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Abstract

Background: To restore and manage fire-adapted forest communities in the central Appalachians, USA, land
managers are now increasingly prioritizing use of prescribed fire. However, it is unclear how the reintroduction of
fire following decades of suppression will affect bat communities, particularly where white-nose syndrome-related
population declines of many cave-hibernating bat species have occurred. To address this concern, we monitored
and compared bat activity in burned and unburned habitat across a temporal gradient in western Virginia.

Results: We found evidence for slightly positive fire effects on activity levels of the northern long-eared bat (Myotis
septentrionalis [Trouessart, 1897]), Indiana bat (Myotis sodalis [Miller and Allen, 1928]), little brown bat (Myotis lucifugus
[Le Conte, 1831]), big brown bat (Eptesicus fuscus [Palisot de Beauvois, 1796])/silver-haired bat (Lasionycteris noctivagans
[Le Conte, 1831]) group, all high-frequency bats, and all bat species combined. We observed temporal effects only for
the big brown bat, with a negative relationship between activity and time since fire.

Conclusion: Because response of bat activity was neutral to weakly positive relative to burned forest condition, our
results suggest that bats are not a resource that would impede the use of this management tool in the central
Appalachians.
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Resumen

Antecedentes: Para restaurar y manejar las comunidades boscosas adaptadas al fuego en los Apalaches centrales
de los EEUU, los administradores de recursos están ahora priorizando el uso de quemas prescriptas. Por supuesto,
es todavía poco claro como la reintroducción del fuego luego de décadas de supresión va a afectar las comunidades
de murciélagos, particularmente donde ha habido una declinación de las poblaciones de muchas especies de
murciélagos invernadores de cuevas por efectos del síndrome de la nariz blanca. Para dilucidar esta preocupación,
monitoreamos y comparamos la actividad de murciélagos en hábitats quemados y no quemados a través de un
gradiente temporal en el oeste de Virginia.
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Resultados: Encontramos evidencias de pequeños efectos positivos del fuego en los niveles de actividad del
murciélago orejudo norteño (Myotis septentrionalis [Trouessart, 1897]), del murciélago de Indiana (Myotis sodalis [Miller
and Allen, 1928]), del pequeño murciélago marrón (Myotis lucifugus [Le Conte, 1831]), del gran murciélago marrón
(Eptesicus fuscus [Palisot de Beauvois, 1796]) y del grupo de murciélagos de pelo plateado (Lasionycteris noctivagans
[Le Conte, 1831]), todos murciélagos con alta frecuencia, y en todas las especies de murciélagos combinadas.
Observamos efectos temporales solo para el gran murciélago marrón, con una relación negativa entre la actividad y el
tiempo desde el fuego.

Conclusiones: Dado que la respuesta de la actividad de los murciélagos fue de neutra a escasamente positiva en
relación a las quemas prescriptas del bosque, nuestros resultados sugieren que los murciélagos no son un recurso que
pueda impedir el uso de esta herramienta de manejo en los Apalaches centrales.
Background
Fire occurrence was widespread in the eastern United
States pre-European settlement due to Native American ig-
nition and lightning strikes (Nowacki 2008), resulting in a
landscape considerably modified and maintained by fire. As
a result of the suppression era beginning in the 1920s, the
frequency and intensity of fire decreased through the 1960s
in the central Appalachians of western Virginia and else-
where in the mid-Atlantic Highlands, resulting in profound
forest composition shifts that now favor fire-intolerant spe-
cies (Abrams 1992; Yarnell 1998). Through “mesophication”
(Nowacki 2008), shade-intolerant and fire-dependent spe-
cies fail to regenerate and self-replace as competing
shade-tolerant and fire-intolerant species begin capturing
canopy or light gaps in the forest stand (Kreye et al. 2013).
These alterations result in an alternative stable forest condi-
tion whereby shading promotes cool, damp microclimates
and the production of non-flammable fuels. As this pro-
gresses, it becomes increasingly difficult to reverse, and for-
ests may be locked into a steady mesophytic state wherein
only shade-tolerant, fire-intolerant plant species occur
(Nowacki 2008). As such, land managers are prioritizing
prescribed fire as a tool for maintaining current and transi-
tioning fire-dependent communities in the East, particularly
in the southern and central Appalachian Mountains (USDA
Forest Service [US department of Agriculture Forest Ser-
vice] 2006; Hessl et al. 2011).
Throughout North America, including the central Appa-

