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Abstract

Background: Soil properties have important effects on fire occurrence and spread, but soils are often overlooked in
fire prediction models. Quantifying soil−fire linkages is limited by information in conventional soil maps, but digital
soil mapping products (e.g., detailed soil property maps) could improve both wildfire prediction models and post-fire
management decisions.

Results: Of our estimated 3.7 Mkm2 of rangeland in the continental US and Alaska, an average of 38 000 km2 burned
per year between 2008 and 2017. To highlight the role of soils in fire ecology, we present 1) a conceptual framework
explaining why soil information can be useful for fire models, 2) a comprehensive suite of literature examples that used
soil property information in traditional soil survey for predicting wildfire, and 3) specific examples of how more detailed
soil information can be applied for pre- and post-fire decisions.

Conclusions: Digital soil mapping can improve fire prediction models and inform post-fire management decisions.

Keywords: digital soil mapping, fire effects, grasslands, shrublands, soil moisture, spatial modeling, wildfire

Resumen

Antecedentes: Las propiedades del suelo tienen efectos importantes en la ocurrencia y propagación de incendios,
aunque los suelos son frecuentemente pasados por alto en los modelos de predicción de incendios. La cuantificación
de los vínculos entre suelo y fuegos está limitada por la información contenida en mapas de suelos convencionales,
aunque los productos de mapas de suelo digitales (i.e., mapas detallados de propiedades del suelo) pueden mejorar
tanto la predicción de incendios como las decisiones de manejo post-fuego.

Resultados: De nuestras estimaciones de 3,7 Mkm2 de pastizales naturales en la parte continental de EEUU y Alaska,
un promedio de 38 000 km2 se quemaron por año entre 2008 y 2017. Para resaltar el rol de los suelos en la ecología
del fuego, presentamos 1) un marco conceptual explicando por qué la información sobre el suelo puede ser útil para
modelos de incendios, 2) un conjunto comprensivo de ejemplos de la literatura que usan información sobre las
propiedades del suelo en relevamientos de suelo tradicionales para predecir incendios, y 3) ejemplos específicos
de cómo una información de suelos más detallada puede aplicarse para tomar decisiones pre- y post- fuegos.

Conclusiones: Los mapas de suelo digitales pueden mejorar los modelos de predicción de incendios e informar
sobre decisiones de manejo post-fuego.
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Abbreviations
DSM: Digital Soil Map
GRACE: NASA’s Gravity Recovery and Climate Experiment
gSSURGO: gridded SSURGO
HWSD: Harmonized World Soil Database
MTBS: Monitoring Trends in Burn Severity database
NASA: National Aeronautics and Space Administration
NRCS: USDA Natural Resources Conservation Service
SMAP: NASA’s Soil Moisture Active Passive mission
SMOS: European Space Agency’s Soil Moisture and
Ocean Salinity mission
SSURGO: Soil Survey Geographic Database
STATSGO2: Digital General Soil Map of the United States

Introduction
Wildfire affects an estimated 148.8 Mkm2 globally each
year (van der Werf et al. 2017), with a recent increase of
burned area in rangelands associated with increasing
population density (Bistinas et al. 2013). The expanding

wildland−urban interface underscores the need to pro-
vide fire risk maps to protect life and property. In the
US between 2008 and 2017, an average of 38 000 km2

burned in wildland and prescribed fires annually, with
nearly 67 000 km2 burned in 2017 alone (NIFC [Na-
tional Interagency Fire Center] 2018). Rangeland extent
in the US has been estimated to be between 2.4 Mkm2

and 3.1 Mkm2 (Joyce 1989; Reeves 2011). We derived a
spatial representation of rangeland from the 2011 Na-
tional Land Cover Dataset (Homer et al. 2015) to allow
comparisons with wildfire data from the Monitoring
Trends in Burn Severity dataset (http://mtbs.gov/direct--
download). Based on the definition of rangeland as a
natural ecosystem composed of predominantly grasses,
forbs, or shrubs (https://globalrangelands.org/glossary),
we combined shrubland and herbaceous classes (exclud-
ing pasture) and estimated an area of 3.7 Mkm2 of
rangeland in the continental US and Alaska (Fig. 1). Be-
tween 1984 and 2015, 326 166 km2 of rangeland burned

