ity is expected, and longer TSLF and no repeated severe 
wildfires are also expected, in line with previous observa-
tions across the Mediterranean Basin (Fernández-García 
et al. 2020; Pausas and Keeley 2021). This context would 
drive to the highest levels of fire risk due to increasing 
accumulation of biomass (Steel et al. 2015; Taboada et al. 
2017; Fernández-Guisuraga et  al. 2023b) and the domi-
nance of flammable species (González-De Vega et  al. 
2016; Huerta et al. 2021). In contrast, in Atlantic ecosys-
tems, it is expected that higher fuel accumulation rates 
would appear in shorter time periods (<  20 years), due to 
mild and humid environmental conditions that allow for 
early and rapid post-fire vegetation recovery (Fernández-
García et al. 2019).

Materials and methods
Study sites
The study area comprises eight large wildfires (> 500 ha) 
that occurred during the period 2017–2022 along the 
Atlantic-Transition-Mediterranean bioregions in the Ibe-
rian Peninsula (Fig. 1; Table 1). These bioregions are char-
acterized by different environmental contexts, including 
ecological (e.g., response to natural disturbances or soil 
types) and climatic (e.g., summer drought) conditions 
(EEA  2016). The target wildfires correspond to extreme 
events, in terms of extensive areas burned at high fire 
severity verified through field assessments (Llorens et al. 
2021; Fernández-García et  al. 2022; Huerta et  al. 2022; 
Fernández-Guisuraga et  al. 2023a), and feature a wide 
variety of vegetation types. Fire scars were delineated 
using Sentinel-2 post-fire satellite imagery displaying 

a false color composite (RGB; bands 12, 8  A and 4) at 
1:10,000 scale (Fernández-García et al. 2022).

Atlantic wildfires were located in (i) Ponte Caldelas 
(Pontevedra province; 7° 57′ W 42° 2′ N) and in (ii) Car-
balleda de Avia (Ourense province; 4° 21′ W 42° 18′ N), 
both occurred in 2017 and burned a surface of 9789 ha 
and 5956  ha, respectively. Pre-fire landscapes feature a 
rugged topography, encompassing a landscape mosaic 
made of native broadleaf forests (e.g., Castanea sativa 
Mill., Fagus sylvatica L., and Quercus spp.) mixed with 
conifer forests and plantations of Eucalyptus globulus 
Labill., Pinus pinaster Ait., and Pinus radiata D. Don., 
heathlands (Erica umbellata Loefl. ex L.) and shrublands 
dominated by brooms (Cytisus scoparius L.) and gorses 
(Ulex europaeus L.), as well as transitional patches of 
woodland-shrubs mixed with grasslands and cultivated 
fields near to interface areas (Beltrán-Marcos et al. 2023). 
This study site is dominated by resprouter and facultative 
species as post-fire regenerative strategies (Fernández-
García et  al. 2020). Soils are siliceous with bedrock of 
granite and are classified as Cambisols (Jones et al. 2005). 
This bioregion is characterized by annual rainfall exceed-
ing 1600 mm, and mean annual temperature of 12.65 ºC 
(± 0.45 ºC) (AEMET 2018), with less than 1 month of 
summer drought (Ninyerola et al. 2005).

To account for the transitional environmental condi-
tions between the Atlantic and Mediterranean biore-
gions, two large wildfires were selected: (i) Cabrera 
wildfire (León province; 6° 38′ W 42° 14′ N) that 
occurred in 2017 and burned 9940 ha, covered by patches 
of shrublands (e.g., Genista hystrix Lange. or Erica aus-
tralis L.), herbaceous vegetation, and forest ecosystems 
dominated by deciduous trees such as Quercus pyrenaica 
Willd., and (ii) O Barco de Valdeorras wildfire (Ourense 
province; 6° 30′ W 42° 15′ N) that occurred in 2022 
and burned 12,591 ha dominated by broadleaved forests 
(Castanea sativa Mill., Quercus pyrenaica Willd., and 
Quercus ilex L.), conifer forests and plantations (Pinus 
pinaster Ait., Pinus radiata D. Don., and Pinus sylvestris 
L.), shrublands mixed with grasslands, and farmland. The 
relief in both cases is abrupt, with prominent crests and 
wide valleys. This study site presents a great variability of 
plant regenerative traits, with obligate resprouters, obli-
gate seeders, and facultative seeders (plants with both 
mechanisms) species (Fernández-García et al. 2020). The 
soils, classified as Cambisols and Leptosols (Jones et  al. 
2005), are predominantly acidic and originated from sili-
ceous lithologies (mainly slates and quartzite; Fernández-
Guisuraga et  al. 2021a). This bioregion is distinguished 
by a mean annual precipitation of 1100  mm and mean 
annual temperature of 9.7  °C (± 1.2 ºC) (AEMET 2018), 
with a summer drought of 2 months (Ninyerola et  al. 
2005).
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Mediterranean wildfires were located in (i) Cabe-
zuela del Valle (Cáceres province; 8° 14′ W 42° 25′ N), 
where fire burned 3949 ha in 2020, an area dominated 
by broadleaved forests (Quercus pyrenaica Willd and 
Castanea sativa Mill.), shrublands (Cytisus multiflorus 
(L´Hér.) Sweet., Cistus ladanifer L., and Erica spp.), 
and pasturelands; (ii) Navalacruz (Avila province; 
7° 34′ W 42° 26′ 40  N), where the wildfire occurred 
in 2021, burned 22,444  ha of Pinus sylvestris L. and 
Quercus ilex L. forests, shrublands, pasturelands, and 
cultivated areas; (iii) Las Hurdes (Cáceres province; 
7° 28′ W 41° 54′ N), in 2022 burning 11,927  ha; and 

(iv) Sierra de la Culebra (Zamora province) (8° 12′ W 
41° 52′ N) where fire burned 25,228  ha in 2022. The 
landscape mosaic affected by the last two wildfires 
was dominated by heathlands (Erica arborea L. and 
Erica australis L.) and broomlands (Genista florida 
L.), as well as Quercus pyrenaica Willd., Quercus ilex 
L., Pinus pinaster Ait., and Pinus sylvestris L. for-
est stands. In this study site, post-fire regeneration is 
more related to plant regenerative traits associated 
with gemination (seed mass and heat-stimulated ger-
mination) (Fernández-García et  al. 2020). All study 
Mediterranean wildfires show rugged topography 

Fig. 1 Target wildfires that occurred in Spain across Atlantic (A)‑Transition (T) ‑ Mediterranean (M) bioregions. Fire severity was estimated 
through the difference of the normalized burn ratio (dNBR) computed from Sentinel‑2 imagery and classified following the thresholds established 
by the European Forest Fire Information System (EFFIS)
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with steep slopes and wide valleys. Soils are acidic and 
derived from siliceous lithologies (mainly granitic and 
slate) with a reduced thickness and mostly classified as 
Leptosol (Jones et al. 2005). This bioregion presents a 
typically Mediterranean environmental context, with 
more than three months of warm dry summers (Niny-
erola et  al. 2005), precipitation ranging between 805 
and 1309 mm, and mean annual temperature of 11.28 
ºC (± 1.62 ºC) (AEMET 2018).

Data sources and processing
At each study wildfire location, fire severity and bio-
physical characteristics of pre-fire fuel (type, amount 
and structure) were retrieved through (i) Sentinel-2 
multispectral instrument Level 1  C scenes from the 
Copernicus program operated by the European Space 
Agency ESA (https:// senti nel. esa. int) and (ii) the 
fourth Spanish National Forest Inventory (4-SNFI; 
MTERD 2022), which uses the Spanish Forest Map at 
1:25,000 scale as a cartographic base. Temporal and 
magnitude attributes of the fire regime over a 35-year 
period were obtained by mapped past fire scars within 
the perimeter of target wildfires through visual inter-
pretation of Landsat imagery (Landsat 4–5, TM sensor; 
Landsat 7, ETM sensor; and Landsat 8, OLI sensor) 
available in the data catalogue (Collection 2―Level 
1) of Google Earth Engine (GEE; Gorelick et al. 2017) 
(https:// devel opers. google. com/ earth- engine/ datas ets/ 
catal og/ lands at).

