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Abstract 

Background  Longleaf pine (Pinus palustris) ecosystems are recognized as biodiversity hotspots, and their sus-
tainability is tightly coupled to a complex nexus of feedbacks between fire, composition, and structure. While 
previous research has demonstrated that frequent fire is often associated with higher levels of biodiversity, rela-
tionships between fire frequency and forest structure are more nuanced because structure can be difficult to meas-
ure and characterize. We expanded on this body of research by using lidar to characterize vegetation structure 
in response to fire frequency at a long-term prescribed-fire experiment. We asked (1) how does prescribed fire fre-
quency affect structure and (2) how do structural metrics vary in the strength of their relationships with fire frequency.

Results  Our results indicated that forest structure varied significantly in response to fire frequency, with more 
frequent fire reducing vegetation structural complexity. Metrics that characterized the central tendency of vegeta-
tion and/or the variance of canopy-related properties were weakly to moderately correlated with prescribed fire 
frequency, while metrics that captured the vertical dispersion or variability of vegetation throughout the forest strata 
were moderately to strongly correlated with fire frequency. Of all the metrics evaluated, the understory complex-
ity index had the strongest correlation with fire frequency and explained 88% of the structural variation in response 
to prescribed fire treatments.

Conclusions  The findings presented in this study highlight the usefulness of lidar technology for characterizing for-
est structure and that structural complexity cannot be fully characterized by a single metric. Instead, a range of diverse 
metrics is required to refine scientific understanding of the feedbacks between fire, composition, and structure in sup-
port of longleaf pine sustainability. Furthermore, there is a need for further research to broaden structural assessments 
beyond the overstory and incorporate more understory components, particularly within the realm of prescribed fire 
science and land management.
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Resumen 

Antecedentes Los ecosistemas de pino de hoja larga (Pinus palustris) son reconocidos como focos de biodiversidad y 
su sustentabilidad está fuertemente ligada a un complejo nexo de retroalimentaciones entre fuegos, composición, y 
estructura. Aunque investigaciones previas han demostrado que fuegos frecuentes se asocian usualmente con altos 
niveles de biodiversidad, las relaciones entre la frecuencia de fuegos y la estructura forestal son variadas, dado que la 
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Background
Decades of fire exclusion has disrupted natural fire 
regimes and led to dramatic shifts in the structure and 
function of many forested and non-forested landscapes 
globally (Loudermilk et  al. 2022). These shifts are par-
ticularly pronounced in longleaf pine (Pinus palustris 
Mill.) ecosystems, which were historically characterized 
by frequent fires that maintained a structurally open 
habitat vital for both pine regeneration and maintaining 
the biologically rich understory community (O’Brien 
et  al. 2008; Dell et  al. 2017; Loudermilk et  al. 2019). 
According to dendrochronology records, fire histori-
cally varied from 1 to 10 years with an average return 
interval of 2.2 years (Stambaugh et al. 2011). Today, less 
than 20,000 km2 of longleaf pine remain, represent-
ing about 5% of the historical range (Oswalt and Gul-
din 2021). The remaining intact ecosystems include 
some of the most diverse plant communities outside 
of the tropics, with the richest tracts containing 900 
types of plants and hundreds animal species, includ-
ing 29 species federally listed as threatened or endan-
gered (Walker and Silletti 2006). Given the enormous 
loss of this once dominant ecosystem, conservation and 
restoration efforts have become a priority, with non-
governmental organizations leading the way in close 
partnership with federal agencies, private landowners, 
universities, and industry experts (Kirkman and Jack 
2017; Bigelow et  al. 2018). These collaborations have 
not only halted, but reversed the decades-long habitat 
decline and produced a wealth of integrated knowledge 
(McIntyre et al. 2018).

A key element of the region’s success is the reintroduc-
tion of periodic fire. Frequent, low-intensity fires have 
an overall positive effect on longleaf pine during its vari-
ous life stages due to numerous adaptations that facili-
tate fire spread in addition to protective traits, such as a 
grass-stage morphology, thick bark, and insulated buds 
(Wilson et  al. 2022). However, seedlings are vulnerable 
to high intensity fire as well as competition for resources, 
making their regeneration and productivity in early 
developmental stages dependent on lowintensity fires to 
control competing vegetation and to maintain canopy 
gaps that facilitate light transmittance to the forest floor, 
which is vital for the germination and growth of longleaf 
pine seedlings (Palik et al. 2011). This nexus between fire 
intensity, resource competition, and canopy gaps plays 
a crucial role in facilitating seedling growth beyond the 
grass stage. Due to the region-wide exclusion of fire, con-
servation and restoration practitioners facilitate longleaf 
pine sustainability by managing the structure and com-
position of these forests with prescribed fire.

Previous research has demonstrated that fire return 
intervals of four years or less are needed to sustain an 
open canopy structure that is associated with higher 
levels of biological diversity (Mitchell et  al. 2006; Lou-
dermilk et  al. 2011; Glitzenstein et  al. 2012). However, 
measures of forest structure, or structural complexity, 
can vary widely depending on the methods and scale of 
analysis. Traditional field-based monitoring campaigns, 
for example, tend to focus on structural attributes (e.g., 
species, height, diameter, crown spread) that can be 
readily measured or estimated in the field (Smith 2002). 

estructura puede ser difícil de medir y caracterizar. Nos expandimos en este cuerpo de investigación mediante el uso 
del LIDAR para caracterizar la estructura de la vegetación en respuesta a la frecuencia del fuego, en un experimento 
de quemas prescriptas a largo plazo. Nos preguntamos (1) ¿cómo la frecuencia de las quemas prescriptas afecta la 
estructura? y (2) ¿cómo las medidas estructurales varían en la fortaleza de sus relaciones con la frecuencia del fuego?

Resultados Nuestros resultados indicaron que la estructura forestal varió significativamente en respuesta a la frecuen-
cia del fuego, con fuegos más frecuentes reduciendo la complejidad estructural. Las medidas que caracterizaron la 
tendencia central de la vegetación y/o la variación de las propiedades relacionadas con el dosel fueron de débiles 
a moderadamente correlacionadas con la frecuencia de las quemas prescriptas, mientras que las medidas que cap-
turaron la dispersión vertical o la variación de la vegetación a través del estrato forestal fueron de moderada a fuer-
temente correlacionadas con la frecuencia de las quemas. De todas las medidas evaluadas, el índice de complejidad 
del sotobosque presentó la correlación más fuerte con la frecuencia de las quemas, y explicó el 88% de la variación 
estructural en respuesta a los tratamientos de quemas prescriptas.

Conclusiones Los resultados presentados en este estudio enfatizan la utilidad de la tecnología LIDAR para caracterizar 
la estructura forestal, y que la complejidad estructural no puede ser caracterizada por una simple medición. En cam-
bio, un rango de diversas medidas es requerido para refinar el entendimiento científico sobre las retroalimentaciones 
entre fuego, composición, y estructura, para consolidar la sustentabilidad del pino de hoja larga. Además, es una 
necesidad para futuras investigaciones, el ampliar las determinaciones de las estructuras más allá del dosel, e incorpo-
rar más componentes del sotobosque, particularmente dentro del dominio de la ciencia de las quemas prescriptas y 
el manejo de tierras.
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However, field-based assessments require significant ini-
tial setup, are time consuming and costly, vulnerable to 
data collection and entry errors, and are not fully repro-
ducible because such evaluations often rely on some 
degree of subjective interpretation by observers. As such, 
there is substantial interest in developing and applying 
more efficient, reproducible, and scalable methodologies 
for vegetation monitoring (Pokswinski et al. 2021).