lachians, bats currently are of great conservation concern
(Carter and Ford 2002; Perry 2012) due to the impacts of
white-nose syndrome (WNS; Francl et al. 2012, Reynolds
et al. 2016) and the proliferation of wind energy develop-
ment (Arnett 2013). Of the suite of bats in the region, the
endangered Indiana bat (Myotis sodalis [Miller and Allen,
1928]; MYSO) and the threatened northern long-eared bat
(Myotis septentrionalis [Trouessart, 1897]; MYSE) are two
species potentially impacted by prescribed fire (Austin et al.
2018b). Prescribed fire use may alter non-hibernating sea-
son day-roosts, (i.e., trees and snags) or change foraging
habitat conditions (Carter and Ford 2002; Perry 2012; Ford
et al. 2016b; Silvis and Perry 2016b). Because there has
been limited work examining the relationships of these and
other bat species in the central Appalachians relative to the
return of fire as a prescriptive tool, land managers are often
challenged to show that burning is not additive in negative
impacts to these already stressed species (Johnson et al.
2010b; Ford et al. 2016a).
Research on the short-term effects of fire on bats

suggests that bats display species-specific responses to
fire-modified vegetation (Owen et al. 2004; Cox et al.
2016; Austin et al. 2018a), with larger-bodied bats bene-
fiting from vegetation clutter reduction that simplifies
flight (Norberg 1985; Aldridge 1988). Snags in burned
areas may be of higher quality for day-roosts because
the newly created canopy gaps allow for increased can-
opy light penetration that aids in thermoregulation and
expedites juvenile bat development (Zahn 1999; Boyles
2006; Johnson et al. 2009). Bats may even be robust to
some roost tree loss (Silvis and Ford 2015), as may result
from fire. Additionally, newly created roosts may offset
loss (Ford et al. 2016a) as remaining trees are likely
more conducive to roosting due to fire-modified cavity,
bark conditions, and canopy characteristics (Perry 2012).
However, Reilly et al. (2016) found that repeated pre-
scribed fire in the southeastern Piedmont changed com-
position and structure of trees in the midstory but not
in the overstory, indicating that foliage-roosting species
may be less affected by fire. Many insect taxa, including
Lepidoptera, that serve as prey for bats, also benefit
from prescribed fire and associated increases in
nectar-producing plants (Rudolph 2000) as well as new
growth that provides a substrate on which to lay eggs
and feed larva (Rudolph 2000; Evans et al. 2013).
Although most bat and fire research in central Appala-

chians has focused on day-roost ecology (Johnson et al.
2009, 2010b; Ford et al. 2016a, 2016b), acoustics have
been used to monitor fire effects on bat activity (Johnson
2012). Cox et al. (2016) found that bat activity in the
Cumberland Plateau was higher after spring and fall pre-
scribed burns in savannah conditions than after spring
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and fall prescribed burns in woodlands. In the upper Pied-
mont and western Allegheny Hills, respectively, Loeb
(2008) and Silvis and Gehrt (2016a) found that thinning
and burning treatments yielded higher total bat activity
than control stands. However, there has been relatively
limited research on the effect of repeated prescribed fire
relative to bats as used for restoration and maintenance of
fire-dependent communities in the central and southern
Appalachians. In the Chicago, Illinois, metropolitan area,
repeated prescribed fire had a positive effect on bat activ-
ity (Smith 2010); and in a longleaf pine (Pinus palustris
Miller)−wiregrass (Aristida stricta Michaux) ecosystem in
Florida, higher bat activity was associated with sites that
experienced short fire-return intervals (Armitage 2012).
With the continued spread of WNS, the severe popula-