Fire severity
We acquired Sentinel-2 multispectral instrument Level 
1  C (top-of-atmosphere reflectance) images in pre-fire 
and post-fire situations from Copernicus Open Access 
Hub (https:// scihub. coper nicus. eu/) for each study 
wildfire location. We selected cloud-free Sentinel-2 
images with dates as close as possible to the fire alarm 
date (maximum time range of 1 month from pre-fire or 
post-fire situations) to avoid potential changes in veg-
etation status (e.g., phenological changes) (see Table 
SM1, in supplementary material, for further details). 
A cloud mask was applied in case there were no cloud-
free images available until 1 month before or after the 
wildfire. The Sen2Cor processor integrated within the 
Sentinel Application Platform (SNAP) 7.0 version and a 
digital terrain model (DTM) at 25-m grid size from the 
Spanish Geographic Institute (IGN 2022) were used to 
correct Sentinel-2 imagery atmospherically and topo-
graphically, obtaining a final surface reflectance prod-
uct (Level 2 A). This product features spectral data over 
the visible, near infrared (NIR), and shortwave infrared 
(SWIR) regions over thirteen bands with different spa-
tial resolutions: three bands at 60 m, six bands at 20 m, 
and four bands at 10  m. The 60-m spatial resolution 
Sentinel-2 bands were discarded from further analysis 
because they are inadequate to deliver a proper canopy 
reflectance measurement (Fernández-Guisuraga et  al. 
2021b) and have been demonstrated to be strongly 
affected by atmospheric scattering of gasses and aero-
sols (Jia et  al. 2016). Finally, we used the mean pixel 

Table 1 Characteristics of the study wildfires

MAP Mean annual precipitation, MADP10 Mean annual days with precipitation above 10 mm, MAT Mean annual temperature, MADT25 Mean annual days with a 
temperature ≥ 25 ºC
a MAP, MADP10, MAT, and MADT25 were obtained from Spanish State Meteorological Agency (AEMET 2018)
b World Reference Base for Soil Resources classification according to Jones et al. (2005). Soil codes can be found in the database 106 World Soil Resources Reports 
(FAO 2014)

Fire location Site Fire size (ha) Fire alarm 
date

MAPa (mm) MADP10a 
(days)

MATa (ºC) MADT25a 
(days)

Altitude (m) Soil WRB 
 classificationb

Carballeda de 
Avia

Atlantic 5956 17 October 
2017

1610 49.4 12.2 64.2 234–987 LPha, CMmo

Ponte Caldelas 9789 16 October 
2017

1763 58.3 13.1 67.2 21–729 LPha, CMmo

Cabrera Transition 9940 21 August 
2017

1102 29.5 8.5 80.8 849–1958 LPha, CMmo

O Barco de 
Valdeorras

12,591 15 July 2022 1014 37.9 10.9 74.5 320–1528 LPha, CMmo

Cabezuela del 
Valle

Mediterranean 3949 28 August 
2020

904 41.2 12.1 109.6 630–1808 LPdy

Las Hurdes 11,927 11 July 2022 1309 39.2 13.4 119.5 472–1715 LPdy, CMmo

Navalacruz 22,444 14 August 
2021

944 28.1 9.1 102.3 939–2153 LPdy, CMmo

Sierra de la 
Culebra

25,228 15 June 2022 805 27.8 10.5 85.7 746–1204 LVcr, CMmo

https://sentinel.esa.int
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
https://scihub.copernicus.eu/
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value aggregation approach for down-sampling 10-m 
bands to 20  m (Fernández-García et  al. 2022), ensur-
ing adequate capture of the spatial and spectral infor-
mation for land cover classification, pre-fire vegetation 
biophysical characteristics, and fire severity metric 
(Fernández-Guisuraga et al. 2021b).

Fire severity of the target wildfires in each study site 
was estimated through the difference of the normalized 
burn ratio (dNBR) index (López-García and Caselles 
1991; Key and Benson 2006), which is computed as a 
measurement of ecological change (Keeley  2009). This 
bi-temporal spectral index is the most common bench-
mark method for assessing fire severity (Quintano et al. 
2018), and widely used by the rapid damage assessment 
(RDA) module of the European Forest Fire Informa-
tion System (EFFIS) to interpret the ecological impact 
in extensive burned areas using predefined thresholds 
(Table SM2). The index calculation is based on the 
reflectance from NIR and SWIR spectral regions in the 
pre- and post-fire Sentinel-2 imagery (Table SM3), and 
its performance has been extensively validated through 
field assessments with the Composite Burn Index (CBI; 
Key and Benson 2006), including several locations 
within the bioregions of our study (Garcia-Llamas et al. 
2020; Llorens et  al. 2021; Fernández-Guisuraga et  al. 
2023a). To account for potential variations in vegetation 
biophysical characteristics resulting from differences in 
phenology or precipitation between pre- and post-fire 
scenes (García-Llamas et al. 2020), we applied an offset 
term in the dNBR index for each target wildfire. This 
implementation enhances comparability among fire 
severity assessments in different wildfires (Miller and 
Thode  2007; Parks et  al. 2018). The dNBR offset was 
determined by averaging the dNBR values from 1% of 
pixels within homogeneous and unburned areas located 
outside the wildfire perimeter but within a 1-km buffer 
(Miller and Thode 2007).

Pre‑fire vegetation variables
Pre-fire Sentinel-2 multispectral images, atmospherically 
and topographically corrected, at a spatial resolution 
of 20  m, were used to retrieve pre-fire vegetation 
characteristics, accounting for fuel type, fuel amount, and 
fuel structure (see Table 2 for further details).

Fuel type was estimated as land cover class (LCC) by 
means of a support vector machine (SVM) classification 
algorithm on each pre-fire Sentinel-2 scene using ArcGIS 
10.8. Five land cover classes were considered to classify 
(i) forests dominated by native broadleaf species, (ii) for-
ests composed of conifer species, (iii) shrublands, which 
encompassed a diverse range of vegetation, including 
scrub (e.g., gorse, heath, or broom), small shrubs (e.g., 
creeping junipers or thorn scrub), and transitional areas 
from woodland, (iv) grasslands, including agricultural 
lands, actively cultivated crops, permanently irrigated 
regions, and natural grasslands, (v) and non-vegetated 
areas, considering those areas where vegetation cover 
is sparse, such as artificial surfaces, harvested farm-
lands (ploughed areas), recently burned areas (< 1 year), 
rock outcrops, and bare soil. These classes were used 
as groups of the categorical variable pre-fire fuel type. 
The SVM classification method is well-suited for satel-
lite multi-band raster (Basheer et al. 2022) since it is not 
highly susceptible to noise, correlated bands, and unbal-
anced numbers of training polygons within each class 
(Huang et  al. 2002). Nevertheless, to address potential 
generalization issues associated with unbalanced samples 
(Ustuner et al. 2016), we created separate datasets featur-
ing 40 to 50 homogeneous polygons for each land cover 
class. Each dataset, delineated over each target wildfire 
location, comprised a minimum of 600 pixels per class 
for effective SVM classifier training. In each target wild-
fire, the classification accuracy was assessed using 250 
validation points randomly stratified by land cover class, 
which corresponded to approximately 10% of the training 

Table 2 Pre‑fire vegetation variables used as predictors of fire severity

Group Variable Acronym Data source

Fuel type Land cover class LCC Pre‑fire Sentinel‑2 imagery

Fuel amount Vegetation cover fraction FCOV Pre‑fire Sentinel‑2 imagery

Fraction of absorbed photosynthetically active radiation FAPAR Pre‑fire Sentinel‑2 imagery