Fig. 1 Areas of the United States burned at least once by large fires between 1984 and 2015. Rangeland extent was derived from the 2011
National Land Cover Dataset (Homer et al. 2015) by combining shrubland and herbaceous classes, and urban extent represents an aggregate of
all developed classes. Large fire criteria defined by MTBS standards of >405 ha in western states and >202 ha in eastern states
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at least once in large fires with an observable increase in
burned area per year for the same time period (Figs. 1
and 2).
In the western US, there is considerable concern re-

garding the increased negative effects of fire on plant in-
vasions and erosion (see 2011 special issue of Rangeland
Ecology and Management 64[5]: 429–478). Modified fire
regimes resulting from the proliferation of invasive spe-
cies can lead to increased fire likelihood, putting more
landscapes at risk of soil erosion (Brooks 2006). Fire ef-
fects on soil properties are strongly influenced by burn
severity, which often varies significantly in space (Moody
et al. 2013). Interestingly, burn severity does not always
align with the fuel load (Stoof et al. 2013). This can cre-
ate complex patterns of site susceptibility to hydrophobi-
city, erosion, and subsequent hydrologic responses
(Williams et al. 2014)
Multiscale processes control fire occurrence and

long-term fire regimes (Allen 2007; Falk et al. 2011). The
most common variables used to model and predict fire
occurrence are derived from topography, precipitation,
and vegetation condition because of their relationships
with fuel conditions (Littell et al. 2009; Abatzoglou
2013). These are often complemented by other proper-
ties related to fire ignition such as distance to road and
lightning strike density (Yang et al. 2015). Most variables
included in fire prediction models attempt to represent
the necessary elements of fire occurrence: available fuel,
favorable conditions for burning, and some ignition
source (Krawchuk 2011).
Soil properties are frequently absent from fire prediction

models (Brooks 2006; Littell et al. 2009; Hawbaker et al.
2013; Gray and Dickson 2014), although some recent
studies have begun to utilize soil information such as soil
moisture to predict fire occurrence. For example, Krueger

et al. (2015) found that measured soil moisture strongly
influences wildfire activity during much of the year in
Oklahoma, USA, because it influences plant productivity
and live fuel moisture directly. Soil moisture has also been
shown to be a better predictor of the occurrence of large
growing-season wildfires than the commonly used
Keetch-Byram drought index (Krueger et al. 2017). Re-
motely sensed soil moisture has also been used recently to
predict wildfire occurrence across the contiguous US (Jen-
sen et al. 2018). Integrating bottom-up (e.g., soil, topog-
raphy) and top-down (e.g., precipitation, temperature)
controls of wildfire is necessary for refining local models
of fire susceptibility and improving our ability to produce
fire risk assessments in a rapidly changing climate.
In addition to fire prediction models, soil properties

are especially important for managing soil landscapes
post fire because fire behavior directly influences soil
conditions that interact with flora, fauna, and landscapes
to impact processes such as runoff and erosion (Hyde et
al. 2013). In contrast to wildfire predictions, soil infor-
mation is commonly included in post-fire management
and modeling. Even though soil is recognized as an import-
ant element of post-fire management, there is still an im-
perative need to better quantify the interactions between
fire severity and hydraulic soil properties across a wide
range of spatial scales (Moody et al. 2013). Many wild-
land fires happen in remote areas where on-the-ground
inventories of soil, vegetation, and burn severity have
been inhibited by cost, time, or logistics. Optimizing
available resources for pre-and post-fire applications re-
quires the integration of a comprehensive suite of en-
vironmental data.
Fire is a natural process in many rangeland systems,

and being able to predict when and where on the land-
scape it will occur continues to be a critical need
(Rangeland Fire Task Force 2015). Post-fire management
decisions also become more important as larger areas
experience fire, putting more areas at risk for soil ero-
sion and subsequent degradation and water quality is-
sues (Fig. 2). We believe that both pre- and post-fire
management decisions could benefit from more applied
uses of existing and newly generated soil maps. The
goals of this paper are to illustrate the importance of in-
cluding soil property information in fire prediction
models and post-fire response, describe map-based soil
information that is currently available, and discuss the
potential for digital soil mapping to improve pre- and
post-fire management decisions in rangelands.