tion declines of many cave-dwelling species of bats that
use forests for summer day-roosting and foraging, and the
endangered status of MYSO and the threatened status of
MYSE as regulatory drivers modifying land management
activities, understanding of how practices such as pre-
scribed fire affect bats is critical. Regionally, in the central
Appalachians, managers are challenged to show that burn
programs for other natural resource purposes will benefit
bats or, at minimum, will not exacerbate population re-
ductions from WNS (Ford et al. 2016a). To investigate
this, we compared bat activity in burned and unburned
forest habitat and examined edge effects associated with
burning in the central Appalachians of western Virginia.
Fig. 1 Map of bat detector and burn plot locations (color coded by ye
USA, from 24 May to 15 August 2015. Insets show the location of Bath
County. WV = West Virginia
Previous research in the central Appalachians found
strong species-specific responses to forest habitat and
structural characteristics (Ford et al. 2005); thus, we pre-
dicted that bats would have distinct species-specific re-
sponses to repeated prescribed fire, as well as to the
resulting fire-modified habitat and vegetation characteris-
tics (Austin et al. 2018b).

Methods
Study area
We conducted our study on the Warm Springs Mountain
Preserve (WSM) and adjacent portions of the George
Washington National Forest (GWNF) cooperatively man-
aged, in terms of fire application, by the United States For-
est Service (USFS) and The Nature Conservancy (TNC).
The area is within the western Ridge and Valley portion of
the central Appalachian Mountains in Bath County, Vir-
ginia, USA. Depending on elevation and aspect, forests are
predominately composed of pine−oak mixtures of white
oak (Quercus alba Linnaeus), chestnut oak (Quercus pri-
nus Linnaeus), northern red oak (Quercus rubra Linnaeus),
pitch pine (Pinus rigida Miller), and table mountain pine
(Pinus pungens Lamb.), with blueberries (Vaccinium spp.
Linnaeus) and bear oak (Quercus illicifolia Wangenheim)
in the understory. In fire-suppressed areas, forests also
contain red maple (Acer rubrum Linnaeus) and eastern
white pine (Pinus strobu sLinnaeus; Nowacki 2008), with
mountain laurel (Kalmia latifolia Linnaeus) in the
ar last burned) for Warm Springs Mountain, Bath County, Virginia,
County within Virginia (VA) and the study area within Bath



Table 1 Competing (ΔQAICc< 2) negative binomial mixed models describing bat activity, as well as null and global models, with
random effects for site and transect, by species, at Warm Springs Mountain, Bath County, Virginia, USA, 24 May to 2 August 2015.
We present the degrees of freedom (df), log likelihood (logLik), Akaike’s Information Criteria for overdispersion and small sample size
(QAICc), delta QAICc (ΔQAICc), and QAICc weight (Weight). *Data for Perimyotis subflavus were not overdispersed, thus estimates are
from competing models with ΔAICc < 2

Species Model(s) df logLik QAICc ΔQAICc Weight

Eptesicus fuscus/ Lasionycteris noctivagans

EPFU/LACI

burn condition + elevation 7 −487.19 148.00 0.00 0.24

elevation 5 −507.47 149.00 1.01 0.15

burn condition + burn quantity 7 −494.17 149.80 1.87 0.10

null 4 −522.08 150.70 2.77 0.06

global 19 −483.70 176.60 28.60 0.00

Lasiurus borealis LABO burn condition + canopy cover 7 −178.37 150.30 0.00 0.18

burn condition 6 −181.87 150.70 0.38 0.15

canopy cover 5 −186.05 151.60 1.30 0.10

burn condition + burn quantity 7 −180.37 151.80 1.49 0.09

burn condition + elevation 7 −180.72 152.00 1.75 0.08

burn condition + basal area 7 −180.79 152.10 1.80 0.07

null 4 −190.90 153.00 2.75 0.05

global 19 −174.02 176.60 26.28 0.00

Lasiurus cinereus LACI canopy cover 5 −162.28 155.20 0.00 0.56

elevation 5 −164.08 156.80 1.58 0.25

global 19 −147.94 176.60 21.37 0.00

null 4 −176.28 165.30 10.13 0.00

Myotis lucifugus MYLU burn condition + elevation 7 −179.90 149.90 0.00 0.24

burn condition 6 −183.09 150.00 0.12 0.22

burn condition + basal area 7 −182.51 151.80 1.93 0.09

null 4 −195.41 154.70 4.85 0.02

global 19 −176.05 176.60 26.69 0.00

Myotis septentrionalis MYSE burn condition + elevation 7 −102.24 158.50 0.00 0.93