Leaf area index LAI Pre‑fire Sentinel‑2 imagery

Fuel structure Homogeneity of the pre‑fire vegetation cover fraction FCOV homogeneity FCOV data

Landscape Shannon’s evenness index SHEI Land cover class data

Mean distance to nearest neighbors (m) MNNdist Land cover class data

Land cover patch size (ha) Patch size Land cover class data

Perimeter‑area ratio index PA‑ratio Land cover class data

Mean Shape Index MSI Land cover class data
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pixel count. This validation dataset ensures a sufficiently 
representative sample to capture the spectral variabil-
ity present in Sentinel-2 imagery using SVM algorithms 
(Topaloğlu et al. 2016). Classification accuracy was esti-
mated by means of a confusion matrix from which user’s 
and producer’s accuracy (%), overall accuracy (OA; %), 
and the Kappa statistic were calculated. The 4-SNFI 
database, a set of field reference data (Garcia-Llamas 
et  al. 2020; Fernández-Guisuraga et  al. 2023a), and pre-
fire aerial orthophotographs of very high spatial resolu-
tion (0.5  m) provided by Spanish National Geographic 
Institute (IGN 2022) were used to train and validate the 
SVM algorithm. We found, for all study areas, a global 
overall accuracy of 87.65% and a Kappa index of 0.85. No 
significant underestimation or overestimation of any of 
the classes was identified across the wildfires set (Table 
SM4).

Fuel amount variables were retrieved by means of a 
physical-based approach widely used for estimating pre-
fire biomass quantity based on high spatial resolution 
satellite data (Viedma et  al. 2020; Fernández-Guisuraga 
et  al. 2023b). Specifically, we estimated the vegetation 
cover fraction (FCOV), the fraction of absorbed photo-
synthetically active radiation (FAPAR), and the leaf area 
index (LAI). FCOV has been frequently used to quantify 
vegetation greenness or amount of forest stands as envi-
ronmental drivers in extreme wildfire events (Fernández-
Garcia et  al. 2023). FAPAR reflects the available light 
energy for plant productivity, being a fundamental vari-
able regulating photosynthesis, transpiration, and energy 
balance (Ogutu et  al. 2014). LAI is commonly used as a 
proxy for the amount of biomass in the forest canopy 
and also to explain fire behavior variability (Viedma et al. 
2020; Fernández-García et  al. 2022). We retrieved these 
products through the pre-fire Sentinel-2 Level 2 A scenes 
and the biophysical processor embedded into the SNAP 
software, which have shown the capacity to reliably cap-
ture the biophysical properties of the vegetation canopy 
by means of radiative transfer models (RTMs) (Jia et  al. 
2016).

Fuel structure metrics were calculated to assess the 
horizontal continuity of pre-fire vegetation. We meas-
ured five different metrics: homogeneity of the pre-fire 
vegetation cover fraction (FCOV homogeneity), land-
scape Shannon’s evenness index (SHEI), mean distance to 
nearest neighbor (MNNdist), land cover patch size (patch 
size), perimeter-area ratio index (PA-ratio), and Mean 
Shape Index (MSI). FCOV homogeneity is a second-
order texture variable of the FCOV input estimated by 
means of the ENVI 5.3 software. This variable has proven 
to be very effective for fuel continuity characterization 
in pre-fire situations (Fernández-García et  al. 2022) as 
it reflects the texture and distance relationships among 

neighboring pixels (Warner 2011). To obtain direction-
ally invariant FCOV homogeneity, we used a 64-level co-
occurrence matrix, a 3 × 3 pixel kernel, and the average of 
four directions (0°, 45°, 90°, and 135°) (Fernández-García 
et  al. 2022). The values of this variable range from 0 
(completely heterogeneous) to 1 (completely homogene-
ous). SHEI was retrieved on the basis of the Pielou (1966) 
equation (Eq. 1) and calculated over the SVM land cover 
maps. It determines the diversity and continuity of pre-
fire land cover classes using the landscapemetrics v2.0.0 
(Hesselbarth et  al. 2019) and rgdal v1.6.4 (Bivand et  al. 
2021) packages in R 4.0.4 (R Core Team 2023) and RStu-
dio 2023.03.2 + 454.pro2 (RStudio Team 2023).

where SHDI is the Shannon diversity index and Hmax 
is the maximum value for SHDI (LN (richness). The 
remaining landscape configuration metrics (patch size, 
MNNdist, PA-ratio and MSI) were calculated from 
SVM pre-fire land cover maps using the vector-based 
Landscape Analysis Tools Extension (V-LATE 2.0; Lang 
and Tiede 2003) for the ArcGIS 10.8 software. We esti-
mated (i) the patch size as the area (in ha) occupied by 
each land cover class polygon within the burned areas, 
(ii) the MNNdist as the mean distance between patches 
of the same land cover class in the pre-fire landscape, 
(iii) the PA-ratio as the mean shape for each land cover 
class patch estimated by the patch perimeter divided by 
patch area, and (iv) the MSI as the mean shape complex-
ity which is adjusted for a square standard by a constant 
(Toosi et  al. 2022). These variables describe the form, 
aggregation, and composition of the landscape patches, 
being pre-fire structural landscape metrics highly cor-
related with wildfire extent and fire severity (San-Miguel 
et al. 2017; Toosi et al. 2022).

Fire regime attributes
The Global Fire Atlas (Andela et al. 2019) and the EFFIS 
burnt area database (San-Miguel-Ayanz et  al. 2012) 
were used to identify all previous wildfires ≥ 30  ha 
that occurred within the target areas during the period 
2000–2022. This burned scar size corresponds to the 
wildfire detectability provided by MODIS and Sentinel-2 
satellite imagery for the surveyed period (San-Miguel-
Ayanz et al. 2012). Wildfires occurred during the period 
1985–2000 were identified through monthly inspection 
of Landsat images using the LandsatLook tool (https:// 
lands atlook. usgs. gov/) of the U.S. Geological Survey´s 
Earth Explorer server. LandsatLook allows rapid tempo-
ral visualization of burned scars by area of interest, sen-
sor, date of acquisition, or cloud cover, through dynamic 
mosaics in composites of three user-defined spectral 

(1)SHEI = SHDI/H′

max

https://landsatlook.usgs.gov/
https://landsatlook.usgs.gov/
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bands (Wulder et  al. 2019). All perimeters recorded for 
the whole period (1985–2022) were manually digitized 
in ArcGIS 10.8 at 1:20,000 scale (minimum mapping unit 
of 0.04  km2) above false color Landsat imagery (Fernán-
dez-García et al. 2020) and validated with data from the 
forest fire reports (1968–2015) available at the Spanish 
General Forest Fire Statistics database (MTERD  2023). 
This spatial database of wildfire scars was used to esti-
mate temporal fire regime attributes (fire recurrence and 
time since last fire-TSLF) over the study period (1985 
to the year of target extreme wildfire occurrence). Both 
attributes are frequently used as indicators of potential 
fire-induced ecological change (Parks et al. 2014) and as 
considered drivers of ecosystem resilience in southern 
Europe (Fernández-García et  al. 2020). TSLF in study 
areas without fire recurrence (no wildfires in the study 
period) was set to one year higher than the time period 
analyzed: (year of last fire − 1985) + 1.

The fire severity of the previous wildfire (FSPW) within 
the target areas was retrieved in GEE (Gorelick et  al. 
2017) using the Landsat Collection 2 Level-1 imagery 
which included scenes from Landsat 4–5 TM, Landsat 
7 ETM, and Landsat 8 OLI (https:// devel opers. google. 
com/ earth- engine/ datas ets/ catal og/ lands at). This set of 
30-m spatial resolution scenes corresponds to a surface 
reflectance product with geometric and radiometric cor-
rections covering a 35-year time range. Fire severity of 
each historical wildfire was computed using the dNBR 
index with the code provided by Parks et  al. (2018) in 
GEE, adapted for initial assessments of fire severity. This 
approach also incorporates dNBR offset by quantifying 
the average value of unburned pixels. With the historical 
fire severity database for each study area, we obtained the 
fire severity of the previous wildfire (FSPW) within the 
target wildfire perimeter.