The utilization of remote sensing technologies for 
measuring and monitoring vegetation structure to evalu-
ate land management and sustainability goals is advanta-
geous in the sense that the methods can be replicated in a 
systematic and standardized manner (White et al. 2016). 
Moreover, remote sensing technologies offer economies 
of scale, with data often becoming less expensive as the 
area of interest increases (White et  al. 2016). Advances 
in remote sensing, specifically light detection and rang-
ing, or lidar, have enabled the mapping of forest structure 
with unprecedented precision. Utilized across a diverse 
array of landborne, airborne, and spaceborne platforms, 
lidar has refined scientific understanding of structural 
attributes across a variety of spatial scales, including fine-
scale mapping and monitoring of surface fuels (Hiers 
et al. 2009; Loudermilk et al. 2012), stand-level mapping 
of canopy structure and individual tree attributes (Silva 
et al. 2016; Ross et al. 2022; Traylor et al. 2022; Sánchez-
López et al. 2023), and large-scale assessments of struc-
ture and aboveground biomass (Karna et  al. 2020; Silva 
et al. 2021; Ross et al. 2021; Ceccherini et al. 2023).

To date, most lidar-derived assessments of forest struc-
ture have been conducted with aerial laser scanning 
systems (ALS) due their ability to rapidly retrieve sub-
meter resolution information across large spatial scales. 
However, sub-canopy vegetation is difficult to detect and 
characterize with airborne lidar because of the relatively 
low-density point clouds in addition to occlusion from 
the overstory, which can artificially skew the distribu-
tion of lidar-detected vegetation towards the overstory 
(Ross et  al. 2022). As such, the accuracy of sub-canopy 
structural measurements varies across studies. Moreover, 
indices that characterize the distribution and structure 
of understory vegetation have received comparatively 
less attention (Jarron et  al. 2020), but are important for 
evaluations of forest structure in response to prescription 
burning because fire effects are most prominent in the 
understory and forest floor.

Unmanned aerial vehicles (UAV) equipped with 
lidar are increasingly utilized to address such limita-
tions, improving the ability to measure understory veg-
etation in areas where conventional remote sensing 
approaches faced limitations (Hämmerle et  al. 2017; 
Kuželka and Surový 2018; Hernandez-Santin et al. 2019). 
The increased spatial resolution afforded with UAV laser 

scanning (ULS) is crucial for pushing the boundaries of 
scientific knowledge at fine scales, surpassing the capabil-
ities of conventional aerial or satellite imagery (Shrestha 
et  al. 2021; Zhou et  al. 2022). Moreover, UAV integra-
tion in the wildland fire sciences extends beyond remote 
sensing applications, and is increasingly used to con-
duct aerial ignitions for both prescribed fire and wildfire 
operations, highlighting its multifaceted role in advanc-
ing forest management practices (Lawrence et al. 2023). 
However, few studies have utilized randomized and rep-
licated experimental designs to investigate relationships 
between fire frequency and forest structure, due in part 
to the complexities and barriers of conducting controlled 
burns in addition to the challenges associated with meas-
uring forest structure. Collaborative efforts among inter-
disciplinary teams, including ecologists, wildland fire 
crews, and remote sensing scientists are needed to refine 
scientific understanding of these relationships.

The overarching objective of this study was to inves-
tigate relationships between fire frequency and forest 
structure in a frequently burned longleaf pine ecosystem. 
Specifically, we wanted to answer two questions: (1) how 
does prescribed fire applied with varying frequency affect 
structure and (2) how do structural metrics vary in the 
strength of their relationships with fire frequency.

Methods
Site description
Established by the USDA Forest Service Southern 
Research Station in 1957, the Osceola fire experiment is 
one of the longest running of its kind in the world. The 
study site covers approximately 20-ha within the Olus-
tee Experimental Forest, which is part of the Osceola 
National Forest located in northeast Florida, USA (Fig. 1). 
Although the fire history prior to the establishment of the 
study was not recorded, application of dormant season 
backfires (i.e., burning against the wind) every 4–6 years 
was a common component of land management prac-
ticed by the local community. The native stand of lon-
gleaf pine (Pinus palustris Mil.) was clearcut in the early 
1900s, coinciding with WWI and an increased demand 
for naval stores (Snitker et  al. 2022a). The forest was 
restocked primarily in longleaf and some slash pine ca. 
mid-century. Records indicate that the stand age was 45 
years, tree height averaged 20 m, and diameter at breast 
height (DBH) averaged 28 cm when the experiment was 
established. With elevational differences less than 1  m, 
the landscape is flat and referred to as flatwoods and/or 
pine savannas. The midstory vegetation native to longleaf 
pine varies depending on landscape position and soil 
moisture conditions. In the Osceola study, shrubs tend 
to dominate the understory, being primarily of gallberry 
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(Ilex spp.), wax myrtle (Morella cerifera), and saw pal-
metto (Serenoa repens).

Experimental design
The experimental design consists of a completely rand-
omized design with 6 replications of each fire frequency 
treatment (unburned, annual, biennial, and quadrennial 
fire) in a longleaf pine ecosystem, with a mean plot size 
of 0.85 ha. Strip-head fire is applied to the plots during 
the dormant season as the treatment and fire is excluded 
from the check plots. Prior to the studies initialization, a 
backfire was applied to all plots (including check plots) in 
the winter of 1958–1959 to establish a baseline for ana-
lyzing treatment effects on successional dynamics.

Data collection and preprocessing
Vegetation was measured using discrete-return light 
detection and ranging (lidar) affixed to an unmanned 
aerial vehicle (UAV) in February of 2022, 1 day prior 
to first ignition. The lidar sensor was a Zenmuse L1 
affixed to a DJI Matrice 300 RTK. Acquisition height 
was 100  m using repetitive scanning to capture three 
returns, operating at a frequency of 160  kHz. Flight 
speed was 5.4 m per second, using a flight line overlap 
of 50%. The resulting point cloud had an average den-
sity of 1,178 returns per m2. Using the R lidR package 
(Roussel et  al. 2020), pre-processing steps included 
removal of point-cloud noise (outliers) using one pass 

with statistical outliers removal (SOR) algorithm and 
one pass with the isolated voxels filter (IVF), classifica-
tion of ground returns using cloth simulation function 
(csf ) with a class threshold of 0.1  m, cloth resolu-
tion = 0.1 m, and rigidness of 3 (i.e., flat) with k-nearest 
neighbors (KNN) inverse-distance weighting (IDW) for 
height-normalization of the point cloud such that the 
elevation of ground returns correspond to zero meters. 
The point cloud was then voxelized using a 0.05 m reso-
lution, resulting in a density of ca. 398 voxels per m2.

Estimation of structural attributes
With the exception of canopy cover, vegetation struc-
tural attributes were characterized from a height-
normalized and voxelized point cloud using a voxel 
resolution of 0.05  m. The lidR pixel metrics function 
was used with the equations described below to pro-
duce gridded maps with a horizontal resolution of 1 
m2. Structural metrics were then calculated for each 
treatment group. Each raster map was clipped prior 
to calculating plot-level metrics to avoid “edge effects” 
and/or gaps at or near fire control lines and roads. 
This was performed by first determining the centroid 
of each treatment unit and then adding a 30  m circu-
lar buffer around the centroid. Summary statistics for 
the structural complexity metrics were derived by aver-
aging across each circular plot, grouped by treatment 
frequency.

Fig. 1  The Osceola study. a Location of the study site within the Osceola National Forest (tan) in North Central Florida, USA. The map also depicts 
the native range of longleaf pine (green) and b the prescribed fire treatment plots—white lines represent fire control lines, 1, 2, and 4 correspond 
to annual, biennial, and quadrennial burns, C corresponds to the check plots (i.e., fire exclusion)
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Canopy cover
Canopy cover was estimated from the voxelized point 
cloud in a similar manner as described by Ross and col-
leagues (2022) using a voxel resolution of 0.25  m. Vox-
els with height values < 1.4  m were excluded from the 
calculation of canopy cover (Eq. 1). Briefly, canopy gaps 
were estimated from the voxelized point-cloud data at 
each burn unit by extracting the coordinate (X, Y, and Z) 
information into a data frame. Voxels with spatially coin-
cident X and Y coordinate values were filtered from the 
data frame using the dplyr “distinct” function. We used 
0.25 m voxels for this calculation, as ALS-derived canopy 
cover estimates at this resolution were shown to have the 
best agreement with digital hemispherical photography 
(Ross et al. 2022).

where Lv is voxel side length (i.e., resolution) in point 
cloud units (e.g., 0.25 m), and πr2 is the circular area of 
the transect with radius r (30 m).