global 19 −93.96 176.60 18.07 0.00

null 4 −118.95 175.00 16.51 0.00

Myotis sodalis MYSO burn condition + elevation 7 −132.29 152.30 0.00 0.69

null 4 −146.18 159.90 7.58 0.02

global 19 −127.17 176.60 24.29 0.00

Perimyotis subflavus PESU* null 4 −67.73 143.70 0.00 0.16

burn condition 6 −65.98 144.60 0.81 0.10

aspect 5 −67.07 144.60 0.82 0.10

elevation 5 −67.45 145.30 1.57 0.07

burn condition + aspect 7 −65.29 145.40 1.64 0.07

burn condition + elevation 7 −65.33 145.50 1.71 0.07

canopy cover 5 −67.62 145.70 1.91 0.06

global 19 −62.47 168.80 25.10 0.00

High frequency burn condition + elevation 7 −272.75 149.50 0.00 0.26

burn condition 6 −278.25 150.00 0.44 0.21

null 4 −297.53 154.90 5.43 0.02

global 19 −267.62 176.60 27.04 0.00

Total activity burn condition + elevation 7 −524.61 147.80 0.00 0.23
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Table 1 Competing (ΔQAICc< 2) negative binomial mixed models describing bat activity, as well as null and global models, with
random effects for site and transect, by species, at Warm Springs Mountain, Bath County, Virginia, USA, 24 May to 2 August 2015.
We present the degrees of freedom (df), log likelihood (logLik), Akaike’s Information Criteria for overdispersion and small sample size
(QAICc), delta QAICc (ΔQAICc), and QAICc weight (Weight). *Data for Perimyotis subflavus were not overdispersed, thus estimates are
from competing models with ΔAICc < 2 (Continued)

Species Model(s) df logLik QAICc ΔQAICc Weight

elevation 5 −546.64 148.90 1.05 0.14

burn condition 6 −540.12 149.40 1.63 0.10

burn condition + burn quantity 7 −532.47 149.80 1.96 0.09

null 4 −560.64 150.20 2.37 0.07

global 19 −521.48 176.60 28.75 0.00
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understory. Elevation ranges from 500 to 1100 m. In our
study area, the USFS and TNC typically set prescribed fires
in March and April of each year with aerial ignition (M.
Smith, The Nature Conservancy, Warm Springs, Virginia,
USA, personal communication). The matrix of variously
aged burned plots (ranging in age from <1 to 8 years, and
frequency from 1 to 3 burns) and unburned plots provides
a diversity of forest stand conditions (Fig. 1). Much of the
study area is proximal to karst topography with numerous
known bat winter hibernacula that have been WNS posi-
tive and have experienced declining numbers of bats for
several years (Reynolds et al. 2016).

Data collection
We recorded bat activity using acoustic detectors with
SMM-U1 microphones (Songmeter ZC; Wildlife Acous-
tics, Maynard, Massachusetts, USA1) from 24 May through
2 August 2015. We programmed acoustic detectors to
record data from 2000 to 0700 h. We sampled burned and
unburned sites equally over multiple nights using transects
that extended 240 m perpendicularly into each manage-
ment unit. Transects were 480 m long and contained seven
acoustic detectors set 80 m apart, with the center detector
placed at the interface (edge) of the burned and unburned
habitat (Fig. 1). We spaced detectors 80 m apart to avoid
detection of a single bat on two detectors simultaneously
and to ensure relative independence among detectors.
Edge sites were almost always near unimproved forest
roads that served as compartment fire breaks on the area.
We used generalized random tessellation stratified

sampling to spatially balance transect locations across the
entire WSM study area, whereby placement was only con-
strained by a burned or unburned stand with enough area
and width to contain a sampling transect covering the
range of elevations where burns occurred (Philippi 2013).
Following the protocol of Ford et al. (2005), we collected
call data, site location, canopy closure, and basal area at
the detector site. We derived elevation, aspect, and slope
using digital elevation models within ArcMap 10.2.2 soft-
ware (ESRI, Redlands, California, USA), available online
through US Geological Survey (https://catalog.data.gov/
dataset/usgs-national-elevation-dataset-ned), and burn his-
tory and extent using burn layers provided by TNC.