Data extraction and statistical analysis
Fire regime attributes (fire recurrence, TSLF, and FSPW), 
fire severity of the target wildfire, and pre-fire vegetation 
characteristics were extracted using a random sample 
of points separated at least 100 m from each other (i.e., 
maximum of one point per hectare). This distance has 
been considered appropriate to avoid spatial autocorre-
lation in fire severity assessments (Fernández-Guisuraga 
et  al. 2021a; Fernández-García et  al. 2022). To maintain 
consistency in the relationship between previous wild-
fires and the formation of pre-fire vegetation character-
istics prone to extreme fire behavior, the initial dataset 
of 90,188 points was pruned by discarding areas corre-
sponding to unburned patches within the perimeter (i.e., 
sampling points with dNBR values lower than − 100), 
burned areas during the same year of the occurrence of 
the target wildfires (2% of the total burned area under 

study), and areas potentially affected by disturbances 
other than wildfires (e.g., clearcutting). Finally, we also 
removed points established in patches categorized as for-
est plantations (e.g., Eucalyptus globulus Labill.) in the 
4-SNFI (26.75% of the total points in the Atlantic site, 
7.75% in the Transition site, and 17.60% in the Mediterra-
nean site) to guarantee that post-fire landscape dynamics 
in the 35-year time series have not undergone significant 
man-made interventions. Following these criteria, the 
final dataset was comprised of 67,572 sampling points.

Trends of fire recurrence, total burned area, and fire 
severity over the 35-year period across different biore-
gions were evaluated by means of the non-parametric 
Mann-Kendall test (Mann 1945) and the Theil-Sen slope 
estimator (Sen 1968), respectively. One-way ANOVAs 
with pairwise multiple comparison test of means (Tukey 
HSD) were used to evaluate differences in fire regime 
attributes between bioregions. Statistical significance was 
fixed at the 0.05 level.

A prior data exploratory analysis to detect poten-
tial collinearity issues among pre-fire vegetation drivers 
(Table  2) was conducted through the computation of 
the Pearson’s bivariate correlation coefficient. A thresh-
old of R > |0.7| was considered to identify groups of cor-
related variables from which we retained only the most 
ecologically relevant (García-Llamas et al. 2020; Fernán-
dez-Guisuraga et al. 2023a). Then, we examined the rela-
tionship between the uncorrelated pre-fire vegetation 
characteristics (predictors) and continuous dNBR values 
(fire severity; response variable) through a frequentist 
model averaging approach (FMA; Burnham and Ander-
son 2002). FMA computes weighted estimates for the 
parameters included in all the potential combinations of 
candidate models in the full model set (Nakagawa and 
Freckleton 2011). This approach avoids spurious predic-
tor selection because it can robustly handle uncertainty 
in model parametrization (Burnham and Anderson 2002; 
Dormann et  al. 2018). Candidate models in each study 
site (n = 9498 in the Atlantic; n = 14,977 in the Transi-
tion; n = 43,097 in the Mediterranean) were fitted using 
linear mixed models (LMMs). We considered linear and 
quadratic predictor terms as well as interaction effects 
between pre-fire LCC and all other variables. The iden-
tity of each target wildfire was included in the models 
as a random factor (Moghli et  al. 2022). From the full 
model set, following the recommendation of Burnham 
and Anderson (2002), we retained those models with an 
Δ-value < 2 of the Akaike information criterion, obtain-
ing a top model set to average. The performance of the 
averaged LMM was evaluated through the McFad-
den’s pseudo-coefficient of determination (R2) and the 
root-mean-square-error (RMSE). We followed the same 
approach to disentangle the influence of fire regime 

https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/landsat
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attributes (fire recurrence, TSLF, and FSPW; predictors) 
over the last 35 years on pre-fire vegetation characteristic 
(response variable) relevant in the previous analyses to 
explain fire severity variability. We considered interaction 
effects between all the predictors. Mixed effects multi-
nomial regression models instead of LMMs were fitted 
when the response variable was categorical (e.g., pre-fire 
LCC). All analyses were computed in R 4.0.4 (R Core 
Team 2023) and. RStudio 2023.03. 2 + 454.pro2 (RStudio 
Team  2023) using the trend v1.1.6 (Pohlert 2023), caret 
v6.0-94 (Kuhn 2008), lme4 v1.1-35.1 (Bates et  al. 2015), 
and mclogit v0.9.6 (Elff 2022) packages.

Results
Fire history trends in different Spanish bioregions
During the 1985–2022 period, 746 wildfires ≥ 30 ha were 
identified within the study areas, 48.8% at the Atlantic 
site, 37.8% in the Transition site, and 13.4% in the Medi-
terranean site (Fig.  2A). The highest number of wild-
fires that occurred in the late 1980s and early 1990s in 
the three bioregions with a significant decrease in time. 
The total burned area had a decreasing trend in all study 
sites (Fig. 2B). Over the study period, fire severity showed 
an increasing trend in Atlantic and Transition areas 

(although not significant in the latter case) and a signifi-
cant decrease in Mediterranean areas (Fig. 2C).

The particular environmental context of each biore-
gion explained variations in the temporal attributes of 
the fire regime (fire recurrence and TSLF; F > 478.98, 
p-values < 0.001) better than in fire severity (F = 257.05, 
p-value < 0.001) (Fig.  3). Fire recurrence diminished sig-
nificantly from Atlantic (1.93 ± 1.00 times, maximum = 7) 
to Transition (1.81 ± 0.95, 7) and Mediterranean areas 
(1.10 ± 0.32, 3) during the last 35 years (Fig.  3A). Mean 
TSLF was higher in the Mediterranean (24.90 ± 10.19 
years) than in Transition (14.92 ± 7.47) and Atlantic 
(18.57 ± 8.71) sites (Fig. 3B). Mean fire severity was lower 
in the Transition (232.04 ± 161.53) than in the Mediter-
ranean (353.37 ± 210.70) and Atlantic (355.11 ± 215.69) 
areas (Fig.  3C). The highest fire severity value was 
observed in Atlantic areas (dNBR = 980.80) (Table SM5).

Pre‑fire vegetation variables driving fire severity 
in the target wildfires under different bioregions
Pearson correlation analyses showed that all fuel amount 
variables (FCOV, FAPAR, and LAI) were positively and 
strongly correlated (R > 0.7) (Fig. SM1). High correlation 
was also observed between fuel structure variables 
related to patch metrics (patch size and PA-ratio). For 

Fig. 2 Number of fires ≥ 30 ha (A), total burned area (B), and mean annual fire severity (C) in the study sites from 1985 to the year 
before the occurrence of the last wildfires under study (2016 in the Atlantic site, 2021 in the Transition and Mediterranean sites) with indication 
of the results of the Mann‑Kendall (M‑K) and Theil‑Sen slope (T‑S) tests
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that reason, for subsequent analyses, we used pre-fire 
LCC, FAPAR, FCOV homogeneity, SHEI, MNNdist, 
PA-ratio, and MSI as uncorrelated fuel type, amount, and 
structure pre-fire vegetation predictors of fire severity 
with the highest ecological meaning.

