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A large database supports the use of
simple models of post-fire tree mortality for
thick-barked conifers, with less support for
other species
C. Alina Cansler1,2* , Sharon M. Hood1, Phillip J. van Mantgem3 and J. Morgan Varner4,5

Abstract

Background: Predictive models of post-fire tree and stem mortality are vital for management planning and
understanding fire effects. Post-fire tree and stem mortality have been traditionally modeled as a simple empirical
function of tree defenses (e.g., bark thickness) and fire injury (e.g., crown scorch). We used the Fire and Tree
Mortality database (FTM)—which includes observations of tree mortality in obligate seeders and stem mortality in
basal resprouting species from across the USA—to evaluate the accuracy of post-fire mortality models used in the
First Order Fire Effects Model (FOFEM) software system. The basic model in FOFEM, the Ryan and Amman (R-A)
model, uses bark thickness and percentage of crown volume scorched to predict post-fire mortality and can be
applied to any species for which bark thickness can be calculated (184 species-level coefficients are included in the
program). FOFEM (v6.7) also includes 38 species-specific tree mortality models (26 for gymnosperms, 12 for
angiosperms), with unique predictors and coefficients. We assessed accuracy of the R-A model for 44 tree species
and accuracy of 24 species-specific models for 13 species, using data from 93 438 tree-level observations and 351
fires that occurred from 1981 to 2016.

Results: For each model, we calculated performance statistics and provided an assessment of the representativeness
of the evaluation data. We identified probability thresholds for which the model performed best, and the best
thresholds with either ≥80% sensitivity or specificity. Of the 68 models evaluated, 43 had Area Under the Receiver
Operating Characteristic Curve (AUC) values ≥0.80, indicating excellent performance, and 14 had AUCs <0.7, indicating
poor performance. The R-A model often over-predicted mortality for angiosperms; 5 of 11 angiosperms had AUCs <0.7.
For conifers, R-A over-predicted mortality for thin-barked species and for small diameter trees. The species-specific
models had significantly higher AUCs than the R-A models for 10 of the 22 models, and five additional species-specific
models had more balanced errors than R-A models, even though their AUCs were not significantly different or were
significantly lower.
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Conclusions: Approximately 75% of models tested had acceptable, excellent, or outstanding predictive ability. The
models that performed poorly were primarily models predicting stem mortality of angiosperms or tree mortality of
thin-barked conifers. This suggests that different approaches—such as different model forms, better estimates of bark
thickness, and additional predictors—may be warranted for these taxa. Future data collection and research should
target the geographical and taxonomic data gaps and poorly performing models identified in this study. Our
evaluation of post-fire tree mortality models is the most comprehensive effort to date and allows users to have a clear
understanding of the expected accuracy in predicting tree death from fire for 44 species.

Keywords: AUC, bark thickness, crown scorch, decision support system, model evaluation, prescribed fire, ROC analysis,
sensitivity, specificity, threshold, top-kill, wildland fire

Resumen

Atencedentes: Los modelos predictivos sobre mortalidad post fuego de árboles y fustes son vitales para planificar
el manejo y entender los efectos del fuego. La mortalidad post fuego de árboles y fustes ha sido tradicionalmente
modelada como una simple función empírica de las defensas del árbol (i.e., grosor de la corteza) y daño por el
fuego (chamuscado de copas). Usamos la base de datos Fuego y Mortalidad de Árboles (FTM)—que incluye
observaciones de mortalidad de árboles en aquellos que se reproducen estrictamente por semillas, y la muerte del
área basal en las especies rebrotantes, a través de EEUU—para evaluar la exactitud de los modelos de mortalidad
post fuego usando el sistema de simulación llamado Modelo de Primer Orden de Efectos del Fuego (FOFEM). El
modelo básico en FOFEM, llamado de Ryan and Amman (R-A) usa el grosor de la corteza y el porcentaje de
chamuscado del volumen de las copas para predecir la mortalidad post fuego y puede ser aplicado para cualquier
especie para la cual el grosor de la corteza pueda ser calculado (184 coeficientes a nivel de especies están incluidos
en el programa). El FOFEM (v6.7) también incluye 38 modelos de mortalidad especie-específicos (26 para
gimnospermas y 12 para angiospermas), con predictores y coeficientes únicos. Determinamos la exactitud del
modelo R-A para 44 especies de árboles y la exactitud de 24 modelos especie-específicos para 13 especies usando
datos de 93 438 observaciones a nivel de árboles y 351 fuegos ocurridos desde 1981 hasta 2016.