Linking fire to soil properties
The vast majority of research related to fire and soil
properties is focused on the effect of fire on soil proper-
ties (Massman and Frank 2010; Sankey et al. 2012a;
Moody et al. 2013; Alcaniz et al. 2018); however, the

Fig. 2 Area of burned rangeland in the United States by large fires
from 1984 and 2015. Shaded area represents the 95% confidence
interval. Large fire criteria and rangeland delineations are described
in Fig. 1
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interaction of soil properties and precipitation is an im-
portant predictor of vegetation condition and live fuel
moisture that is difficult to quantify and consequently
not emphasized in models of fire prediction. Vegetation
condition is well recognized as an important factor in
modeling fire occurrence because it has the most direct
influence on the likelihood of burning and subsequent
fire characteristics (size, severity, etc.). It is well recog-
nized that climate-driven thermal and moisture gradi-
ents control fire regimes at coarse and intermediate
scales (Whitman et al. 2015), but resolving fire behavior
at finer spatial and temporal scales requires information
including current vegetation condition, live fuel mois-
ture, and relative humidity, all of which are affected
strongly by soil properties. Conceptual models of fire
likelihood often connect soil moisture conditions to the
resource gradient of physical conditions (Krawchuk
2011; McWethy et al. 2013); however, soil moisture re-
mains a difficult property to quantify with fine spatial
and temporal detail over large areas (Ochsner et al.
2013). For example, satellite remote sensing missions
dedicated to soil moisture monitoring provide global
coverage but generally have coarse spatial resolution and
only predict conditions for the top several centimeters of
soil (Ochsner et al. 2013; Jensen et al. 2018). In contrast
to the top-down control of climate−space data on fire
conditions, soil moisture dynamics and other soil property
influences represent a bottom-up mechanism (Fig. 3).

Management activities interact with both fine- and
coarse-scale drivers to produce a complex mix of possible
scenarios in any given environment. Furthermore, there is
strong evidence for variable contributions of bottom-up
controls in different types of fire-prone landscapes (Kraw-
chuk 2011; Parks and Parisien 2012). Integrating all of
these drivers is a complicated, albeit necessary, task to re-
fine fire prediction models and develop better predictive
ability for post-fire recovery.
Soil−vegetation relationships and subsequent fire

distribution vary with climate. This can be discussed
in the context of a resource-limited system compared
to one with ample biomass (Krawchuk 2011). For
example, in semiarid rangelands, soil moisture exerts
strong control on site characteristics such as vegeta-
tion community structure as well as current condi-
tions of fire susceptibility like fuel load and moisture
status. In very cold rangeland systems where perma-
frost controls soil drainage (e.g., Alaskan tundra),
temperature can influence effective soil depth and
subsequent soil moisture conditions. Spatial and
temporal soil moisture conditions are also affected by a
suite of soil properties including texture, rock fragments,
and organic matter. Therefore, long-term projections of
fire likelihood can be tied to soil types or key properties
affecting soil moisture. The interaction of soil with climate
is an important element of both short- and long-term pro-
jections of fire.

Fig. 3 Conceptual soil−fire linkages with vegetation and overarching influence of weather, climate, and management. Weather and long-term
climate are macro-scale drivers with minimal feedback from the landscape continuum, whereas management has a more balanced linkage with
the landscape and also direct influence from weather
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Available soil information and fire modeling
examples
Options for deriving soil information relevant for fire
modeling include an assortment of conventional soil
maps, digital soil maps, and proxy measurements of soil
properties like soil moisture (Table 1). Grunwald and
Thompson (2011) provide a concise summary of com-
mon global, national, and regional soil datasets available
in a digital format, and the International Soil Reference
and Information Centre (ISRIC) provides a comprehen-
sive list of soil geographic databases from across the
world (ISRIC [International Soil Reference and Informa-
tion Centre] 2018). A wide range of soil properties influ-
ence the type, amount, and moisture content of fuels as
well as the trajectories of recovery in areas following a
burn. Soil moisture is arguably the most important soil
property for fire prediction because of the tight coupling
with fuel moisture (Qi et al. 2012; Krueger et al. 2015).
The antecedent soil moisture conditions are especially
important for predicting likely fire risk due to the influ-
ence on fuel accumulation (Krawchuk 2011; Gray and
Dickson 2014). Properties that control soil moisture
conditions and potential water holding capacity of a soil,
like soil texture and the amount of rock fragments, are
also very important for predicting soil moisture condi-
tions. For post-fire applications, properties that influence
erodibility, hydrophobicity, aggregation, and nutrient
content are very important for the recovery of a given
landscape after burning. Erosion models are frequently
used to assess risks following fire and typically require
soil inputs like texture and rock fragments (Miller et al.
2016). For plant recovery following fire, things such as
soil fertility, hydrophobicity, soil moisture, and rates of
erosion are important factors.