Data analysis
Bat call identification
We identified calls using Kaleidoscope version 4.1.0,
classifier version 3.1.0, at the sensitive setting (Wildlife
Acoustics, Maynard, Massachusetts, USA). We used the
default signal parameters in Kaleidoscope (8–120 KHz
frequency range, 500 maximum inter-syllable gap, 2
minimum number of pulses, enhance with advanced sig-
nal processing) and specified nine individual species that
were known to occur within our study region: big brown
bats (Eptesicus fuscus [Palisot de Beauvois, 1796]);
EPFU), hoary bats (Lasiurus cinereus [Palisot de Beau-
vois, 1796]; LACI), eastern red bat (Lasiurus borealis
[Müller, 1776]; LABO), silver-haired bats (Lasionycterus
noctivagans [Le Conte, 1831]; LANO), eastern
small-footed bats (Myotis leibii [Audubon and Bachman,
1842]; MYLE), little brown bats (Myotis lucifugus[Le
Conte, 1831]; MYLU), MYSE, MYSO, and tri-colored
bats (Perimyotis subflavus [F. Cuvier, 1832]; PESU). Al-
though there is considerable file-to-file variation among
US Fish and Wildlife Service approved automated bat
identification software programs used in the East,
Nocera (2018) found that, when used at the nightly
“total” per species level of resolution, Kaleidoscope pro-
vided comparable results to other programs and expert
visual vetting. Furthermore, we visually validated calls to
insure automated identification was correctly assigning
ultrasonic recordings to bat species rather than insect or
other extraneous noise (Austin et al. 2018b).

Fire effects
We created a set of 14 a priori negative binomial mixed
models that incorporated burn and habitat variables to
assess their effects on bat activity level (nightly counts
by species by detector) as well as nested random effects
for site and transect to account for the nested nature of
sites within transects and nights within sites. These
models—burn condition, burn condition + aspect, burn

http://data.geocomm.com/dem
http://data.geocomm.com/dem


Table 2 Model averaged coefficients, unconditional standard errors (SE), and 95% upper confidence interval (UCI) and lower
confidence interval (LCI) for competing (ΔQAICc < 2) negative binomial mixed models of bat activity by species for Warm Springs
Mountain, Bath County, Virginia, USA, 24 May to 2 August 2015. *Myotis septentrionalis and Myotis sodalis were not model averaged
and individual estimates, standard errors, and 95% upper lower confidence intervals for the top negative binomial mixed model of
bat activity are presented