Fire severity was satisfactorily predicted in each 
bioregion by FAPAR, pre-fire LCC, and their interac-
tion (p-values < 0.05) (Table  3). Nevertheless, none of 
the fuel structure variables were retained in the mod-
els with FMA approach due to their low contribution. 
Models featured a higher fit in the Transition (R2 = 0.54; 
RMSE = 152.91) than in the Mediterranean (R2 = 0.43; 
RMSE = 145.65) and Atlantic (R2 = 0.33; RMSE = 196.08) 
areas. The effect of FAPAR on fire severity was depend-
ent on the ecosystem type (LCC) across all bioregions 

studied (Fig.  4). In Transition and Mediterranean areas, 
fire severity strongly increased with high fuel amount in 
conifer forests. In contrast, in Atlantic sites, maximum 
severity values occurred in shrubland ecosystems with 
intermediate pre-fire fuel amount. Based on these results, 
FAPAR and pre-fire LCC were selected as variables to be 
considered in the analyses of Predicting pre-fire vegeta-
tion characteristics through fire regime attributes across 
different bioregions section.

Predicting pre‑fire vegetation characteristics through fire 
regime attributes across different bioregions
Fire recurrence, TSLF and fire severity of the previ-
ous wildfire (FSPW) were retained in the FMA of linear 
mixed model and explained significantly pre-fire FAPAR 

Fig. 3 Relationships between environmental contexts (sites) and A fire recurrence, B time since last fire, and C fire severity. The red dots 
represent the mean values, the black line indicate the median values, and different letters above bars denote significant differences 
along the Atlantic‑Transition‑Mediterranean bioregions at the 0.05 level

Table 3 Results of the averaged linear mixed models depicting the effects of the pre‑fire fuel type (LCC), fuel amount (FAPAR), and 
their interaction on fire severity for the target wildfires in Atlantic, Transition, and Mediterranean areas

The significance of linear mixed model coefficients is represented by *** (p‑value < 0.001), and * (p‑value < 0.05)

Site Model parameter Df Sum of squares Mean of squares F P‑value

Atlantic FAPAR  (polynomic2) 2 1.69E + 07 8.43E + 06 96.10 < 0.001***

LCC 4 8.73E + 05 2.18E + 05 2.49 0.0414*

FAPAR  (polynomic2) * LCC 8 5.72E + 06 7.15E + 05 8.14 < 0.001***

Transition FAPAR  (polynomic2) 2 6.47E + 07 3.24E + 07 1382.19 < 0.001***

LCC 4 1.20E + 06 3.01E + 05 12.85 < 0.001***

FAPAR  (polynomic2) * LCC 8 1.22E + 07 1.52E + 06 65.09 < 0.001***

Mediterranean FAPAR  (polynomic2) 2 1.60E + 08 8.01E + 07 3776.53 < 0.001***

LCC 4 2.94E + 07 7.36E + 06 346.75 < 0.001***

FAPAR  (polynomic2) * LCC 8 8.28E + 07 1.04E + 07 487.79 < 0.001***
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variability as linear or quadratic predictors (p-values  
< 0.001) across the different bioregions analyzed. How-
ever, interaction effects between fire regime attributes 
were only significant in Transition and Mediterranean 
areas (p-values < 0.001) (Table 4). There was a significant 
relationship between fire regime attributes and FAPAR 
in Mediterranean (R2 = 0.32; RMSE = 0.13), Transi-
tion (R2 = 0.28; RMSE = 0.16), and Atlantic (R2 = 0.27;  
RMSE = 0.18) areas (Fig. 5). Under Atlantic conditions, the 
highest FAPAR values were associated with TSLF between 
15 and 20 years and high values of FSPW, decreasing mark-
edly with repeated wildfires occurring during the study 
period. Under Transition conditions, FSPW exerted, at 
short fire-free intervals (< 10 years), a greater influence on 
FAPAR than fire recurrence, as evidenced by the strong 
interaction between this variable and TSLF. In this context, 
FAPAR increased towards longer TSLF, which dilutes the 
effects of both FSPW and fire recurrence (Fig.  5). Under 

Mediterranean conditions, the higher FAPAR values were 
mainly related to high TSLF (> 15–20 years) in combination 
with low fire recurrence. There were no notable differences 
in the FAPAR variability shaped by FSPW at either short or 
long TSLFs.

Fire regime attributes were retained in the FMA of 
mixed effects multinomial regression models and also 
played a significant role as linear or quadratic predictors 
(and their interactions) in the estimation of pre-fire LCC 
across the different bioregions where the strength of the 
relationships was higher in the Transition site (R2 = 0.57) 
than in the Atlantic (R2 = 0.35) and Mediterranean 
(R2 = 0.41) sites (Table  5; Fig.  6). There was variation in 
the control exerted by FSPW on the pre-fire LCC prob-
ability among the different bioregions. Native broadleaf 
forests were more likely to dominate in the Atlantic area 
as FSPW increased. The probability of shrubland emer-
gence was associated with low values of FSPW. The same 

Fig. 4 Relationship between fire severity and pre‑fire fuel amount (FAPAR) for the target wildfires as a function of land cover class (N, 
non‑vegetated; G, grassland; S, shrubland; Bf, broadleaf forest; Cf, conifer forest) in Atlantic, Transition, and Mediterranean areas

Table 4 Results of the averaged linear mixed models depicting the effects of the fire regime attributes (FSPW, fire recurrence, and 
TSLF) and their interactions on pre‑fire vegetation amount (FAPAR) for the target wildfires in Atlantic, Transition, and Mediterranean 
areas

The significance of linear model coefficients is represented by *** (p‑value < 0.001), and ns (p‑value > 0.05)

Site Model parameter dF Sum of squares Mean of squares F P‑value

Atlantic FSPW  (polynomic2) 2 1.34E + 00 6.70E‒01 21.03 < 0.001***

Fire recurrence  (polynomic2) 2 1.58E + 01 7.92E + 00 248.43 < 0.001***

TSLF  (polynomic2) 2 7.82E + 00 3.91E + 00 122.64 < 0.001***

Transition FSPW 1 7.35E + 00 7.35E + 00 280.50 < 0.001***

Fire recurrence 1 6.19E‒02 6.19E‒02 2.36 0.124ns

TSLF 1 7.46E + 00 7.46E + 00 284.51 < 0.001***

Fire recurrence * TSLF 1 1.09E + 00 1.09E + 00 41.64 < 0.001***

FSPW * TSLF 1 3.49E + 00 3.49E + 00 133.08 < 0.001***

Mediterranean FSPW  (polynomic2) 2 2.46E + 00 1.23E + 00 52.21 < 0.001***

Fire recurrence  (polynomic2) 1 7.76E‒01 7.76E‒01 32.91 < 0.001***

TSLF  (polynomic2) 1 6.18E‒01 6.18E‒01 26.19 < 0.001***

Fire recurrence  (polynomic2) * TSLF  (polynomic2) 4 3.77E + 00 9.41E‒01 39.92 < 0.001***

FSPW  (polynomic2) * TSLF  (polynomic2) 3 3.67E + 00 1.22E + 00 51.89 < 0.001***
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pattern was observed in the Mediterranean area but with 
the dominance of conifer forest under high FSPW. How-
ever, the Transition sites exhibited a clear dominance 

of shrubland ecosystems under any FSPW and only a 
slight increase in the likelihood of conifer forests with 
increase of FSPW. Short TSLF favored the dominance 

Fig. 5 Relationship between pre‑fire FAPAR and fire regime attributes (FSPW, fire recurrence, and TSLF) for the target wildfires in Atlantic, Transition, 
and Mediterranean areas. The variation of the moderator variable (+ 1SD, mean, − 1SD) in the interaction is shown in different shades of blue

Table 5 Results of the averaged mixed effects multinomial regression models depicting the effects of the fire regime attributes (FSPW, 
fire recurrence, and TSLF) and their interactions on the pre‑fire land cover class (LCC) probability for the target wildfires in Atlantic, 
Transition, and Mediterranean areas

The significance of multinomial regression model coefficients is represented by *** (p‑value < 0.001), and ** (p‑value < 0.01)