Conventional soil mapping
Conventional soil maps provide information about soil
properties that relate to soil genesis, morphology, and
classification using polygons for spatial representation
(Soil Science Division Staff 2017). The mapping scale is
generally dependent upon the specific management goals
of the project. Soil data available are usually representa-
tive values of named soil types, which are aggregated for
spatial representation in polygons. This results in soil
map units that can have coarse representation of soil
property variability within the polygon. A variety of con-
ventional soil maps have been compiled as the Harmo-
nized World Soil Database (HWSD; Table 1) to provide
global coverage (Wieder et al. 2014). These polygon-
based maps of global extent generally have coarse spatial
resolution and somewhat generalized attribute informa-
tion due to limitations of mapping such large areas.
Many regional soil maps cover individual countries at
various resolution and detail. In the US, there are three

main soil products including the Digital General Soil
Map of the United States (STATSGO2; Soil Survey Staff
2018c), Soil Survey Geographic Database (SSURGO; Soil
Survey Staff 2018b), and gridded SSURGO (gSSURGO;
Soil Survey Staff 2018a) (Table 1). These provide more
detailed information than global datasets, with estimated
soil properties and interpretations for land management
(Soil Science Division Staff 2017). While these maps are
produced by expert soil scientists, there are limitations
on the quantification of soil property variability and
spatial distribution across the landscape.
A major benefit of soil survey information is the variety

of interpretations connected to soil map units. For ex-
ample, SSURGO provides a rating of potential damage by
fire that reflects the susceptibility of nutrient, physical,
and biotic soil properties to fire (e.g., Fig. 4). This inter-
pretation is a useful tool for prioritizing resources for both
preventative management and post-fire assessment (e.g.,
Burned Area Emergency Rehabilitation). In addition, soil
map units are linked to ecological site classifications,
which describe soil- and climate-related variations in po-
tential vegetation and its responses to natural and an-
thropogenic drivers (Moseley et al. 2010). Ecological sites
commonly incorporate fire into “state and transition
models,” which describe the causes of ecological state
change (e.g., large shifts in plant communities) alongside
recommendations to manage state change in desired ways
(Bestelmeyer et al. 2010). Recommendations associated
with fire management may include fire frequencies needed
to sustain or alter a given plant community and seed
mixes or erosion control strategies to accelerate post-fire
recovery. State and transition models can also be used to
scale up ecological site information into disturbance re-
sponse groups that may facilitate post-fire rehabilitation
following large fires (Stringham et al. 2016). For rangeland
landscapes that are at risk of transitioning to communities
dominated by non-native, invasive plants, state and transi-
tion models provide valuable site-specific predictions re-
garding changes in and management of vegetation in the
face of changing fire regimes.
Some studies have used static soil properties from

conventional soil maps to model wildfires. Levi (2016)
found soil water holding capacity and ecological sites
to be useful for explaining fire occurrence in desert
grasslands of the southwestern US. Dilts and Sibold
(2009) explored the use of soil water holding capacity
and infiltration rate to model fire, but found insignifi-
cant effects and removed the variable from subse-
quent models, likely a reflection of the coarse-scaled
soil information that they derived from the
STATSGO2 database. Coarse resolution of soil inputs
have also been identified as a limitation for fire
prediction models in northern Wisconsin, where
Sturtevant (2007) used STATSGO2 to derive soil
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water holding capacity, drainage class, and hydric soil
ratings. Harden et al. (2001) used a simple metric of
soil drainage integrated from soil water holding
capacity, infiltration rate, and hydraulic conductivity
to characterize the state of Alaska, and then related
that to wildfire. They determined that more poorly
drained areas had more fire activity than better
drained areas. However, they used the STATSGO2
database, and soil map units were about six times

larger than the fire polygons, which only allowed for
relatively simple statistical analyses. We suggest that
using soil information that is better matched to the
scale of interest for a particular fire modeling applica-
tion could be more informative. For example, the
above studies may have had better relationships
between fire predictions and soil properties if they
had used more detailed SSURGO data or a suite of
digital soil mapping products.