Species Variable Coefficient SE LCI UCI

Eptesicus fuscus/
Lasionycteris noctivagans
EPFU/LANO

intercept 0.65 0.41 −0.15 1.49

burn condition: burn 0.57 0.45 −0.35 1.44

burn condition: edge 2.10 1.35 −0.68 4.74

elevation 0.70 0.38 −0.04 1.45

burn quantity 0.18 0.37 −0.55 0.90

Lasiurus borealis LABO intercept −4.32 0.83 −5.95 −2.66

burn condition: burn 1.40 0.90 −0.49 3.19

burn condition: edge 3.78 1.57 0.17 7.03

canopy cover −0.36 0.48 −1.34 0.61

burn quantity 0.10 0.31 −0.50 0.70

elevation 0.06 0.20 −0.33 0.44

basal area −0.06 0.20 −0.44 0.33

Lasiurus cinereus LACI intercept −1.57 0.31 −2.19 −0.95

canopy cover −0.54 0.38 −1.28 0.21

Myotis lucifugus MYLU intercept −4.20 0.79 −5.76 −2.64

burn condition: burn 1.23 0.74 −0.24 2.71

burn condition: edge 4.83 0.97 2.91 6.74

elevation 0.35 0.46 −0.54 1.24

basal area −0.06 0.19 −0.43 0.32

Myotis septentrionalis MYSE* intercept −5.27 1.03 −7.84 −3.59

burn condition: burn 2.10 0.98 0.18 4.02

burn condition: edge 4.99 1.05 3.16 7.49

elevation 1.26 0.35 0.62 2.04

Myotis sodalis MYSO* intercept −5.17 1.04 −7.21 −3.13

burn condition: burn 1.12 0.93 −0.70 2.94

burn condition: edge 4.86 1.10 2.70 7.01

High-frequency bats intercept −2.30 0.48 −3.26 −1.35

burn condition: burn 1.26 0.54 0.20 2.33

burn condition: edge 4.18 0.67 2.86 5.51

elevation 0.43 0.41 −0.39 1.22

Total activity intercept 0.82 0.41 0.02 1.70

burn condition: burn 0.70 0.46 −0.29 1.61

burn condition: edge 2.45 1.28 −0.38 5.00

elevation 0.58 0.42 −0.27 1.41

burn quantity 0.13 0.32 −0.49 0.75
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condition + slope, burn condition + basal area, burn con-
dition + canopy cover, burn condition + burn year, burn
condition + distance to edge, burn condition + burn quan-
tity, aspect, elevation, basal area, canopy cover, distance
to edge, burn quantity—as well as a null condition, were
based on previous research that has shown that bat re-
sponse by species varies by elevation and aspect (Ford
et al. 2005), forest stand conditions such as basal area
and stocking, and canopy closure in the central Appala-
chians (Owen et al. 2004). These are further modified by



Fig. 2 Total mean nightly bat passes (± standard error of the mean)
across condition (burned, edge, and unburned) for Warm Springs
Mountain, Bath County, Virginia, USA, 24 May to 15 August 2015.
EFLN = big brown bat (Eptesicus fuscus)/silver-haired bat
(Lasionycterus noctivagans) group, LABO = eastern red bat (Lasiurus
borealis), LACI = hoary bat (Lasiurus cinereus), MYLE = eastern small-
footed bat (Myotis leibii), MYLU = little brown bat (Myotis lucifugus),
MYSE = northern long-eared bat (Myotis septentrionalis), MYSO =
Indiana bat (Myotis sodalis), PESU = tri-colored bat (Perimyotis
subflavus), HIFR = LABO/MYLE/MYLU/MYSE/MYSO/PESU high-
frequency group, and TOTAL = all bats
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burn condition (burned, unburned, and edge between
burned and unburned), burn history (year of burn), and
burn quantity (area extent; Carter and Ford 2002, Loeb
2008, Silvis and Perry 2016b). We compared models
representing competing hypotheses using an Information
Theoretic approach by ranking models using Akaike’s
Information Criterion corrected for overdispersion and
small sample size (QAICc; Burnham 2002). We identified
a confidence set of models within ΔQAICc <2 as compet-
ing models. To account for uncertainty in the model
selection process, we used package MuMIn (Barton 2016)
in program R to obtain full model averaged estimates with
a zero estimate when the parameter does not appear in
the model, unconditional standard errors, and 95% confi-
dence intervals to assess individual variable effects on bat
activity levels (Grueber et al. 2011; Symonds 2011).

Results
We collected data on 707 detector nights at 149 sites
total for up to nine nights at each site. Uneven sampling
periods among sites occurred due to periodic detector
failures or black bear (Ursus americanus [Pallas, 1780])
damage. When visually examining calls, we identified a
systematic error whereby insect noise was classified both
as LACI and LABO calls. To address this issue, we visu-
ally examined all calls identified by Kaleidoscope using
AnalookW v. 3.9f (Titley Electronics, Ballina, New South
Wales, Australia) and removed erroneously identified
insect noise. After removing noise, we repeated call ana-
lysis in Kaleidoscope to obtain corrected nightly counts
by species. Kaleidoscope identified 24 180 total call files,
post visual noise removal, and assigned them to nine
unique species: EPFU (10 039), LABO (2665), LACI
(795), LANO (2836), MYLE (414), MYLU (3066), MYSE
(1045), MYSO (3036), and PESU (284). For LANO, this
represented an unusually high number of calls for the
summer, as this species typically is caught only in May
as it migrates through the state (Cryan 2003). However,
post WNS, anecdotal reports of greater summer cap-
tures have been occurring (M. St. Germain, Virginia
Tech Conservation Management Institute, Blacksburg,
Virginia, USA, personal communication). Nonetheless, it
was possible that many LANO calls were actually
misclassified EPFU calls (Betts 1998; USFWS [US Fish
and Wildlife Service] 2017); therefore, we combined all
EPFU and LANO calls into one group and refered to
them as EPFU/LANO. We also presented results for all
high-frequency bats (Myotis spp. and PESU) combined
to account for program identification uncertainty among
Myotis species, and lastly, all bat species combined to
examine fire and habitat effects on overall bat activity
(O’Keefe et al. 2013, 2014).
Burn condition and elevation were the most important