Site Model parameter dF LR chi‑square P

Atlantic FSPW  (polynomic2) 4 261.06 < 0.001***

Fire recurrence  (polynomic2) 4 281.99 < 0.001***

TSLF  (polynomic2) 4 268.45 < 0.001***

Fire recurrence  (polynomic2) * TSLF  (polynomic2) 4 259.12 < 0.001***

FSPW  (polynomic2) * TSLF  (polynomic2) 4 38.40 0.0013**

Transition FSPW 4 373.44 < 0.001***

Fire recurrence 4 143.19 < 0.001***

TSLF 4 154.11 < 0.001***

Fire recurrence * TSLF 4 137.08 < 0.001***

FSPW * TSLF 4 111.68 < 0.001***

Mediterranean FSPW  (polynomic2) 4 814.37 < 0.001***

Fire recurrence  (polynomic2) 4 513.14 < 0.001***

TSLF  (polynomic2) 4 1745.44 < 0.001***

Fire recurrence  (polynomic2) * TSLF  (polynomic2) 4 336.39 < 0.001***

FSPW  (polynomic2) * TSLF  (polynomic2) 4 303.06 < 0.001***
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of fast-regenerating vegetation types in Atlantic areas, 
mainly shrublands and native broadleaf forests, while 
long TSLF favored the probability of conifer forest domi-
nance in all bioregions analyzed, particularly after 30 
years. In Mediterranean sites, tree-dominated LCC dis-
appeared at short and medium TSLF levels, with a clear 
dominance of sparse vegetation types (i.e., grasslands and 
shrublands). Shrubland dominance increased with fire 
recurrence, following a similar pattern across all biore-
gions studied.

Altogether, our results suggest that the response of fire 
severity to pre-fire vegetation characteristics is strongly 
modulated by fire regime attributes but following differ-
ent pathways depending on the environmental context 
of the bioregions analyzed (Fig.  7). In the Atlantic area, 
high fire severity may be driven by two mechanisms: (i) 
high fire recurrence of low to moderate severity wildfires 
may foster transitions to shrubland stable states with 
intermediate FAPAR values prone to high fire severity in 
subsequent wildfires; (ii) long TSLF periods after previ-
ous wildfires of high fire severity and low fire recurrence 
may promote the dominance of conifer stands prone to 
extreme fire behavior in areas with intermediate to high 
site productivity. In Transition and Mediterranean areas, 
other mechanisms exist: (i) long TSLF (> 30 years) after 
high-severity wildfires may enhance fuel build-up (high 

FAPAR values) in conifer-dominated ecosystems that are 
responsible for high fire severity levels in the target wild-
fires; (ii) high fire recurrence and TSLF over 15 years may 
promote shrublands of intermediate FAPAR values that 
are likely to undergo subsequent high-severity wildfires. 
The development of intermediate amounts of shrub-type 
fuels in Transition and Mediterranean sites is strongly 
related to fire severity of previous wildfires.

Discussion
We assessed the effects of fire activity over 35 years across 
Atlantic, Transition, and Mediterranean bioregions of 
the Spanish Iberian Peninsula on pre-fire fuel composi-
tion and amount, allowing the identification of direct 
and indirect control patterns of new situations prone to 
subsequent severe fire behavior. Our results shed light on 
the importance of fire regime attributes in modulating 
biophysical contexts that shape landscapes prone to high 
fire severity in the western Iberian Peninsula. Fire sever-
ity was found to be mainly influenced by pre-fire fuel 
characteristics, but this effect was strongly controlled by 
their interaction with fire recurrence, time since last fire, 
and fire severity of the previous wildfire under different 
environmental contexts. This understanding is essential 
for decision-making strategies targeted at mitigating the 
worst ecological effects of severe wildfires (Harris and 

Fig. 6 Predicted probabilities of the pre‑fire land cover class (LCC) for the target wildfires as a function of fire regime attributes (FSPW, fire 
recurrence, and TSLF) in Atlantic, Transition, and Mediterranean areas. N, non‑vegetated; G, grassland; S, shrubland; Bf, broadleaf forest; Cf, coniferous 
forest
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Taylor et al. 2017), which should be site-dependent (Kane 
et  al. 2015) and consider ecosystem responses to future 
climate scenarios (Fernandes 2013).

Fire history dynamics in different Spanish bioregions
The well-known disruption of fire regimes in the Medi-
terranean Basin suggests an uncertain scenario in the 
functioning of fire-prone forest ecosystems (Pausas and 
Paula 2012; Taboada et al. 2017; Pausas and Keeley 2021). 
These include the expected harsher fire weather risk and 
longer fire seasons (Calheiros et al. 2021). In this sense, 
the worsening of fire effects on ecosystems would be 
likely to occur even in environmental contexts where 
fire activity is traditionally limited by unfavorable condi-
tions in terms of type of fuel and rate of fuel accumula-
tion (Vázquez et  al. 2002). Nonetheless, we evidenced a 
reduction in fire occurrence and total burned area in all 
our study areas since the 1980s which may have led to 
a notably change in fuel build-up patterns and, subse-
quently, an increase in the likelihood of more intense and 
severe wildfires, in line with the findings of other authors 
(e.g., Fernandes 2013; Rodrigues et  al. 2020; Boisramé 
et al. 2022). A downward trend in fire occurrence has also 
been reported over most of the northwestern region in 

Spanish where fire frequency has historically been higher 
(Rodrigues et  al. 2020). The decrease in fire occurrence 
in all the bioregions analyzed is probably associated with 
an efficient wildfire suppression policy, mainly during the 
mid-90s when a total fire exclusion policy was enforced 
(Ruffault and Mouillot 2015; Rodrigues et al. 2020). How-
ever, we found contrasting tendencies in fire severity in 
our study sites, with an increasing trend in the Atlantic 
area, and a decreasing trend in the Mediterranean area. 
Despite the observed decrease in fire occurrence in the 
three bioregions, the ecological contexts of the Atlantic 
areas, where the rate of fuel build-up is higher (primarily 
of resprouting and facultative species; Fernández-García 
et  al. 2020), may have contributed to the increased fire 
severity of repeated wildfires (Rodrigues et al. 2020). This 
can also reinforce positive fire-vegetation feedbacks that 
perpetuate fire-prone vegetation types that will generate 
new high-severity wildfires (Parks et al. 2014; Duane et al. 
2021; Povak et  al. 2023). Apart from the higher relative 
abundance of fast-recovering resprouting species after 
short fire-free intervals (Pausas and Keeley 2014), the 
increase in extreme fire weather conditions throughout  
an extended fire season observed by authors as Calheiros  
et  al. (2021) might also promote a greater vegetation  

Fig. 7 Flowchart of the modulation of main high fire severity drivers by fire regime attributes under different environmental context (sites)
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propensity to burn at high fire severity in the Atlantic 
bioregion.

Vegetation drivers of fire behavior across different 
bioregions
Our results showed that proxies for pre-fire fuel type and  
amount were the most relevant predictors of fire severity  
across different bioregions, which is in accordance  
with previous research (e.g., García-Llamas et  al. 2019; 
Fernández-García et  al. 2022). Conversely, structural 
variables related to fuel horizontal distribution, which 
have proven before to be relevant in fire extent modeling,  
were not found to be good predictors of fire severity  
(Fernandes et al. 2016).