Canopy relief ratio
Canopy relief ratio is used to quantify the vertical vari-
ation or roughness of a forest canopy and describes 
the degree to which canopy surfaces are in the upper 
(CRR > 0.5) or in the lower (CRR < 0.5) portions of the 
height Range (Torresan et  al. 2016). A higher canopy 
relief ratio is considered to have a more complex or rug-
ged canopy structure, while a lower ratio reflects a rela-
tively uniform or even canopy. In this study, CRR was 
calculated from the height normalized point cloud by 
dividing the difference between the maximum and mini-
mum height values by the average height (Eq. 2).

where Zmax, Zmin, and Zmean is the maximum, minimum, 
and mean heights of the lidar returns.

Foliar height diversity
Foliar height diversity refers to vegetation variation or 
diversity in the vertical distribution of a forest canopy. It 
represents the range or spread of leaf or foliage positions 
along a vertical profile (Eq. 3).

where pi = proportion of horizontal vegetation coverage 
in the ith layer.

Top rugosity
Top rugosity (RT), or surface rugosity, is the standard 
deviation of maximum canopy height and is often used to 
characterize differences in canopy heterogeneity during 

(1)Canopy cover=Lv2/π∗r2

(2)CRR = (Zmax − Zmin/Zmean)

(3)FHD = − pilogepi

forest stand development or after disturbance events. 
Top rugosity was calculated according to Eq. 4.

where sd is standard deviation and Z1 is the lidar first 
returns.

Vertical distribution ratio
The vertical distribution ratio (VDR) quantifies the pro-
portion of vegetation present in different height strata or 
layers within the vertical profile of the forest and was first 
used to associate vegetation structure with bird species 
diversity (MacArthur and MacArthur 1961). In older for-
ests, for instance, the VDR may indicate a more stratified 
canopy structure with distinct vertical layers of biomass 
or foliage. In contrast, VDR may be more evenly distrib-
uted across the vertical strata in younger or more even-
aged forests. VDR was calculated according to Eq. 5.

where Zmax and Zmed are the maximum and median lidar 
returns.

Vertical complexity index
Vegetation vertical complexity was characterized using 
the vertical complexity index (VCI) as implemented 
in the R lidR package, which is a fixed normalization of 
entropy across user defined height bins (van Ewijk et al. 
2011; Roussel et  al. 2020). We calculated VCI for the 
entire vertical profile using 1  m height bins and a hori-
zontal grid resolution of 1  m−2 (Eq.  6). Regarding its 
interpretation, understory complexity approaches 1.0 as 
vegetation structure becomes more homogeneously dis-
tributed throughout the forest strata, and approaches 0.0 
as it becomes more heterogeneous, or stratified.

where HB is the total number of height bins, and pI is the 
proportional abundance of lidar returns in height bin i.

Understory complexity index
The structural complexity of the understory was calcu-
lated in this study by limiting the height in pI of Eq. 6 to 
3 m. Additionally, 0.25 m height bins were utilized, rather 
than the default of 1 m, to characterize fine scale hetero-
geneity of understory vegetation.

Statistical testing
The Kruskal-Wallis test, as implemented in R, was used to 
determine if the frequency of prescribed fire treatments 
has an effect on vegetation structure (R Core Team 2023). 
The null hypothesis of the Kruskal-Wallis test assumes 

(4)RT = sd(Z1)

(5)VDR = (Zmax − Zmed/Zmax)

(6)VCI = (−
∑HB

i=1
[(pi ∗ ln(pi)]))/ln(HB)
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that the mean ranks of the groups originate from the 
same distribution. Kruskal-Wallis is often referred to as a 
one-way ANOVA on ranks; however, the test is nonpara-
metric and does not assume a normal distribution of the 
underlying data. Kruskal-Wallis is therefore more suita-
ble for analysis of environmental data, which often do not 
meet assumptions of normality and may contain outliers. 
It is more appropriate to use ranks rather than actual val-
ues as to avoid the test being affected by the presence of 
influential outliers and/or by non-normally distributed 
data. While the Kruskal-Wallis test indicates whether 
or not significant differences exist between groups (i.e., 
treatments), it does not indicate which groups are sig-
nificantly different. Therefore, post hoc multiple com-
parisons were performed with the pairwise Wilcoxon 
rank sum test to calculate pairwise comparisons between 
treatments, indicating which of the groups, if any, were 
significantly different. Bonferroni correction was used to 
correct for family-wise errors that can occur with mul-
tiple comparisons, which sets the alpha value (α) for the 
entire number of comparisons (n) equal to alpha by tak-
ing the alpha value for each comparison equal to α/n.

Results
Both the vertical and horizontal distribution of lidar-
detected vegetation varied considerably within and 
between treatment groups; however, the majority of 
this variability occurred within the understory as shown 
in the point-cloud cross section of Fig.  2a. The vertical 
distribution of vegetation, characterized from the point 
cloud using probability density estimation, shows that the 
distribution of vegetation becomes increasingly bimodal 
(i.e., more stratified) in response to less frequent fire 
(Fig.  2b). In the plots subjected to fire treatment, most 
of the vegetation was distributed within the overstory. 
Conversely, a substantial amount of vegetation is distrib-
uted within the understory of the fire exclusion plots. 
This phenomenon is further demonstrated by the verti-
cal complexity index (Fig. 2c), illustrating that vegetation 
structure becomes increasingly complex and dense in 
response to less frequent burning.

Vegetation height
Dominant tree height averaged 29 ± 0.7  m (± one stand-
ard deviation) across the entire study area but showed 
little variation within or between treatment groups and 
had no discernible response (R2 = 0.04) to fire frequency 
(Fig. 2d). Most of the variation regarding dominant tree 
height occurred in the fire exclusion plots, but significant 
differences were not detected (P = 0.96) between any of 
the treatment groups. Mean vegetation height (19 ± 3 m, 
Fig.  2d) had a discernible response and decreased in 
response to less frequent burning. Mean vegetation 

height (19 m) in the annual burn plots was significantly 
higher (P = 0.013) than the 2-year, 4-year, and check plots 
and decreased in response to less frequent burning by 
23%, 32%, and 39%, respectively. Post hoc multiple com-
parisons with the pairwise Wilcoxon rank-sum test indi-
cated that significant differences were detected between 
the 2-year burns and the fire exclusion plots (P = 0.01) but 
were not detected between the 2-year and 4-year plots 
(P = 0.55) or between the 4-year plots and the fire exclu-
sion plots (P = 0.99). Variance was lowest in the annual 
burns and increased as the distribution of understory 
vegetation increased in response to less frequent fire.

Canopy cover
Mean canopy cover (61 ± 11%) varied considerably both 
within- and between-treatment groups (Fig. 2e). Canopy 
cover was largest in the fire exclusion plots (74 ± 4%), 
which was significantly greater than the 1-, 2-, and 4-year 
treatments (P = 0.01). While canopy cover was lowest in 
the 2-year plots (50 ± 9%), significant differences were 
not detected amongst the fire treated plots. While simi-
lar trends were observed when considering just the over-
story vegetation (> 12 m), significant differences were not 
detected between any of the treatment groups. Over-
story canopy cover was again lowest in the 2-year burns 
(50 ± 9%), followed by the 4-year (55 ± 7%), fire exclusion 
plots (61 ± 7%), and the annual burns (62 ± 5%).

Canopy relief ratio
Canopy relief ratio (CRR) averaged 53 ± 8% across the 
study area and decreased in response to less frequent 
burning (r = − 0.56). CRR was highest in the annual burn 
plots (65 ± 3%) and decreased to 45 ± 4% in the fire exclu-
sion plots (Fig. 2f ). According to the post hoc compari-
sons, CRR in the annual burns was significantly greater 
than CRR in the 2-year (P = 0.002) and 4-year burns 
(P = 0.002) as well as the fire exclusion plots (P = 0.002). 
CRR in the 2-year plots was significantly greater than the 
fire exclusion plots (P = 0.01) but did not differ signifi-
cantly from the 4-year plots (P = 0.13). The 4-year plots 
did not differ significantly from the fire exclusion plots 
(P = 0.09).

