Skip to main content

Articles

Page 8 of 10

  1. Many fire history studies have evaluated the temporal nature of fire regimes using fire interval statistics calculated from fire scars. More recently, researchers have begun to evaluate the spatial properties ...

    Authors: James T. Kernan and Amy E. Hessl
    Citation: Fire Ecology 2010 6:6030117
  2. Prescribed fire is an important tool for fuel reduction, the control of competing vegetation, and forest restoration. The accumulated fuels associated with historical fire exclusion can cause undesirably high ...

    Authors: Jonathan C. B. Nesmith, Kevin L. O’Hara, Phillip J. van Mantgem and Perry de Valpine
    Citation: Fire Ecology 2010 6:6030097
  3. The global boreal forests comprise large stocks of organic carbon that vary with climate and fire regimes. Global warming is likely to influence several aspects of fire and cause shifts in carbon sequestration...

    Authors: Simon van Bellen, Michelle Garneau and Yves Bergeron
    Citation: Fire Ecology 2010 6:6030016
  4. Germination behavior of maritime pine (Pinus pinaster Aiton) forests soil seed banks after fire treatments in controlled laboratory conditions was analyzed. Germination response of all tree and shrub seeds after ...

    Authors: Lourdes Santos, Jorge Capelo and Mário Tavares
    Citation: Fire Ecology 2010 6:6030001
  5. In fire-suppressed oak-chaparral communities, land managers have treated thousands of hectares by mechanical mastication to reduce hazardous fuels in areas of wildland-urban interface. The chipped debris, whic...

    Authors: Celeste T. Coulter, Darlene Southworth and Paul E. Hosten
    Citation: Fire Ecology 2010 6:6020060
  6. Highly effective fire suppression and selective harvesting of large-diameter, fire-tolerant tree species, such as ponderosa pine (Pinus ponderosa C. Lawson) and Jeffrey pine (P. jeffreyi Balf.), have resulted in ...

    Authors: Christopher J. Fettig and Stephen R. McKelvey
    Citation: Fire Ecology 2010 6:6020026
  7. One important legacy of fire exclusion in ecosystems dependent upon frequent fire is the development of organic soil horizons (forest floor) that can be colonized by fine roots. When fire is re-introduced, the...

    Authors: Joseph J. O’Brien, J. Kevin Hiers, R. J. Mitchell, J. Morgan Varner III and Kathryn Mordecai
    Citation: Fire Ecology 2010 6:6020001
  8. We give an overview of the science application process at work in supporting fire management. First-order fire effects models, such as those discussed in accompanying papers, are the building blocks of softwar...

    Authors: Elizabeth D. Reinhardt and Matthew B. Dickinson
    Citation: Fire Ecology 2010 6:6010131
  9. Models of first-order fire effects are designed to predict tree mortality, soil heating, fuel consumption, and smoke production. Some of these models can be used to predict first-order fire effects on animals ...

    Authors: R. Todd Engstrom
    Citation: Fire Ecology 2010 6:6010115
  10. Herbaceous plants and shrubs have received little attention in terms of fire effects modeling despite their critical role in ecosystem integrity and resilience after wildfires and prescribed burns. In this pap...

    Authors: Kirsten Stephan, Melanie Miller and Matthew B. Dickinson
    Citation: Fire Ecology 2010 6:6010095
  11. Current operational methods for predicting tree mortality from fire injury are regression-based models that only indirectly consider underlying causes and, thus, have limited generality. A better understanding...

    Authors: Kathleen L. Kavanagh, Matthew B. Dickinson and Anthony S. Bova
    Citation: Fire Ecology 2010 6:6010080
  12. Wildland fire managers are often required to predict tree injury and mortality when planning a prescribed burn or when considering wildfire management options; and, currently, statistical models based on post-...

    Authors: Bret W. Butler and Matthew B. Dickinson
    Citation: Fire Ecology 2010 6:6010055
  13. Heating soil during intense wildland fires or slash-pile burns can alter the soil irreversibly, resulting in many significant long-term biological, chemical, physical, and hydrological effects. To better under...

    Authors: William J. Massman, John M. Frank and Sacha J. Mooney
    Citation: Fire Ecology 2010 6:6010036
  14. The robust evaluation of fire impacts on the biota, soil, and atmosphere requires measurement and analysis methods that can characterize combustion processes across a range of temporal and spatial scales. Nume...

    Authors: Robert L. Kremens, Alistair M. S. Smith and Matthew B. Dickinson
    Citation: Fire Ecology 2010 6:6010013
  15. As prescribed fire use increases and the options for responding to wildfires continue to expand beyond suppression, the need for improving fire effects prediction capabilities becomes increasingly apparent. Th...

    Authors: Matthew B. Dickinson and Kevin C. Ryan
    Citation: Fire Ecology 2010 6:6010001
  16. Giant sequoias (Sequoiadendron giganteum [Lindl.] J. Buchholz) preserve a detailed history of fire within their annual rings. We developed a 3000 year chronology of fire events in one of the largest extant groves...

    Authors: Thomas W. Swetnam, Christopher H. Baisan, Anthony C. Caprio, Peter M. Brown, Ramzi Touchan, R. Scott Anderson and Douglas J. Hallett
    Citation: Fire Ecology 2009 5:5030120
  17. Outside of the immediate coastal environments, little is known of fire history in the North Coast Range of California. Fire scar specimens were collected from ponderosa pine (Pinus ponderosa C. Lawson), sugar pin...

    Authors: Carl N. Skinner, Celeste S. Abbott, Danny L. Fry, Scott L. Stephens, Alan H. Taylor and Valerie Trouet
    Citation: Fire Ecology 2009 5:5030076
  18. Fire is an ecologically significant process in the fire-prone ponderosa pine and mixed conifer forests of the northern Sierra Nevada. Fire regimes are influenced by processes that operate over a range of scale...