Fig. 4 Fire severity map for the 2009 Hog Fire in southeastern Arizona, USA (about 45 km northeast of Douglas, in the Peloncillo Mountains), derived
from the MTBS project with available SSURGO soil map component boundaries (a), potential damage from fire interpretation from SSURGO (b), and a
digital soil map of predicted soil components (c; Levi 2017; each color in panel C represents a different soil component). Integration of soil property
maps with burn severity is critical for modeling post-fire erosion. Approximately half of the Hog Fire burned on national forest land with no published
soil survey available, but the digital soil map provides predicted soil components for the full extent of the burned area. For direct comparison of soil
components from digital soil mapping and SSURGO presented in panel c, please see figure 4 in Levi 2017
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Digital soil mapping
Digital soil mapping is an approach for predicting soil
properties or soil types by incorporating measured
soil properties at known point locations with environ-
mental covariate layers having continuous spatial
coverage (e.g., Landsat satellite data, digital elevation
models; McBratney and Santos 2003, Scull et al. 2003).
These soil prediction models can utilize simple regression
or complex machine learning and generally provide
improved estimates of soil properties at a finer spatial
scale than currently available soil map products. A
tremendous benefit of digital soil mapping models is the
ability to produce some measure of model accuracy or
confidence that can be incorporated into subsequent
models. Digital soil mapping is generally used to predict
static soil properties, but these properties can be incorpo-
rated with other models to derive more dynamic soil
properties.
Digital soil mapping is a practical solution for refining

the spatial variability of soil information for large areas.
A variety of digital soil maps are currently available in-
cluding global (SoilGrids; Hengl et al. 2017) and regional
(e.g., POLARIS; Chaney et al. 2016) products (Table 1).
SoilGrids is a global product of soil property information
available in a raster data format with 250 m resolution
(Hengl et al. 2017), with recent advances for the contin-
ental US that provide data for 100 m pixels (Ramcharan
et al. 2018). There are also local scale examples of digital
soil mapping that could be useful for fire modeling. For
example, the 2009 Hog Fire burned 73 km2 in southeast-
ern Arizona, USA, where approximately half of the
burned area occurred on national forest land with no
published soil survey available (Fig. 4). However, a digital
soil map is available from work by Levi (2017) and pro-
vides predicted soil components for most of the burned
area. A simple intersection of the digital soil map and
the Hog Fire boundary indicated that two soil compo-
nents accounted for 79% of the burned area. One draw-
back of digital soil mapping data for fire modeling is
that knowing about and then accessing localized data
may be difficult as there is not currently a clearinghouse
or repository of these data. Some review papers offer
one mechanism of identifying existing studies (e.g.,
Grunwald 2009) and the USDA Natural Resources
Conservation Service (NRCS) has compiled an anno-
tated bibliography of digital soil mapping projects
with NRCS participation (see NRCS 2018), but such
lists are often not comprehensive. Some larger-scale
projects like the 100 m SoilGrids project are readily
available (Table 1). Another challenge to utilizing
previously developed digital soil maps is that project
objectives may have produced soil property maps that
would not be easily translated to relevant fire ecology
questions.