Among pre-fire fuel amount variables, FAPAR, closely 
associated with site productivity (Fensholt et  al. 2004), 
was the best predictor of fire severity (Viedma et al. 2020; 
Fernández-García et  al. 2022). We reported a clear pat-
tern of increasing fire severity towards intermediate and 
high pre-fire fuel amounts, depending on ecosystem type 
and environmental context of each bioregion. This fire 
behavior control has been documented by other authors 
(e.g., Fernández-Guisuraga et al. 2021a), who found that 
fire severity at fine spatial scales is largely determined by 
specific parameters related with the distribution of the 
fuel amount in the stand (e.g., canopy volume). Never-
theless, the role of pre-fire biomass amount in predict-
ing the spatial variability of fire severity was stronger in 
Transition or Mediterranean areas, compared to Atlantic 
areas. This could be partly due to the importance of fire 
weather-type and topographic variables in determin-
ing high fire severity likelihood in the most humid and 
productive regions (weather-limited fire regimes) of the 
western Iberian Peninsula, especially in areas of elevated 
roughness and dissected terrain, as previously reported 
by other authors (Fernández-Alonso et  al. 2017). In any 
case, here we have only considered variables that can be 
handled through management actions, such as pre-fire 
fuel. In addition, fine-scale fire weather data is not avail-
able at the spatial scale of the present study.

The distinct strength of fire severity predictions across 
different bioregions was not only due to pre-fire veg-
etation amount but also to the interaction with specific 
ecosystem types. Under Transition and Mediterranean 
environmental conditions, conifer forests with high 
FAPAR were the main drivers of extreme fire behav-
ior. Previous studies (Fernández-Guisuraga et  al. 2021a, 
2023b) demonstrated that a high fraction of flamma-
ble fuel types (e.g., Mediterranean pine forests), typi-
cally with dense and tall understories that accumulate 
substantial dead plant material (Fernandes and Rigolot 
2007), are prone to more severe fires, mainly because of 
ladder fire propagation and crowning potential (Kane 

et al. 2015; García-Llamas et al. 2020). Notwithstanding, 
maximum fire severity in the Atlantic area was found for 
intermediate pre-fire vegetation amount, with shrublands 
and conifer forests being the most affected land cover 
classes. In previous research (García-Llamas et al. 2019; 
Viedma et  al. 2020), it has been highlighted that very 
dense live biomass reduces severe fire behavior, probably 
due to flammability limitations caused by high moisture 
loads under mesic environments (Busby and Holz 2022) 
and fire resistance of individuals in native mature for-
ests (Gil-Tena et al. 2016). The above-mentioned pattern 
was clearly evident in shrublands in this study, but also 
in conifer forests, where fire-induced ecological effects 
stabilize or increase very slightly under intermediate site 
productivity. Moreover, in Atlantic areas, where humid 
climate promotes resprouting reproductive strategies 
(Reyes and Casal 2008), shrub-dominated ecosystems 
could be the most affected by fire at intermediate pro-
ductivity sites.

Effects of fire regime attributes in shaping severe 
fire‑prone landscapes in different Spanish bioregions
Fire regime attributes strongly modulated pre-fire veg-
etation characteristics and, thus, the fire behavior of sub-
sequent wildfires, following distinct mechanisms across 
Atlantic-Transition-Mediterranean bioregions. First, our 
results indicated that long-term fire effects on ecosys-
tems as measured by fire severity of previous wildfires 
(FSPW) have been a key element in the composition and 
productivity of landscapes prone to subsequent extreme 
wildfire disturbances, as previously reported in Sierra 
Nevada of California, United States (Steel et  al. 2021). 
In this respect, our results revealed that the ecological 
impacts of previous wildfires have different implications 
in landscape composition and vegetation productivity 
under distinct environmental contexts. Productivity and 
vegetation recovery after fire (whether by obligate seed-
ers, facultative seeders, or obligate resprouters) vary as a 
function of moisture and fertility conditions (Pausas and 
Keeley 2014), gap availability for seedling recruitment, 
and growth in highly competitive environments (Clarke 
et  al. 2005, 2013; Fernández-García et  al. 2020). For 
instance, as resource availability increases, namely mois-
ture and nutrients, resprouting strategy after a wildfire 
disturbance confers competitive advantages over seeding 
strategy from lower to higher site productivity (Pausas 
and Keeley 2014).

Translating the above to specific environmental con-
texts, the highest post-fire competition intensity can be 
expected for resprouter species in the Atlantic bioregion 
(Fernández-García et al. 2020) according to the resource-
productivity model proposed by Clarke et al. (2005). This 
may explain that native broadleaf forests are dominated 
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by fast-recovering and low-flammability resprouter spe-
cies (Reyes and Casal 2008) that were more likely to dom-
inate after severe wildfires with high post-fire resource 
availability in our Atlantic study areas. Conversely, in 
Mediterranean environments with open post-disturbance 
habitats fostered by high severity wildfires, higher com-
petition intensities in stands of seeding tree species (e.g., 
Peninsular pine species) over shrubby understory species 
can be expected according to the gap-dependent model 
(Keeley et  al. 2016). This fact may be reinforced by the 
high level of serotiny of some pine species at the Medi-
terranean site (e.g., Pinus pinaster Ait.) that provides an 
effective post-fire seedling recruitment mechanism with-
out the influence of competitive advantages exerted by 
shrub resprouter species in more densely vegetated areas 
(Keeley et al. 2016). Agreeing with our results, high post-
fire conifer seedling recruitment after severe wildfires, 
together with long TSLF (> 30 years), may be respon-
sible for the accumulation of flammable fuels prone to 
subsequent high severity wildfires in the Mediterranean 
bioregion. The same mechanism may be also behind the 
high severity outcome at moderate to high FAPAR val-
ues in places dominated by facultative and seeder shrubs. 
Similarly, highly disturbed environments by past wildfires 
in the Transition site promote a high fuel accumulation 
of fire-adapted species even with short TSLF, mainly 
resprouting and facultative shrubs with high recovery 
rates (Fernández-García et  al. 2020; Huerta et  al. 2021), 
associated to transitions from forest to shrub-dominated 
ecosystems (Gil-Tena et  al. 2016) with high fire severity 
likelihood in subsequent wildfires.

Regarding the temporal attributes of the fire regime, 
fire recurrence and TSLF had a strong effect on vegeta-
tion composition and productivity, besides potentially 
impairing other ecosystem functions and services that 
are highly related to the former through synergies or 
trade-offs (Moghli et  al. 2022), such as biodiversity, soil 
fertility, or decomposition rates. Across all bioregions 
studied, high fire recurrence led to a marked reduction 
in the area occupied by forest ecosystems (both coni-
fer and broadleaf dominated) and also to an increase of 
shrublands ecosystems that need less time (short TSLF) 
to recover to a pre-fire state after a wildfire disturbance 
(Taboada et al. 2017).

High fire recurrence may strengthen high fire severity 
feedbacks in shrubland ecosystems, particularly in the 
Atlantic and Transition areas dominated by resprouter 
and facultative species linked to high post-fire regrowth 
rates (Clarke et  al. 2013; Pausas and Keeley 2014), as 
compared to the Mediterranean areas where seedling 
recruitment prevails (Fernández-García et  al. 2020; 
Fernández-Guisuraga et  al. 2020). For instance, in the 
Atlantic bioregion, moderate to high fire recurrence 

together with low disturbance intensity of past wildfires 
conduct to high shrub fuel build-up according to the 
resource-productivity model (Clarke et  al. 2005), thus 
leading to extreme fire behavior of subsequent wildfires. 
In the Mediterranean bioregion, shrublands of interme-
diate FAPAR values, prone to high fire severity, are pro-
moted by high fire recurrence and severity of previous 
wildfires, according to the gap-dependent model (Kee-
ley et al. 2016). Conversely, low fire recurrence, coupled 
with long TSLF, may be accountable for a high accumula-
tion of flammable fuels in conifer forests that are likely 
to undergo subsequent wildfires of high severity. These 
results are consistent with previous research demon-
strating that long TSLF (> 10–20 years) are necessary 
to ensure that Mediterranean conifer species regener-
ate after wildfire (Fernández-García et al. 2019). Instead, 
short TSLF (< 10 years) foster the dominance of shrub 
and native broadleaved tree species in Atlantic and Tran-
sition areas, whereas low-biomass ecosystems such as 
grassland dominated the Mediterranean area. Further-
more, we found that maximum vegetation productivity in 
bioregions with opposite environmental conditions (i.e., 
Atlantic and Mediterranean sites) was reached in TSLF 
of around 20 years. Remarkably, long TSLF under Medi-
terranean conditions buffered the negative effects of fire 
recurrence and fire severity of previous wildfire on veg-
etation productivity, as reported by Moghli et al. (2022), 
who evidenced that long TSLF may buffer ecosystem 
functioning from recurrent wildfires. In the Transition 
area, the same TSLF buffer mechanism was evidenced for 
FSPW.