    Authors: Lisa Gill and Alan H. Taylor
    Citation: Fire Ecology 2009 5:5030057
  19. Bigcone Douglas-fir (Pseudotsuga macrocarpa [Vasey] Mayr) is a long-lived, fire-adapted conifer that is endemic to the Transverse Ranges of southern California. At the lower and middle reaches of its elevational ...

    Authors: Keith J. Lombardo, Thomas W. Swetnam, Christopher H. Baisan and Mark I. Borchert
    Citation: Fire Ecology 2009 5:5030035
  20. There have been few fire history studies of eastern Sierra Nevada forests in California, USA, where a steep elevation gradient, rain shadow conditions, and forest stand isolation may produce different fire reg...

    Authors: Malcolm P. North, Kip M. Van de Water, Scott L. Stephens and Brandon M. Collins
    Citation: Fire Ecology 2009 5:5030020
  21. For thousands of years, fire has shaped coniferous forests of the western United States. In more recent time, land use practices have altered the role fire plays in the Sierra Nevada. By understanding the past...

    Authors: Nicole M. Vaillant and Scott L. Stephens
    Citation: Fire Ecology 2009 5:5030004
  22. Locally derived maps of pre-European settlement vegetation patterns (Biophysical Setting-BpS) and Fire Regime Condition Class (FRCC) were compared to concomitant products from LANDFIRE for the Wassuk Range in ...

    Authors: Louis Provencher, Kori Blankenship, Jim Smith, Jeff Campbell and Mike Polly
    Citation: Fire Ecology 2009 5:5020126
  23. Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem ...

    Authors: Phillip J. van Mantgem and Dylan W. Schwilk
    Citation: Fire Ecology 2009 5:5020116
  24. Charred biomass generated by wildland fire has attracted increased interest as a functional component of terrestrial ecosystems. Black carbon (C) in the form of char is a widespread but unique material contrib...

    Authors: Daniel C. Donato, John L. Campbell, Joseph B. Fontaine and Beverly E. Law
    Citation: Fire Ecology 2009 5:5020104
  25. We examined the long-term effects of a prescribed fire in a southern Appalachian watershed in Nantahala National Forest, western North Carolina, USA. Fire was prescribed in 1995 on this site by forest managers...

    Authors: Katherine J. Elliott, James M. Vose and Ronald L. Hendrick
    Citation: Fire Ecology 2009 5:5020066
  26. Dendrochronological methods were applied to reconstruct the historic occurrence of fires at a Cross Timbers forest-grassland transition site within the Wichita Mountains of southwestern Oklahoma, USA. Sixty fi...

    Authors: Michael C. Stambaugh, Richard P. Guyette, Ralph Godfrey, E. R. McMurry and J. M. Marschall
    Citation: Fire Ecology 2009 5:5020051
  27. We identified relationships between prescribed burn treatments and selected soil and fuel attributes on mycorrhizal fungus fruiting patterns in an old-growth ponderosa pine (Pinus ponderosa) and white fir (Abies ...

    Authors: Matthew J. Trappe, Kermit Cromack Jr., James M. Trappe, Daniel D. B. Perrakis, Efren Cazares-Gonzales, Michael A. Castellano and Steven L. Miller
    Citation: Fire Ecology 2009 5:5020030
  28. In many parts of California, past timber harvesting, livestock grazing practices, and fire exclusion have changed the fire regime from low to mixed severity to a high severity regime with an increase in active...

    Authors: Nicole M. Vaillant, JoAnn Fites-Kaufman, Alicia L. Reiner, Erin K. Noonan-Wright and Scott N. Dailey
    Citation: Fire Ecology 2009 5:5020014
  29. Little is known about the dynamics of coarse woody debris (CWD) in forests that were originally characterized by frequent, low-moderate intensity fires. We investigated effects of prescribed burning at the Bla...

    Authors: Fabian C. C. Uzoh and Carl N. Skinner
    Citation: Fire Ecology 2009 5:5020001
  30. The predicted continuation of strong drying and warming trends in the southwestern United States underlies the associated prediction of increased frequency, area, and severity of wildfires in the coming years....

    Authors: Peter R. Robichaud, Sarah A. Lewis, Robert E. Brown and Louise E. Ashmun
    Citation: Fire Ecology 2009 5:5010115
  31. This paper describes a process to evaluate the ecological sustainability of fire-adapted ecosystems, using a case study based on ponderosa pine (Pinus ponderosa) forests. We evaluated ecological sustainability by...

    Authors: Reuben Weisz, Jack Triepke and Russ Truman
    Citation: Fire Ecology 2009 5:5010100
  32. Fires caused by lightning or Native Americans were the major ecological factor in the borderlands region of Arizona, New Mexico, and Mexico prior to European settlement. Historical overgrazing and aggressive f...

    Authors: Gerald J. Gottfried, Larry S. Allen, Peter L. Warren, Bill McDonald, Ronald J. Bemis and Carleton B. Edminster
    Citation: Fire Ecology 2009 5:5010085
  33. We evaluated the effects of a prescribed fire in a ponderosa pine (Pinus ponderosa) forest intermittently over 43 years. Changing climatic (precipitation) conditions spanned this evaluation with a sequential patt...

    Authors: Peter F. Ffolliott, Cody L. Stropki and Aaron T. Kauffman
    Citation: Fire Ecology 2009 5:5010079
  34. Fire and invasions by nonnative plants can change the structure and function of ecosystems, and independent effects of each of these processes have been well studied. When fire is restored to areas where it ha...

    Authors: Robert J. Steidl and Andrea R. Litt
    Citation: Fire Ecology 2009 5:5010056

Affiliated with

Annual Journal Metrics