Soil moisture mapping
Perhaps the greatest potential for better incorporating
soil information into fire modeling is through soil mois-
ture. Soil moisture conditions are tied closely to live fuel
moisture content, which is a critical element of wildfire
risk models (Qi et al. 2012). The spatial coverage of in
situ soil moisture measurements represents only a very
small fraction of the landscapes on which wildfires most
commonly occur. Efforts to compile these measured
data, such as the North American Soil Moisture Data-
base (Quiring et al. 2016), present more opportunities
for utilizing soil moisture measurements in fire re-
search. Advancements in soil moisture modeling also
provide much needed information for incorporating
into an assortment of applications, including fire
modeling. A variety of methods exist to predict soil
moisture for large spatial areas including cosmic-ray
neutron radiation, indirect Global Positioning System
signals, remotely sensed land surface temperature
measurements, and remote sensing missions specific-
ally designed to measure soil moisture (Ochsner et al.
2013). In recent years, remotely sensed soil moisture
data has been used to model fire activity for large
areas using several platforms including the European
Space Agency’s Soil Moisture and Ocean Salinity mis-
sion (SMOS; Chaparro et al. 2016) and National
Aeronautics and Space Administration’s (NASA)
Gravity Recovery and Climate Experiment (GRACE;
Jensen et al. 2018). NASA’s Soil Moisture Active
Passive (SMAP) mission also has tremendous poten-
tial for providing valuable soil moisture datasets that
could be applied to fire prediction models (Entekhabi
et al. 2010). Remote sensing missions may offer the
greatest potential to inform pre- and post-fire applica-
tions for large areas; however, the coarse spatial reso-
lution remains a limitation for landscape scales
(Jensen et al. 2018).
In lieu of directly mapping soil moisture, another

approach is to use models for predicting soil moisture
conditions. For example, Abatzoglou (2013) used a land
surface model to derive soil moisture for predicting area
burned across the western US. Coops and Waring
(2012) derived soil fertility and available soil water hold-
ing capacity for forested areas in a large area of western
North America by inverting a forest growth model ad-
justed with remotely sensed leaf area index. Krawchuk
(2011) used modeled soil moisture to explore the influ-
ence of global resource gradients on fire distribution,
and Waring (2016) used soil water balance to model
large wildfires across the western US. These proxy mea-
surements of soil properties can be useful for interpret-
ing factors such as soil moisture, leaf area index, and
fuel moisture using remote sensing that can also aid in
prediction of pre- and post-fire processes.
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How digital soil mapping can improve fire
management
Fire danger systems
The most immediate benefit of having detailed soil in-
formation prior to fire occurrence is the potential for re-
fining fire prediction models of occurrence and burn
severity. Improved soil information with spatially explicit
estimates of model confidence can allow utilization of
more quantitative fire−soil relationships in fire danger
systems. Soil moisture models that require physical soil
properties for accurate representation of spatiotemporal
soil moisture conditions will also benefit the fire model-
ing community by providing more robust inputs for dy-
namic fire risk assessment.
Creative applications of these data can facilitate the

development of new prediction tools. For example, de-
rivatives of soil moisture related to the fraction of avail-
able soil water can be more useful for predicting fire
occurrence than actual soil moisture (Krueger et al.
2015, Waring 2016). Incorporating antecedent condi-
tions of soil moisture (Krawchuk 2011) can be refined
with more detailed soil property information resulting
from digital soil mapping. Applying these drought index
concepts specifically to soil moisture conditions and
how that relates to the potential of the soil to hold water
requires better constraints on soil properties than cur-
rently available with conventional soil maps.

Fire ecology
Interpreting complex relationships between soil, vegeta-
tion, climate, and management, and the subsequent
feedbacks with fire requires spatially explicit informa-
tion. As we continue to refine our understanding of
fire-prone environments and predict the impacts of
changing climate and management, there is an increas-
ing need to quantify all factors involved. Conventional
soil maps provide valuable information; however, the
scale of soil mapping in many forest and rangeland land-
scapes limits our ability to derive site-specific relation-
ships necessary for advancing the science of fire ecology.
Digital soil mapping techniques present an opportunity
to better quantify the relationships between soil and fire,
which has largely been unexplored.
Digital soil maps can potentially unlock interdisciplinary

scientific questions related to fire ecology. For example, a
recent study in Alaska used digital soil mapping to predict
soil moisture and interpret fire severity. The authors esti-
mated that 90% of the high-severity fire zone lacked
permafrost after fire (Brown et al. 2016). Recent changes
in the climate of northern latitudes have heightened con-
cern regarding the melting of permafrost and subsequent
effects on carbon dynamics and wildfire susceptibility; soil
properties play a major role in these processes. A second
example of applying digital soil maps could quantify the