Management implications and research future scope
Our findings suggest that in fire-prone ecosystems adap-
tive management strategies addressed to reduce the 
accumulation of highly flammable fuels and avoid or min-
imize the consequences of changing fire regimes must be 
developed considering particular and local environmen-
tal contexts, as well as their historical relationship with 
fire (Fernandes 2013; García-Llamas et al. 2020).

In Atlantic areas, a decrease in fire frequency has been 
observed over the last 35 years with the consequent accu-
mulation of high amounts of flammable fuels, promoting 
significant worsening of winter and spring fire activity 
(Rodrigues et  al. 2020). In fact, climate change is exac-
erbating this scenario by raising the number of dry days 
with elevated temperatures (Calheiros et  al. 2021) lead-
ing to more severe fires during these seasons. In this con-
text, it would be relevant to consider the application of 
management measures for dense and mature shrublands 
prone to high severity wildfires, especially in landscapes 
under risk of homogenization (Fernández-Alonso et  al. 
2017; García-Llamas et  al. 2019). Land management 
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strategies in areas that have not burned for long peri-
ods of time must be a priority to promote heterogeneous 
mosaics of vegetation types to also encourage heteroge-
neous patterns of fire behavior and severity across the 
landscape (Fernandes 2013). Particularly, prescribed 
burning treatments and clearing tasks at short time inter-
vals can be useful for creating uneven-aged patches in 
shrublands and constraint fire behavior with lower loads 
(Valkó et  al. 2014). A resilient well-managed landscape 
mosaic will not only act as a fire regulation service (Sil 
et  al. 2019) but will also increase the provision capac-
ity of other ecosystem services to the rural populations 
(Moghli et  al. 2022). In addition, it would be important 
to close the loop caused by previous high severe wildfires 
in long TSLF situations, also observed in less produc-
tive environments such as the Transition and Mediterra-
nean sites. The dangerous build-up of conifer-type fuels 
tending to be associated with a very dense understory 
(Fernández-García et al. 2019) might be addressed by fol-
lowing various silvicultural treatments: (i) pruning and 
removing of low-height branches to raise canopy base 
height and avoid ladder fuels (Fernández-Guisuraga et al. 
2021a), (ii) reducing fuel accumulation in the under-
story to moderate fire intensity and crowning potential 
(Fernandes 2013), (iii) thinning the stand to create open 
patches (García-Llamas et al. 2020; Viedma et al. 2020), 
and (iv) reforesting with more fire-resistant vegetation-
types as native broadleaved species (e.g., Quercus spp.) 
(Pausas and Keeley 2021; Huerta et al. 2022). Moreover, 
fire-smart management should be considered in Transi-
tion and Mediterranean areas to avoid fuel-type conver-
sion by tree-shrubland transitions observed in high fire 
recurrence situations (Gil-Tena et  al. 2016; Fernández-
García et al. 2019). Management strategies to reduce the 
fire occurrence could be focused on (i) decreasing sur-
face fuel accumulation by recovery of traditional land 
uses (e.g., grazing or forage production) (Moghli et  al. 
2022), (ii) encouraging multi-species forest arrangement 
(Fernandes 2013; García-Llamas et  al. 2019), and (iii) 
promoting native tree growth in place of the shrubby 
undergrowth community (Fernández-García et  al. 2019; 
Huerta et al. 2022).

Our research approach is adequate to understand 
how the influence of pre-fire vegetation characteristics 
on fire behavior is modulated by their interactions with 
fire regime attributes, which is critical for providing a 
more complete picture of land-management policies and 
strategies in southern European countries (Fernandes 
2013; Fernández Guisuraga et  al. 2023b). However, cau-
tion is needed given the temporal uncertainty in fire 
regimes that may be generated by post-fire human inter-
ventions (e.g., altering patterns in fuel composition and 
arrangement), which may become dependent on the 

environmental context (Rodrigues et  al. 2020). Further-
more, in the bioregions analyzed, variables related to fire 
weather (e.g., wind speed) or drought conditions in the 
pre-fire vegetation play a key role in controlling fire sever-
ity patterns (Busby and Holz 2022; Fernández Guisuraga 
et  al. 2023b), implying a high degree of variation in fire 
behavior both spatially and temporally. In this sense, 
further research should be conducted to link fire regime 
dynamics with changes in climate conditions, land use, 
and socioeconomic factors, as these frequently imply 
substantial modifications in fuel settings (Pausas and 
Keeley 2021) and, consequently, in fire behavior. Further 
validation of these results on a larger number of burned 
areas is also recommended, which would allow capturing 
a wider heterogeneity, both in landscape dynamics and 
fire behavior, within each environmental context. The 
need for such validations in different scenarios resides 
in the attenuation of the effect of local driving patterns 
(e.g., extreme heat waves), as eventual extreme weather 
conditions may dampen the influence of landscape-scale 
variables (Calherios et al. 2021; Evers et al. 2022). Finally, 
eventual biases involving training data of SVM land cover 
classifications and the inherent uncertainty in model pre-
dictions should be considered. Despite the high overall 
accuracy of the SVM classifier in this study (OA ≈ 90%), 
SVM performance and generality can be improved by 
considering more specific training data (e.g., differentiat-
ing pixels belonging to distinct shrubland types or matu-
rity stage) and allowing for individual representation of 
certain landscape features (Basheer et  al. 2022), such as 
recently burned areas. Moreover, the evaluation of the 
generalization capacity of SVM models to new areas 
outside the training dataset in this study would also help 
to better contextualize our findings and extrapolate our 
results regarding pre-fire landscapes prone to extreme 
fire behavior to broader geographic regions.

Conclusions
The present study provides new evidence in characteriz-
ing the importance of fire history patterns in modulating 
biophysical characteristics that shape landscapes prone 
to high fire severity across Atlantic-Transition-Medi-
terranean bioregions in the western Iberian Peninsula. 
Our analysis revealed a decrease in fire occurrence in all 
bioregions but a rise in fire severity under the wetter and 
more productive areas such as Atlantic contexts. Pre-fire 
fuel type and amount were the most relevant drivers of 
fire severity in all the bioregions analyzed, being struc-
tural variables related to the fuel horizontal distribution 
not influential. In this context, fire regime attributes 
strongly modulated pre-fire vegetation characteristics, 
and thus the behavior of subsequent wildfires, but follow-
ing distinct mechanisms depending on the environmental 
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context. In Atlantic sites, high fire recurrence, even at 
low to moderate fire severities, may induce transitions to 
shrubland stable ecosystem states with intermediate fuel 
amount that are prone to high fire severity in subsequent 
wildfires and perpetuate fire-prone vegetation types. The 
same behavior was evidenced in shrublands of Transi-
tion and Mediterranean sites when the previous wildfires 
had burned at high fire severity. Under the three envi-
ronmental contexts, long time since last fire after high-
severity wildfire disturbances may enhance fuel build-up 
in conifer-dominated ecosystems prone to subsequent 
severe fire behavior. In Atlantic bioregion, this situation 
is favored in less mesic areas with intermediate site pro-
ductivity. Altogether, our results suggest that adaptive 
management actions in fire-prone ecosystems addressed 
to mitigate the consequences of changing fire regimes 
must be specifically developed considering the specific 
environmental contexts.
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