Foliar height diversity
Foliar height diversity (FHD) averaged 247 ± 19 
across the study. In the fire treated plots, FHD exhib-
ited a nearly linear decline as the frequency of fires 
decreased (Fig.  2g). However, foliar height diversity 
was greatest in the fire exclusion plots (268 ± 11), 
which yielded an overall positive correlation (r = 0.6) 
with fire frequency. While foliar height diversity in 
the annual burns did not differ significantly from 
the 2-year burns (P = 0.09) or the fire exclusion plots 
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(P = 0.25), it was significantly greater than the 4-year 
burns (P = 0.01). In the 2-year burns, foliar height 
diversity was significantly lower than the fire exclusion 
plots (P = 0.01) but not significantly different from the 

4-year burns (P = 0.79). Foliar height diversity in the 
4-year burns was significantly lower (P = 0.01) than in 
the fire exclusion plots.

Fig. 2  Lidar-derived vegetation metrics. a Cross-section of the height-normalized point cloud depicts the within- and between-treatment 
heterogeneity of vegetation. b Probability density estimates of vegetation vertical distribution. c Map of vertical complexity index (VCI) illustrates 
horizontal and vertical variation of vegetation. d Maximum and mean vegetation height. e Canopy cover. f Canopy relief ratio. g Foliar height 
diversity. h Top rugosity. i Vertical distribution ratio. j Understory complexity index. The colors and letters of the point-range plot (d – j) signify 
statistically significant differences among treatment groups, each denoted by distinct groupings
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Top rugosity
Top rugosity, or surface rugosity, averaged 10 ± 1 across 
all treatment groups and varied the most in the annual 
burns (Fig.  2h). No meaningful trends (r = 0.1) were 
detected in response to fire frequency; however, post hoc 
comparisons indicated that top rugosity in the annual 
burns (9 ± 1) was significantly lower than the 2-year 
(11 ± 1) and 4-year burns (10 ± 0.2) but did not differ sig-
nificantly from the fire exclusion plots (10 ± 0.4). The 2- 
and 4-year plots did not differ significantly from the fire 
exclusion plots.

Vertical distribution ratio
The vertical distribution ratio (VDR) and variation 
around the group means (32 ± 9) showed a discernible 
response (r = 0.73) to the treatments, increasing as fire 
frequency decreased (Fig. 2i). Post hoc comparisons indi-
cated that VDR in the annual plots (23 ± 2) was signifi-
cantly lower than VDR in the 2-year (29 ± 3, P = 0.02) and 
4-year plots (31 ± 4, P = 0.01) as well as the fire exclusion 
plots (42 ± 11, P = 0.01). Significant differences between 
the 2-year, 4-year, and fire exclusion plots were not 
detected.

Vertical complexity index
The vertical complexity index, or VCI, averaged 77 ± 5% 
across the study site and showed similar trends as FHD, 
where it decreased in the fire treated plots but was great-
est (P ≤ 0.02) in the unburnt fire exclusion plots. VCI 
differed significantly between the 1- and 2-year plots 
(P = 0.02) as well as the 1- and 4-year plots (P = 0.01), but 
significant differences were not detected between the 2- 
and 4- year plots (P = 0.9).

Understory complexity index
The understory complexity index (UCI) had the strongest 
correlation with fire frequency (r = 0.94) and increased as 
fire frequency decreased (Fig. 2j). Understory complexity 
was greatest (74 ± 6%) in the fire exclusion plots where it 
differed significantly from the 1-year (20 ± 2%, P = 0.01), 
2-year (28 ± 7%, P = 0.01), and 4-year plots (39 ± 4%, 
P = 0.01). Significant differences were not detected 
between the 1- and 2-year plots (P = 0.39) or the 2- and 
4-year plots (P = 0.09). However, significant differences 
were detected between the 1- and 4-year plots (P = 0.01).

Discussion
By leveraging a randomized and replicated experimental 
design, we systematically quantified structural variation 
in response to six decades of prescription burning under 
multiple fire return intervals. Our work contributes to a 
general understanding of longleaf pine sustainability in 
the context of prescribed fire effects on forest structure 

in three ways. First, we demonstrate how decades of 
prescribed fire has shaped the structural distribution of 
vegetation. Second, we show that prescribed fire effects 
differ significantly between treatment groups of fire 
return interval and that these effects are primarily lim-
ited to the understory. Third, lidar-derived metrics vary 
widely in their ability to detect structural differences in 
response to prescription burning.

In general, metrics that characterized the central ten-
dency of vegetation and/or variance of canopy-related 
properties were weakly to moderately correlated with 
prescribed fire frequency, indicating that such structural 
characteristics were not strongly influenced by prescribed 
fire frequency. Conversely, metrics that captured the ver-
tical dispersion or variability of vegetation throughout 
the forest strata were moderately to strongly correlated 
with fire frequency, indicating that fire frequency played 
a significant role in shaping the structural distribution 
of vegetation, particularly in the understory. Measures 
of dispersion outperformed those of central tendency 
because they better characterized the overall distribution 
of vegetation in response to treatment frequency. These 
findings support those reported by Atchley et al. (2021), 
who found that the inclusion of vegetation heterogeneity 
improved simulations of wildland fire spread by provid-
ing a more accurate representation of real-world condi-
tions, allowing for a better understanding of how spatial 
variability influences wind entrainment and fire behavior.

Of the nine metrics tested in this study, the understory 
complexity index had the strongest positive correlation 
with fire frequency, explaining 88% of the structural vari-
ation when using ordinary least squares regression. The 
understory complexity index outperformed the other 
structural metrics in this analysis by utilizing 25  cm 
height bins to focus on the fine-scale structural varia-
tion within the understory (< 3  m), where prescribed 
fire effects are most prominent. The vertical distribution 
ratio, which ranked second in performance, primarily 
captures the variability within the overstory and midstory 
strata (Eq.  5). As such, VDR explained just 53% of the 
structural variation because frequent, low-intensity fires 
primarily consume herbaceous understory plants close to 
the ground (O’Brien et al. 2009).

Structure and biodiversity
Because frequent fire limited the establishment of shrubs 
and other woody vegetation to the understory, the distri-
bution of vegetation in the fire treated plots was skewed 
towards the overstory, resulting in significantly lower 
understory complexity when compared with the fire 
exclusion plots. Moreover, there was a noticeable transi-
tion from herbaceous to woody dominated communities 
as fire frequency decreased (Ross, personal observation), 
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which resulted in the development of an increasingly 
complex understory attributable to distinct structural dif-
ferences. The annual plots, for example, are distinguished 
by a reduced dominance of Serenoa repens and a com-
paratively greater abundance of forbs and grasses but saw 
palmetto and other woody plants increase in abundance 
as fire frequency decreases to 2- and 4-year intervals 
(Glitzenstein et  al. 2003). Exclusion of fire in the check 
plots has resulted in a distinct bimodal distribution, facil-
itating the development of relatively dense understory 
strata consisting mainly of shade-tolerant woody vegeta-
tion, such as Quercus.

While this study did not assess species composition, 
Glitzenstein and colleagues (2003) reported that species 
richness at the Osceola study decreased linearly as fire 
frequency decreased, suggesting that species richness is 
inversely related to structural complexity in frequently 
burned longleaf pine ecosystems. These findings con-
trast with conclusions drawn from previous studies con-
ducted in other ecosystems, where species richness has 
been shown to increase as canopy structural complex-
ity increases (Atkins et al. 2018; LaRue et al. 2019; Wal-
ter et  al. 2021). Forests characterized by higher species 
diversity, for example, are more likely to have different 
growth forms represented, resulting in higher structural 
complexity.