variables for explaining activity levels of EPFU/LANO,
MYLU, MYSE, MYSO, high-frequency bats, and total
activity and had a positive effect on all species (Table 1;
Table 2); the confidence interval for model-averaged
burned habitat overlapped zero, indicating a neutral
or marginal effect of burned habitat on EPFU/LANO,
LABO, MYLU, MYSO, and total bat activity.
However, within burn condition, edge had a positive
effect on LABO, MYLU, MYSE MYSO, and all
high-frequency bats combined (Fig. 2; Table 2). Burn
quantity was included in the set of competing models
for EPFU/LANO; the effect was marginally positive
with confidence intervals overlapping zero. Basal area
was also included in the set of competing models for
MYLU; the effect was marginally negative with confi-
dence intervals overlapping zero. Six models describ-
ing LABO activity contained combinations of burn
condition, canopy cover, burn quantity, elevation, and
basal area were competing (Table 2). Model-averaged
confidence intervals overlapped zero for burned
habitat, burn quantity, elevation, canopy cover, and
basal area. The elevation model and the canopy cover
model were the top models for LACI with canopy
cover having a negative effect on activity and eleva-
tion having a slightly positive effect on activity. Confi-
dence intervals for both variables overlapped zero.
There were seven competing models that described
PESU activity, with the top model being the null,
indicating little evidence to suggest fire had an effect
on this species (Table 2). Accordingly, we did not
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model-average PESU results. Lastly, we were unable
to analyze burn and habitat effects on MYLE due to
model convergence error.

Discussion
We found some evidence for fire effects on MYSE,
MYSO, MYLU, EPFU/LANO, high-frequency bats com-
bined, and total activity. For all species and species groups,
activity was the highest in edge habitat between burned
and unburned portions of the surveyed transects and
slightly higher in burned than unburned habitat. EPFU/
LANO, LABO, and total bat activity responded to mul-
tiple burns; at our study site,there had been up to three
fires for some individual stands over a period of 8–
12 years. As noted by earlier research, larger-bodied bats
such as EPFU and LANO benefit from recent fires due to
clutter reduction because it facilitates flight (Norberg
1985; Aldridge 1988; Brooks 2005). However, we observed
some evidence that this was true for the smaller-bodied
Myotis as well. Hutchinson and Sutherland (2005) found
that ≥3 fires were required over the course of eight years
to achieve statistically significant differences in basal area
of midstory trees and reductions in basal sprouting. Simi-
larly, this suggests that multiple prescribed burns would
be required before long-term benefits to larger-bodied bat
species are evident (Austin et al. 2018a). Previous research
in the central Appalachians (Austin et al. 2018a), as well
as in the Coastal Plain of South Carolina (Ford et al. 2006;
Hein and Castleberry 2009) has found that all bat activity,
regardless of body size, is higher in corridors where flight
efficiency is high for bats; it seems likely that this also oc-
curs on WSM in and along the roads serving as fire
breaks. Similar to riparian corridors (Rogers et al. 2006),
the creation of fire breaks may benefit bats by providing
efficient travel pathways connecting roosting and foraging
areas. These areas of concentrated activity may offer po-
tential bat monitoring locations to assess fire effects in this
area in the future.
Nonetheless, both MYLU and MYSO displayed only