Resultados: Para cada modelo, calculamos la prueba estadística y proveímos una determinación de la
representatividad de los datos evaluados. Identificamos límites de probabilidad para el modelo que se comportaba
mejor, y los mejores límites que tuviesen una sensibilidad o especificidad ≥80%. De los 68 modelos evaluados, 43
tuvieron valores ≥80% de área por debajo de la curva característica operativa (AUC), indicando una excelente
performance, y 14 tuvieron AUC <0.7 indicando una muy baja performance. El modelo R-A frecuentemente
sobreestima la mortalidad para angiospermas; 5 de 11 angiospermas tuvieron AUC <0.7. Para coníferas, R-A
sobreestimó la mortalidad para las especies con corteza fina y árboles de diámetros pequeños. Estos modelos
especie-específicos tuvieron AUC significativamente mayores que los modelos R-A para 10 de los 22 modelos, y
cinco modelos especie-específicos adicionales tuvieron errores más balanceados que los modelos R-A, aunque sus
AUC no fueron significativamente diferentes o significativamente menores.

Conclusiones: Aproximadamente el 75% de los modelos probados tuvieron una habilidad predictiva aceptable,
excelente o excepcional. Los modelos que probaron ser predictivamente pobres fueron primariamente modelos
predictores de mortalidad de tallos en angiospermas o de mortalidad de árboles con corteza fina en coníferas. Esto
sugiere que diferentes aproximaciones—tales como modelos de formato diferente, mejor estimación del grosor de
la corteza y predictores adicionales—pueden ser probados para esos taxones. Las futuras colecciones de datos e
investigaciones deberían enfocarse en los vacíos de información geográfica y taxonómica y las bajas performances
de los modelos identificados en este estudio. Nuestras evaluaciones de modelos de evaluación de mortalidad post
fuego representan el mayor esfuerzo comprensivo hasta ahora y permiten a los usuarios tener una clara
comprensión de la exactitud esperada para predecir la muerte de árboles debido al fuego en 44 especies.
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Background
Wildland fires burn millions of forested hectares annu-
ally, affecting biodiversity, carbon storage, hydrologic
processes, and ecosystem services largely through post-
fire tree mortality and stem mortality (e.g., top-kill) of
resprouting species (Bond-Lamberty et al. 2007; Dantas
et al. 2016; He et al. 2019). Mortality is one of the pri-
mary processes through which fire reorders plant com-
munities, and post-fire mortality has the potential to
dramatically reassemble plant community structure and
species composition (Cocking et al. 2014). Because of
the widespread importance of mortality processes, nu-
merous models exist to predict tree mortality from fire;
however, few are evaluated for accuracy.
Post-fire tree and stem mortality has been traditionally

modeled as a simple empirical function of tree defenses
(bark thickness) and fire injury (crown scorch and stem
char) (Ryan and Amman 1996; Woolley et al. 2012). Em-
pirically derived statistical models predicting mortality
(e.g., regression equations; hereafter, empirical models)
are commonly used in fire management decision support
software to predict fire effects (Reinhardt et al. 1997), in-
form post-fire silvicultural treatments, identify and pro-
ject changes in wildlife habitat quality and availability,
project future vegetation composition and structure
changes, estimate carbon fluxes, and model future im-
pacts of climate change (Hood et al. 2018).
At the individual-tree scale, models predicting mortal-

ity are used to understand ecological relationships. For
example, logistic regression analyses have demonstrated
that interactions between abiotic drought stress and fire
injury can elevate mortality (van Mantgem et al. 2013).
Likewise, structural equation modeling has been used to
elucidate complex interactions between bark beetles, fire
injury, season of burn, and stand structure in post-fire
mortality (Menges and Deyrup 2001). Differences in tree
survival after fire can also help elucidate trade-offs be-
tween different plant traits and associated evolutionary
strategies in relation to vegetation recovery after fire
(Catry et al. 2013). Tree-scale models are also used for
applied decision-making, such as developing salvage log-
ging silviculture prescriptions, and hazard tree guidelines
(Hood et al. 2010; Hood and Lutes 2017).
At the stand scale, empirical models can be used to