In contrast, the Osceola study exhibits a relatively 
homogenous canopy structure, with most of the diver-
sity concentrated within the understory. This is primarily 
attributed to an abundance of herbaceous ground cover 
species that promote the spread of fire (Walker and Sil-
letti 2006). Even minor reductions in fire frequency 
in hydric flatwoods, such as the Osceola study, allows 
woody shrubs to increasingly dominate the understory 
and, given enough time, competitively exclude grasses 
and forbs. Among the plants most sensitive to decreases 
in fire frequency, and therefore changes in structure, 
are various groups of hydric indicator species, including 
small rosette forbs and sedges, Orchidaceae, and insec-
tivorous plants (Glitzenstein et  al. 2003). In fact, fire 
exclusion in longleaf pine ecosystems has led to local-
ized extirpations of keystone species, including the red-
cockaded woodpecker (Picoides borealis) and the gopher 
tortoise (Gopherus polyphemus), both of which require 
structurally open habitat (Walters 1991).

Previous studies have also demonstrated that (1) can-
opy cover typically increases in longleaf pine ecosystems 
in response to less frequent fire and (2) canopies begin 
to close (> 90% cover) when fire return intervals increase 
beyond 2 years (Glitzenstein et al. 2012). Apart from the 
1-year treatment group, canopy cover trends from this 
study generally agree with the aforementioned findings. 
However, maximum canopy cover did not exceed 80% 

in any of the plots, while mean canopy cover in the fire-
treated plots showed a nonlinear u-shaped response to 
fire frequency. The study by Glitzenstein et al. relied on 
a spherical densiometer for ocular estimates of canopy 
cover in subplots, while this study utilized a voxelized 
lidar point-cloud to estimate canopy cover at the plot 
level by considering all vegetation greater than 1.4  m 
aboveground (Eq. 1).

While it is possible that methodological differences 
could account for this discrepancy, canopy cover differ-
ences between the two studies are likely explained by var-
iation in the spatial arrangement of restocking patterns, 
as the native stand of longleaf pine (Pinus palustris Mil.) 
was clearcut in the early 1900s, coinciding with WWI and 
an increased demand for naval stores, such as turpentine, 
tar, pitch, and rosin (Snitker et  al. 2022a). Furthermore, 
the midstory of the Stoddard Fire Plot study (Glitzenstein 
et al. 2012) is dominated by broad leaved hardwoods such 
as turkey oak (Quercus laevis), sand live oak (Quercus 
geminata), and running oak (Quercus pumila) due to the 
mesic site conditions comprised primarily of clay soils 
(e.g., Ultisols). Conversely, gallberry (Ilex spp.), saw pal-
metto (Serenoa repens), and other short statured woody 
shrubs tend to dominate sites with hydric soil conditions, 
such as the Osceola study. In fact, soil moisture rather 
than fire frequency has been shown to be the dominant 
mode of variation for cover within the understory at the 
Osceola experiment (Glitzenstein et al. 2003).

Implications for monitoring and future research
The results of this study have important implications for 
our ability to effectively detect and characterize fine-scale 
structural differences in response to prescription burning 
as well as forest monitoring programs. Land managers, 
for example, are often mandated to engage in monitoring 
activities within the areas under their care. Monitoring 
data is commonly utilized to evaluate shifts in ecological 
processes or the impacts of management practices, such 
as prescribed fire. Although these data are often used 
to gauge the success of management efforts and identify 
future needs, establishing and maintaining an effective 
monitoring program can be challenging, both in terms 
of implementation and utilization for research, data col-
lection, or management decision-making (Yoccoz et  al. 
2001; Pokswinski et  al. 2021). Substantial effort is often 
dedicated to establishing and designing a monitoring 
program; however, it can be difficult to fully identify the 
evolving data requirements of end users, thus hindering 
the program’s effectiveness in informing management 
decisions. This oversight often undermines the effective-
ness of the monitoring efforts (Legg and Nagy 2006).

Lidar is uniquely poised to resolve some of these 
limitations by standardizing data collection with a 
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reproducible approach while improving efficiency, 
reducing error, and creating easily analyzed numeri-
cal datasets, where a virtually unlimited number of 
metrics can be calculated. For instance, lidar has been 
used with machine learning techniques to efficiently 
monitor and classify successional stages across struc-
turally diverse, mixed-species forests (Falkowski et  al. 
2009). Lidar monitoring data coupled with feature 
engineering holds immense potential for discovery of 
novel metrics that better characterize diverse aspects 
of forest ecosystems through both space and time, 
such as forest health, wildlife populations, fire sever-
ity, or various stages of post-fire recovery, particularly 
when integrated with other remote sensing modalities 
(Wang and Glenn 2009; Chu and Guo 2014; Linn et al. 
2020; Ecke et al. 2022).

Monitoring programs will further benefit from the 
integration of various laser-scanning platforms (Levick 
et al. 2021; Fekry et al. 2022; Shao et al. 2022). Terres-
trial laser scanning (TLS), for example, offers distinct 
advantages in capturing sub-canopy structures, as 
it operates beneath the tree canopy. This technol-
ogy is increasingly being integrated into structural 
assessments of forested ecosystems and the study of 
fine-scale variations in the understory (Atkins et  al. 
2018; LaRue et  al. 2020; Pokswinski et  al. 2021; Wal-
ter et al. 2021; Gallagher et al. 2021; Ross et al. 2022). 
Although occlusion issues persist even with TLS, they 
can be alleviated through the process of registering 
and merging scans obtained from multiple locations 
and different platforms, enabling a more comprehen-
sive assessment of vegetation structure by overcoming 
laser scanning limitations posed by occlusion.

The initial setup costs associated with acquiring lidar 
equipment for establishing monitoring campaigns 
is considerable; however, ongoing advancements in 
lidar technology and data processing techniques have 
progressively lowered costs, rendering lidar moni-
toring more accessible and cost-efficient, especially 
when considering the long-term benefits for ecosys-
tem management and research (White et  al. 2016; 
Almeida et al. 2019). Moreover, lidar monitoring data 
can be integrated with wildland fire models to provide 
up-to-date information on forest structural complex-
ity, enhancing the accuracy of real-time fire behavior 
predictions with tools such as QUIC-Fire (Linn et  al. 
2020). Indeed, there are a myriad of use cases for lidar 
data, including infrastructure planning, archaeologi-
cal studies, and hydrological analyses, all of which 
increase the return-on-investment (ROI) of monitor-
ing programs (Jones et al. 2008; Buján et al. 2021; Snit-
ker et al. 2022b).

Conclusions
The results presented in this study highlight the effec-
tiveness of ULS for measuring forest structure, with 
metrics of vertical dispersion outperforming those of 
central tendency, emphasizing the necessity of a diverse 
set of metrics for a holistic characterization of struc-
tural complexity. The strongest correlation with fire 
frequency was observed with the understory complex-
ity index, demonstrating the importance of account-
ing for fine-scale heterogeneity in the understory when 
assessing fire effects within forests subjected to fre-
quent, low-intensity fire. Further research is needed to 
develop methodologies and metrics that better char-
acterize both the vertical and horizontal distribution 
of vegetation. Terrestrial lidar is uniquely positioned 
to address such needs, particularly when co-register-
ing both ULS- and TLS-derived point clouds. Ulti-
mately, advancing research in the interconnected fields 
of prescribed fire and forest structure holds immense 
potential to mitigate the impacts of wildfires, improve 
wildlife habitat, and ensure the long-term sustainability 
of our natural resources for the benefit of society and 
future generations.

Acknowledgements
We thank the Joint Fire Science Program, the Department of Defense’s 
Strategic Environmental and Research Development Program, and the 
Environmental Security Technology Certification Program, particularly the 
Integrated Research Management Team, with special thanks to James Furman 
for his leadership. We thank Tall Timbers Research Station for their support of 
technical staff, and we thank the Osceola fire crew for facilitating the safety 
of our field crew, field support, and executing the experimental burns with 
professionalism and efficiency.