restoration trajectories of burned areas or design research
studies to further investigate fire effects. For example,
Nauman and Duniway (2016) developed a detailed soil
map of particle size in the soil profile to identify matching
soil-geomorphic sites on the Colorado Plateau, USA. They
later combined the soil prediction map with other remote
sensing data to evaluate the ecological recovery of dis-
turbed sites following oil and gas extraction (Nauman et
al. 2017). This same process could be applied to identify
similar soil-geomorphic zones for monitoring and com-
paring burned and unburned areas.
We know that soils interact with climate, vegetation,

and management to control the trajectory of post-fire re-
covery rates for a given landscape. The first-order effects
of fire on soil are related to the changes that happen
when soil is heated (Massman and Frank 2010), and the
degree of alteration for different soil properties is dir-
ectly related to soil temperatures reached during a fire
(Alcaniz et al. 2018); thus, conditions at the time of fire
determine the effect of a fire on the soil. Soil heating is
also a major factor controlling the recovery of plants fol-
lowing fire because of the effects on existing vegetation
and seed bank (Stephan and Miller 2010; Smith and
Abella 2014). Dynamic soil properties like soil moisture
and organic matter content interact with static soil prop-
erties (e.g., texture, pore space) resulting in varying de-
grees of heat transfer and soil alteration that vary across
spatial and temporal scales (Moody et al. 2013). Detailed
knowledge of soil conditions, such as those obtained
from digital soil mapping, can enable more quantitative
interpretations of soil−fire interactions than are cur-
rently available with existing soil information.

Soil erosion models
It is well accepted that fire can adversely affect surface
soil properties and alter the spatial patterns of soil re-
sources (Allen and Steers 2011, Sankey et al. 2012a, San-
key et al. 2012b). This is important for predicting
erosion and revegetation, but conducting post-fire sur-
veys of soil conditions are expensive and often challen-
ging to complete in a timely manner. It is typical to
utilize soil surveys to obtain properties related to erosion
and revegetation potential and other characteristics (US
National Park Service 2006). Soil maps are thus a critical
component for post-fire planning and assessment. For
example, soil burn severity assessments are commonly
linked with existing models that predict post-fire hydrol-
ogy and erosion using soil property information (Parsons
et al. 2010). Numerous models have been used to predict
erosion and debris flow following fire including WEPP
(Laflen et al. 1997), GeoWEPP (Renschler 2003), ERMiT
(Robichaud et al. 2007), and Ravel RAT (Fu 2004), all of
which require soil property inputs (Miller et al. 2016). In
most cases, conventional soil maps like STATSGO2 and
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SSURGO are used to derive these inputs; however,
digital soil maps can provide more detailed information
with spatially explicit representations of model confi-
dence that can subsequently be incorporated into land-
scape models.
Digital soil mapping can also provide soil information

in areas for which conventional soil maps are currently
unavailable (e.g., national forests; Fig. 4). One of the lar-
gest areas in the US lacking detailed soil survey informa-
tion (i.e., SSURGO) is Alaska, which has approximately
801 000 km2 of rangeland (Fig. 1). Better soils informa-
tion means better potential to model soil erosion and
watershed effects following fire. Understanding the rela-
tionships between burn severity and soil properties is an
exceptionally high priority for post-wildfire runoff and
erosion research (Moody et al. 2013). There is a great
need to have a quantitative data set of important soil in-
formation (among other data) to facilitate rapid model-
ing in response to fire (Miller et al. 2016).

Concluding remarks
Advances in soil modeling offer solutions for resolving the
scarcity of relevant soil property information necessary for
improving fire modeling. Observed trends in the burned
area of US rangelands underscore the need to improve fire
danger systems in these areas. There are clear contribu-
tions of soil properties to fire occurrence that are not fully
being utilized by the fire modeling community. Soil prop-
erties are commonly assessed and used to predict erosion
and landscape recovery after fire because they strongly in-
fluence these responses in burned areas. We believe that
soil maps and other soil property information have the po-
tential to advance our ability to predict fire likelihood and
model watershed-scale processes for areas after they burn.
Digital soil mapping presents an opportunity to advance
our understanding of soil−fire relationships by providing
detailed soil information necessary for site-specific inter-
pretations. Applying more quantitative soil information to
fire science will provide more tools for both pre- and
post-fire management decisions, which translate to more
effective and efficient use of resources for mitigating nega-
tive effects in burned areas.
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