# Table 3 Predicted post-fire tree probability of mortality equations for use in pre-fire planning (i.e., only crown scorch and DBH are potential variables). CLS = crown length scorched (%); CVS = crown volume scorched (%); DBH = diameter at breast height (cm).

Species Predicted probability of mortality equation
White fir $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 3{.}5083 + (CLS \times 0{.}0956) - (CL{S^2} \times 0{.}00184) + (CL{S^3} \times 0{.}000017)))}}]}}$$
Subalpine fir $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 1{.}6950 + (CVS \times 0{.}2071) - (CV{S^2} \times 0{.}0047) + (CV{S^3} \times 0{.}000035)))}}]}}$$
Red fir $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 2{.}3085 + (CL{S^3} \times 0{.}000004059)))}}]}}$$
Incense cedar $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 4{.}2466 + (CL{S^3} \times 0{.}000007172)))}}]}}$$
Western larch $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 1{.}6594 + (CVS \times 0{.}0327) - (DBH \times 0{.}0489)))}}]}}$$
Whitebark pine and lodgepole pine $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 0{.}3268 + (CVS \times 0{.}1387) - (CV{S^2} \times 0{.}0033) + (CV{S^3} \times 0{.}000025) - (DBH \times 0{.}0266)))}}]}}$$
Engelmann spruce $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - (0{.}0845 + (CVS \times 0{.}0445)))}}]}}$$
Sugar pine $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 2{.}0588 + (CL{S^2} \times 0{.}000814)))}}]}}$$
Ponderosa pines and Jeffrey pine $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 2{.}7103 + (CV{S^3} \times 0{.}000004093)))}}]}}$$
Douglas-fir $${P_{\rm{m}}} = {1 \over {[1 + {e^{( - ( - 2{.}0346 + (CVS \times 0{.}0906) - (CV{S^2} \times 0{.}0022) + (CV{S^3} \times 0{.}000019)))}}]}}$$