Authors’ contributions
C.W.R. conceptualized this analysis and performed the research, data process-
ing, visualizations, and writing. J.M. performed the lidar data collection. T.L. 
provided the UAS and assisted with flight parameters and point-cloud regis-
tration. C.W.R., E.L.L., J.J.O., S.A.F., J.M., D.P.A., T.L., J.K.H., and N.S.S. helped with 
the writing, review, and revisions.

Funding
This research was supported by the Joint Fire Science Program (grant number 
L21AC10254-00), the Department of Defense, Strategic Environmental and 
Research Development Program (grant number RC19-1119 and RC20-1346), 
and the Department of Defense, Environmental Security Technology Certifica-
tion Program (grant number RC20-7189).

Availability of data and materials
Data and material may be made available by contacting the primary author 
and with consent from the data owners.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.



Page 11 of 12Ross et al. Fire Ecology           (2024) 20:44 	

Author details
1 Tall Timbers Research Station, Tallahassee, FL 32312, USA. 2 USDA Forest 
Service, Southern Research Station, Athens, GA 30602, USA. 3 Warnell School 
of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, 
USA. 4 Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 
29802, USA. 5 Natural Resources Institute, Texas A&M University, Washington, 
DC, USA. 6 USDA Forest Service, Northern Research Station, Morgantown, WV 
26505, USA. 

Received: 25 August 2023   Accepted: 19 April 2024

References
Almeida, D. R. A., S. C. Stark, and R. Chazdon et al. 2019. The effectiveness of 

lidar remote sensing for monitoring forest cover attributes and landscape 
restoration. Forest Ecology and Management 438: 34–43. https://​doi.​org/​
10.​1016/j.​foreco.​2019.​02.​002.

Atchley, A. L., R. Linn, and A. Jonko et al. 2021. Effects of fuel spatial distribution 
on wildland fire behaviour. Int J Wildland Fire 30: 179–189. https://​doi.​org/​
10.​1071/​WF200​96.

Atkins, J. W., G. Bohrer, and R. T. Fahey et al. 2018. Quantifying vegetation and 
canopy structural complexity from terrestrial LiDAR data using the forestr 
r package. Methods in Ecology and Evolution 9: 2057–2066. https://​doi.​org/​
10.​1111/​2041-​210X.​13061.

Bigelow, S., M. C. Stambaugh, and J. J. O’Brien et al. 2018. Longleaf pine restora-
tion in context comparisons of frequent fire forests, Ecological restoration 
and management of longleaf pine forests eds. L. Katherine Kirkman, B. 
Steven, and Jack. vol. 2018 311–338. Taylor & Francis Group: CRC.

Buján, S., J. Guerra-Hernández, E. González-Ferreiro, and D. Miranda. 2021. 
Forest road detection using LiDAR data and hybrid classification. Remote 
Sensing 13: 393. https://​doi.​org/​10.​3390/​rs130​30393.

Ceccherini, G., M. Girardello, and P. S. A. Beck et al. 2023. Spaceborne LiDAR 
reveals the effectiveness of European Protected Areas in conserving for-
est height and vertical structure. Commun Earth Environ 4: 1–13. https://​
doi.​org/​10.​1038/​s43247-​023-​00758-w.

Chu, T., and X. Guo. 2014. Remote sensing techniques in monitoring post-fire 
effects and patterns of forest recovery in boreal forest regions: a review. 
Remote Sensing 6: 470–520. https://​doi.​org/​10.​3390/​rs601​0470.

Dell, J. E., L. A. Richards, and J. J. O’Brien et al. 2017. Overstory-derived surface 
fuels mediate plant species diversity in frequently burned longleaf pine 
forests. Ecosphere 8: e01964. https://​doi.​org/​10.​1002/​ecs2.​1964.

Ecke, S., J. Dempewolf, and J. Frey et al. 2022. UAV-based forest health monitor-
ing: a systematic review. Remote Sensing 14: 3205. https://​doi.​org/​10.​
3390/​rs141​33205.

Falkowski, M. J., J. S. Evans, and S. Martinuzzi et al. 2009. Characterizing forest 
succession with lidar data: an evaluation for the Inland Northwest, USA. 
Remote Sensing of Environment 113: 946–956. https://​doi.​org/​10.​1016/j.​
rse.​2009.​01.​003.

Fekry, R., W. Yao, L. Cao, and X. Shen. 2022. Ground-based/UAV-LiDAR data 
fusion for quantitative structure modeling and tree parameter retrieval in 
subtropical planted forest. Forest Ecosystems 9: 100065. https://​doi.​org/​10.​
1016/j.​fecs.​2022.​100065.

Gallagher, M. R., A. E. Maxwell, and L. A. Guillén et al. 2021. Estimation of plot-
level burn severity using terrestrial laser scanning. Remote Sensing 13: 
4168. https://​doi.​org/​10.​3390/​rs132​04168.

Glitzenstein, J. S., D. R. Streng, and D. D. Wade. 2003. Fire frequency effects on 
longleaf pine (Pinus palustris P. Miller) vegetation in South Carolina and 
Northeast Florida, USA. Natural Areas Journal 23 (1): 22–37 2003.

Glitzenstein, J. S., D. R. Streng, and R. E. Masters et al. 2012. Fire-frequency 
effects on vegetation in north Florida pinelands: another look at the 
long-term Stoddard Fire Research Plots at Tall Timbers Research Station. 
Forest Ecology and Management 264: 197–209. https://​doi.​org/​10.​1016/j.​
foreco.​2011.​10.​014.

Hämmerle, M., N. Lukač, and K-C. Chen et al. 2017. Simulating various terrestrial 
and UAV LiDAR scanning configurations for understory forest structure 
modelling. ISPRS Annals of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences 4:59–65.

Hernandez-Santin, L., M. L. Rudge, R. E. Bartolo, and P. D. Erskine. 2019. 
Identifying species and monitoring understorey from UAS-derived data: 
a literature review and future directions. Drones 3: 9. https://​doi.​org/​10.​
3390/​drone​s3010​009.

Hiers, J. K., J. J. O’Brien, and R. J. Mitchell et al. 2009. The wildland fuel cell con-
cept: an approach to characterize fine-scale variation in fuels and fire in 
frequently burned longleaf pine forests. International Journal of Wildland 
Fire 18: 315–325.

Jarron, L. R., N. C. Coops, and W. H. MacKenzie et al. 2020. Detection of sub-
canopy forest structure using airborne LiDAR. Remote Sensing of Environ-
ment 244: 111770. https://​doi.​org/​10.​1016/j.​rse.​2020.​111770.

Jones, K. L., G. C. Poole, and S. J. O’Daniel et al. 2008. Surface hydrology of 
low-relief landscapes: assessing surface water flow impedance using 
LIDAR-derived digital elevation models. Remote Sensing of Environment 
112: 4148–4158. https://​doi.​org/​10.​1016/j.​rse.​2008.​01.​024.

Karna, Y. K., T. D. Penman, and C. Aponte et al. 2020. Persistent changes in 
the horizontal and vertical canopy structure of fire-tolerant forests after 
severe fire as quantified using multi-temporal airborne lidar data. Forest 
Ecology and Management 472: 118255. https://​doi.​org/​10.​1016/j.​foreco.​
2020.​118255.

Kirkman, L. K., and S. B. Jack. 2017. Ecological restoration and management of 
longleaf pine forests. CRC.

Kuželka, K., and P. Surový. 2018. Mapping forest structure using UAS inside 
flight capabilities. Sensors (Basel, Switzerland) 18: 2245. https://​doi.​org/​10.​
3390/​s1807​2245.

LaRue, E. A., B. S. Hardiman, J. M. Elliott, and S. Fei. 2019. Structural diversity as a 
predictor of ecosystem function. Environmental Research Letters : Erl [Web 
Site] 14: 114011. https://​doi.​org/​10.​1088/​1748-​9326/​ab49bb.

LaRue, E. A., F. W. Wagner, and S. Fei et al. 2020. Compatibility of aerial and ter-
restrial LiDAR for quantifying forest structural diversity. Remote Sensing 12: 
1407. https://​doi.​org/​10.​3390/​rs120​91407.