slight positive to neutral responses to prescribed fire.
These species, while considered more clutter-adapted than
LABO and less clutter-tolerant than MYSE (Broders and
Findlay 2004; Brooks 2005; Broders et al. 2006), are likely
tolerant of a wide range of forest conditions. However, it is
widely accepted that higher acoustic activity indicates bet-
ter habitat conditions (Johnson et al. 2010a; Coleman et al.
2014). For example, Brooks (2005) noted that MYLU was
present across all habitat types in New England. Moreover,
in bottomland hardwood forests of Illinois (Carter 2005)
and in the agriculture landscape of central Ohio (Kniowski
2014), MYSO readily utilized bottomland habitat, an area
likely unaffected by fire, for roosting or foraging.
The clutter-adapted MYSE, a gleaning species, dis-

played a positive response to prescribed fire.
Immediate effects of a single fire, post suppression,
include mortality of understory vegetation and small
trees (although dependent on fire severity and slope
position), and prolific basal sprouting shortly post fire
(Elliott et al. 1999). In the absence of midstory clut-
ter, basal sprouts may provide additional substrate for
gleaning insects (Ratcliffe 2003). Indeed, Silvis and Gehrt
(2016a); Silvis and Perry (2016b) found that Myotis were
positively related to low-strata vegetative clutter. Several
studies also have documented positive fire effects on
MYSE roosting habitat (Johnson et al. 2009; Lacki et al.
2009; Ford et al. 2016a). In all burn conditions, activity
had a slightly positive relationship with increased eleva-
tion. Because burn intensity is greater on upper slopes
(Mladenoff 1999), reductions in clutter that improve for-
aging condition may have negated previously negative re-
lationships with bat activity and increasing elevation in
the central Appalachians at elevations where
oak-dominated types are replaced by northern hardwood
to the west on the Allegheny Plareau (Ford et al. 2005;
Ford et al. 2016b).
Similar to our findings, Ford et al. (2005) also docu-

mented a positive relationship between LACI activity
and minimum canopy gap width in the central Appala-
chians. Previous research has found that LACI use rapid,
straight flight and low-attenuating, high amplitude echo-
location to pursue prey in open habitats (Barclay 1985).
Our results show lack of support for connection be-

tween most burn and habitat variables and LABO activity
with the exception of edge habitat between the burned
and unburned stands. In the central Appalachians, LABO
tend to be forest habitat generalists (Hutchinson 1999;
Ford et al. 2005; Austin et al. 2018b). Ford et al. (2005)
documented a positive trend with minimum canopy gap
size for LABO. Similarly, LABO in our study area used
the woods’ roads present at our edge sites between burned
and unburned stands. Whether in burned forests or un-
burned forests, woods’ roads provide linear canopy open-
ings or, at minimum, a less cluttered corridor when a
covering canopy was present where LABO activity often is
high (Estrada and Coates‐Estrada 2001; Ford et al. 2006;
Hein and Castleberry 2009; Austin et al. 2018a).

Conclusion
In the central Appalachians, fire is used for conservation
of fire-dependent, oak-dominant communities and to pro-
mote the montane pine systems, as well as to help land
managers meet other stewardship goals (i.e., preservation
of biodiversity and control of invasive plant species). Our
research helps to elucidate effects of repeated prescribed
fire in the central Appalachians in the summer. Overall,
we found weak positive to neutral effects of fire on bats.
Small sample sizes for species such as PESU and MYLE
resulting from WNS-related population declines (Frick
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et al. 2010; Ford et al. 2011; Francl et al. 2012) further
limit the inferences we can draw about fire effects on bats
in this landscape. Further research is needed to determine
whether these negligible impacts extend to critical fall
swarm and spring emergence periods when habitat associ-
ations of bats are less well understood (Muthersbaugh
2018). Relative to most of the GWNF, the WSM landscape
has a higher rate of prescribed fire both spatially and tem-
porally. Indeed, despite prioritization of prescribed burn-
ing regionally (Brose 2014), burned land comprises a
small percentage of public lands overall in the central Ap-
palachians (Ford et al. 2016a). The bat activity response
we observed at WSM suggests that bat presence should
not serve as an impediment for burn programs on the
central Appalachian landscape.

Endnotes
1The use of any trade, product, or firm names does

not imply endorsement by the US government.
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