Lawrence, B. L., K. Mundorff, and E. Keith. 2023. The impact of UAS aerial igni-
tion on prescribed fire: a case study in multiple ecoregions of Texas and 
Louisiana. Fire Ecology 19: 11.

Legg, C. J., and L. Nagy. 2006. Why most conservation monitoring is, but 
need not be, a waste of time. Journal of Environmental Management 78: 
194–199. https://​doi.​org/​10.​1016/j.​jenvm​an.​2005.​04.​016.

Levick, S. R., T. Whiteside, and D. A. Loewensteiner et al. 2021. Leveraging TLS 
as a calibration and validation tool for MLS and ULS mapping of savanna 
structure and biomass at landscape-scales. Remote Sensing 13: 257. 
https://​doi.​org/​10.​3390/​rs130​20257.

Linn, R. R., S. L. Goodrick, and S. Brambilla et al. 2020. QUIC-fire: a fast-running 
simulation tool for prescribed fire planning. Environmental Modelling & 
Software 125: 104616. https://​doi.​org/​10.​1016/j.​envso​ft.​2019.​104616.

Loudermilk, E. L., W. P. Cropper, R. J. Mitchell, and H. Lee. 2011. Longleaf pine 
(Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: 
a simulation approach. Ecological Modelling 222: 2733–2750. https://​doi.​
org/​10.​1016/j.​ecolm​odel.​2011.​05.​004.

Loudermilk, E. L., J. O’Brien, and R. J. Mitchell et al. 2012. Linking complex forest 
fuel structure and fire behavior at fine scales. International Journal of 
Wildland Fire 21: 882–893. https://​doi.​org/​10.​1071/​WF101​16.

Loudermilk, E. L., L. Dyer, and S. Pokswinski et al. 2019. Simulating groundcover 
community assembly in a frequently burned ecosystem using a simple 
neutral model. Frontiers in Plant Science 10.

Loudermilk, E. L., J. J. O’Brien, and S. L. Goodrick et al. 2022. Vegetation’s influ-
ence on fire behavior goes beyond just being fuel. Fire Ecology 18: 9. 
https://​doi.​org/​10.​1186/​s42408-​022-​00132-9.

MacArthur, R. H., and J. W. MacArthur. 1961. On bird species diversity. Ecology 
42: 594–598. https://​doi.​org/​10.​2307/​19322​54.

McIntyre, R. K., J. M. Guldin, and T. Ettel et al. 2018. Restoration of longleaf 
pine in the southern United States: a status report. In: Kirschman, Julia 
E, comp Proceedings of the 19th biennial southern silvicultural research 
conference; 2017 March 14–16; Blacksburg, VA e-Gen Tech Rep SRS-234 
Asheville, NC: US Department of Agriculture, Forest Service, Southern 
Research Station 2018:297–302.

Mitchell, R. J., J. K. Hiers, and J. J. O’Brien et al. 2006. Silviculture that sustains: 
the nexus between silviculture, frequent prescribed fire, and conserva-
tion of biodiversity in longleaf pine forests of the southeastern United 
States. Canadian Journal of Forest Research 36: 2724–2736. https://​doi.​org/​
10.​1139/​x06-​100.

https://doi.org/10.1016/j.foreco.2019.02.002
https://doi.org/10.1016/j.foreco.2019.02.002
https://doi.org/10.1071/WF20096
https://doi.org/10.1071/WF20096
https://doi.org/10.1111/2041-210X.13061
https://doi.org/10.1111/2041-210X.13061
https://doi.org/10.3390/rs13030393
https://doi.org/10.1038/s43247-023-00758-w
https://doi.org/10.1038/s43247-023-00758-w
https://doi.org/10.3390/rs6010470
https://doi.org/10.1002/ecs2.1964
https://doi.org/10.3390/rs14133205
https://doi.org/10.3390/rs14133205
https://doi.org/10.1016/j.rse.2009.01.003
https://doi.org/10.1016/j.rse.2009.01.003
https://doi.org/10.1016/j.fecs.2022.100065
https://doi.org/10.1016/j.fecs.2022.100065
https://doi.org/10.3390/rs13204168
https://doi.org/10.1016/j.foreco.2011.10.014
https://doi.org/10.1016/j.foreco.2011.10.014
https://doi.org/10.3390/drones3010009
https://doi.org/10.3390/drones3010009
https://doi.org/10.1016/j.rse.2020.111770
https://doi.org/10.1016/j.rse.2008.01.024
https://doi.org/10.1016/j.foreco.2020.118255
https://doi.org/10.1016/j.foreco.2020.118255
https://doi.org/10.3390/s18072245
https://doi.org/10.3390/s18072245
https://doi.org/10.1088/1748-9326/ab49bb
https://doi.org/10.3390/rs12091407
https://doi.org/10.1016/j.jenvman.2005.04.016
https://doi.org/10.3390/rs13020257
https://doi.org/10.1016/j.envsoft.2019.104616
https://doi.org/10.1016/j.ecolmodel.2011.05.004
https://doi.org/10.1016/j.ecolmodel.2011.05.004
https://doi.org/10.1071/WF10116
https://doi.org/10.1186/s42408-022-00132-9
https://doi.org/10.2307/1932254
https://doi.org/10.1139/x06-100
https://doi.org/10.1139/x06-100


Page 12 of 12Ross et al. Fire Ecology           (2024) 20:44 

O’Brien, J. J., J. K. Hiers, and M. A. Callaham et al. 2008. Interactions among 
overstory structure, seedling life-history traits, and fire in frequently 
burned neotropical pine forests. Ambi 37: 542–547. https://​doi.​org/​10.​
1579/​0044-​7447-​37.7.​542.

O’Brien, J., J. Hiers, and R. Mitchell et al. 2009. Linking fine scale fuel heterogene-
ity with fire behavior in a frequently burned Pinus palustris ecosystem. North 
American Forest Ecology Workshop.

Oswalt, C., and J. M. Guldin. 2021. Status of longleaf pine in the South: an FIA 
update. Non-refereed general technical report: early release 2021:1–25.

Palik, B. J., R. J. Mitchell, G. Houseal, and N. Pederson. 2011. Effects of canopy 
structure on resource availability and seedling responses in a longleaf 
pine ecosystem. Canadian Journal of Forest Research. https://​doi.​org/​10.​
1139/​x97-​081.

Pokswinski, S., M. R. Gallagher, and N. S. Skowronski et al. 2021. A simplified 
and affordable approach to forest monitoring using single terrestrial laser 
scans and transect sampling. MethodsX 8: 101484. https://​doi.​org/​10.​
1016/j.​mex.​2021.​101484.

R Core Team. 2023. R: a language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing.

Ross, C. W., N. P. Hanan, and L. Prihodko et al. 2021. Woody-biomass projections 
and drivers of change in sub-Saharan Africa. Nature Climate Change 1–7. 
https://​doi.​org/​10.​1038/​s41558-​021-​01034-5.

Ross, C. W., E. L. Loudermilk, and N. Skowronski et al. 2022. LiDAR voxel-size 
optimization for canopy gap estimation. Remote Sensing 14: 1054. https://​
doi.​org/​10.​3390/​rs140​51054.

Roussel, J-R., D. Auty, and N. C. Coops et al. 2020. lidR: an R package for analysis 
of Airborne Laser scanning (ALS) data. Remote Sensing of Environment 251: 
112061. https://​doi.​org/​10.​1016/j.​rse.​2020.​112061.

Sánchez-López, N., A. T. Hudak, and L. Boschetti et al. 2023. A spatially explicit 
model of tree leaf litter accumulation in fire maintained longleaf pine 
forests of the southeastern US. Ecological Modelling 481: 110369. https://​
doi.​org/​10.​1016/j.​ecolm​odel.​2023.​110369.

Shao, J., W. Yao, and P. Wan et al. 2022. Efficient co-registration of UAV and 
ground LiDAR forest point clouds based on canopy shapes. International 
Journal of Applied Earth Observation and Geoinformation 114: 103067. 
https://​doi.​org/​10.​1016/j.​jag.​2022.​103067.

Shrestha, M., E. N. Broadbent, and J. G. Vogel. 2021. Using GatorEye UAV-borne 
LiDAR to quantify the spatial and temporal effects of a prescribed fire on 
understory height and biomass in a pine savanna. Forests 12: 38. https://​
doi.​org/​10.​3390/​f1201​0038.

Silva, C. A., A. T. Hudak, and L. A. Vierling et al. 2016. Imputation of individual 
longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR 
data. Canadian Journal of Remote Sensing 42: 554–573. https://​doi.​org/​10.​
1080/​07038​992.​2016.​11965​82.

Silva, C., L. Duncanson, and S. Hancock et al. 2021. Fusing simulated GEDI, 
ICESat-2 and NISAR data for regional aboveground biomass mapping. 
Remote Sensing of Environment 253: 112234. https://​doi.​org/​10.​1016/j.​rse.​
2020.​112234.

Smith, W. B. 2002. Forest inventory and analysis: a national inventory and 
monitoring program. Environmental Pollution 116: S233–S242. https://​doi.​
org/​10.​1016/​S0269-​7491(01)​00255-X.

Snitker, G., J. D. Moser, B. Southerlin, and C. Stewart. 2022a. Detecting 
historic tar kilns and tar production sites using high-resolution, aerial 
LiDAR-derived digital elevation models: introducing the Tar Kiln feature 
detection workflow (TKFD) using open-access R and FIJI software. Journal 
of Archaeological Science: Reports 41: 103340. https://​doi.​org/​10.​1016/j.​
jasrep.​2022.​103340.

Snitker, G., C. I. Roos, and A. P. Sullivan et al. 2022b. A collaborative agenda for 
archaeology and fire science. Nat Ecol Evol 1–5. https://​doi.​org/​10.​1038/​
s41559-​022-​01759-2.

Stambaugh, M. C., R. P. Guyette, and J. M. Marschall. 2011. Longleaf pine (Pinus 
palustris Mill.) Fire scars reveal new details of a frequent fire regime. 
Journal of Vegetation Science 22: 1094–1104. https://​doi.​org/​10.​1111/j.​
1654-​1103.​2011.​01322.x.

Torresan, C., P. Corona, G. Scrinzi, and J. V. Marsal. 2016. Using classification 
trees to predict forest structure types from LiDAR data. Annals of Forest 
Research 59: 281–298. https://​doi.​org/​10.​15287/​afr.​2016.​423.

Traylor, C. R., M. D. Ulyshen, and D. Wallace et al. 2022. Compositional attributes 
of invaded forests drive the diversity of insect functional groups. Global 
Ecology and Conservation 35: e02092. https://​doi.​org/​10.​1016/j.​gecco.​
2022.​e02092.

van Ewijk, K. Y., P. M. Treitz, and N. A. Scott. 2011. Characterizing forest succes-
sion in Central Ontario using LiDAR-derived indices. Photogrammetric 
Engineering & Remote Sensing 77: 261–269. https://​doi.​org/​10.​14358/​PERS.​
77.3.​261.

Walker, J. L., and A. M. Silletti. 2006. Restoring the ground layer of longleaf pine 
ecosystems. In The longleaf pine ecosystem: Ecology, silviculture, and resto-
ration, eds. Jose Shibu, Eric J Jokela, and L. Miller, Deborah. 297–325297. 
New York, NY: Springer.

Walter, J. A., A. E. L. Stovall, and J. W. Atkins. 2021. Vegetation structural com-
plexity and biodiversity in the Great Smoky Mountains. Ecosphere 12: 
e03390. https://​doi.​org/​10.​1002/​ecs2.​3390.

Walters, J. R. 1991. Application of ecological principles to the management of 
endangered species: the case of the red-cockaded woodpecker. Annual 
Review of Ecology and Systematics 22: 505–523.

Wang, C., and N. F. Glenn. 2009. Estimation of fire severity using pre- and post-
fire LiDAR data in sagebrush steppe rangelands. Int J Wildland Fire 18: 
848–856. https://​doi.​org/​10.​1071/​WF081​73.

White, J. C., N. C. Coops, and M. A. Wulder et al. 2016. Remote sensing tech-
nologies for enhancing forest inventories: a review. Canadian Journal of 
Remote Sensing 42: 619–641. https://​doi.​org/​10.​1080/​07038​992.​2016.​
12074​84.

Wilson, L. A., R. N. Spencer, and D. P. Aubrey et al. 2022. Longleaf pine seedlings 
are extremely resilient to the combined effects of experimental fire and 
drought. Fire 5: 128. https://​doi.​org/​10.​3390/​fire5​050128.

Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological 
diversity in space and time. Trends in Ecology & Evolution 16: 446–453. 
https://​doi.​org/​10.​1016/​S0169-​5347(01)​02205-4.

Zhou, Y., J. Singh, and J. R. Butnor et al. 2022. Limited increases in savanna car-
bon stocks over decades of fire suppression. Nature 603: 445–449. https://​
doi.​org/​10.​1038/​s41586-​022-​04438-1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1579/0044-7447-37.7.542
https://doi.org/10.1579/0044-7447-37.7.542
https://doi.org/10.1139/x97-081
https://doi.org/10.1139/x97-081
https://doi.org/10.1016/j.mex.2021.101484
https://doi.org/10.1016/j.mex.2021.101484
https://doi.org/10.1038/s41558-021-01034-5
https://doi.org/10.3390/rs14051054
https://doi.org/10.3390/rs14051054
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.ecolmodel.2023.110369
https://doi.org/10.1016/j.ecolmodel.2023.110369
https://doi.org/10.1016/j.jag.2022.103067
https://doi.org/10.3390/f12010038
https://doi.org/10.3390/f12010038
https://doi.org/10.1080/07038992.2016.1196582
https://doi.org/10.1080/07038992.2016.1196582
https://doi.org/10.1016/j.rse.2020.112234
https://doi.org/10.1016/j.rse.2020.112234
https://doi.org/10.1016/S0269-7491(01)00255-X
https://doi.org/10.1016/S0269-7491(01)00255-X
https://doi.org/10.1016/j.jasrep.2022.103340
https://doi.org/10.1016/j.jasrep.2022.103340
https://doi.org/10.1038/s41559-022-01759-2
https://doi.org/10.1038/s41559-022-01759-2
https://doi.org/10.1111/j.1654-1103.2011.01322.x
https://doi.org/10.1111/j.1654-1103.2011.01322.x
https://doi.org/10.15287/afr.2016.423
https://doi.org/10.1016/j.gecco.2022.e02092
https://doi.org/10.1016/j.gecco.2022.e02092
https://doi.org/10.14358/PERS.77.3.261
https://doi.org/10.14358/PERS.77.3.261
https://doi.org/10.1002/ecs2.3390
https://doi.org/10.1071/WF08173
https://doi.org/10.1080/07038992.2016.1207484
https://doi.org/10.1080/07038992.2016.1207484
https://doi.org/10.3390/fire5050128
https://doi.org/10.1016/S0169-5347(01)02205-4
https://doi.org/10.1038/s41586-022-04438-1
https://doi.org/10.1038/s41586-022-04438-1

	Lidar-derived estimates of forest structure in response to fire frequency
	Abstract 
	Background 
	Results 
	Conclusions 

	Resumen 
	Background
	Methods
	Site description
	Experimental design

	Data collection and preprocessing
	Estimation of structural attributes
	Canopy cover
	Canopy relief ratio
	Foliar height diversity
	Top rugosity
	Vertical distribution ratio
	Vertical complexity index
	Understory complexity index
	Statistical testing

	Results
	Vegetation height
	Canopy cover
	Canopy relief ratio
	Foliar height diversity
	Top rugosity
	Vertical distribution ratio
	Vertical complexity index
	Understory complexity index

	Discussion
	Structure and biodiversity
	Implications for monitoring and future research

	Conclusions
	Acknowledgements
	References