predict population-level survival and mortality, and are
used to inform simulations of subsequent vegetation,
structural development, and carbon estimates. Computer
simulation programs that model vegetation change at a
variety of scales include fine-scale software tools for fire
management planning that often predict percentage
mortality of a class (Rebain 2010; Hood and Lutes 2017).
For example, a 70% predicted probability of mortality
can be interpreted to mean that a fire of a given intensity
would likely kill 70% of the trees in the modeled class.

Process-based succession models (Keane et al. 2011) and
global models of the terrestrial carbon cycle (Hantson
et al. 2016) may scale-up or coarsen these projections
for integration into other simulation modeling steps. Fire
behavior and effects software packages, such as the First
Order Fire Effects Model (FOFEM; Reinhardt et al. 1997;
Lutes et al. 2012), BehavePlus (Andrews 2014), and the
Fire and Fuels Extension to the Forest Vegetation Simu-
lator (FFE-FVS; Rebain 2010) model post-fire tree and
stand-level mortality.
It is possible for logistic regression models to fit the

data accurately but make poor predictions (Hosmer and
Lemeshow 2000; Woolley et al. 2012; Ganio et al. 2015;
Shearman et al. 2019), due to overfitting of the model,
high dispersion of data, or relationships with variables
not included in the model. If the goal of the model is
not just to identify relevant explanatory variables, but to
make accurate predictions of individual- or stand-level
mortality—such as for the decision-support applications
provided by FOFEM, BehavePlus, and FFE-FVS—then
assessing the predictive accuracy of the model with inde-
pendent data is needed. Until recently, most logistic re-
gression models of post-fire tree mortality have
undergone little evaluation. A model evaluation by Kane
et al. (2017), using data from across the western US,
found that existing models have high sensitivity—they
accurately detect trees that are going to die—at the ex-
pense of specificity, meaning that they inaccurately pre-
dict death of trees that actually live. Also, model
evaluations have found better performance by models
that include damage to both tree stem and crown, as
well as attacks from bark beetles, as predictors (Sieg
et al. 2006; Hood and Bentz 2007; Hood et al. 2010;
Thies and Westlind 2012; Grayson et al. 2017). Model
accuracy can vary across the size classes of trees (Thies
and Westlind 2012), as well as across the ranges of fire
injury variables and different spatial scales of application
(Furniss et al. 2019).
Land managers who use stand- and tree-scale mortal-

ity models to support decision-making may be interested
in optimizing accuracy in predictions of either mortality
or survival, or in minimizing misclassification of either
class (Ganio and Progar 2017; Grayson et al. 2017). For
example, a fire that burned through a recreation site
may require high accuracy in predicting burned trees
that are likely to die in the near future so that these trees
can be identified and removed for public safety. Con-
versely, managers planning a prescribed fire in a long-
unburned, old-growth stand may want higher certainty
that large legacy trees will survive fire. Model evaluations
can help support these aims by assessing different types
of classification error (Table 1). These model evaluations
can be used to help managers better understand the un-
certainty in model predictions, determine appropriate
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uses for specific models, and support the development
of new predictive models for species for which the exist-
ing models perform poorly.
Empirical models are inherently limited to the

underlying data distributions, creating uncertainty in
accuracy when extrapolating beyond initial data
ranges and for novel conditions (Hood et al. 2018).
The main tree mortality model in fire behavior and
effects software packages was developed by Ryan and
Reinhardt (1988) and amended by Ryan and Amman
(1994) (hereafter, the R-A model). The R-A model
was developed from data from US Western conifers
and is limited in terms of species, tree sizes, and life
history strategies, with training data coming from
mid-sized conifers in western North America (Hood
et al. 2018). The R-A model uses the inputs of flame
length or scorch height and stem diameter to predict
post-fire tree and stem mortality for any species for
which bark thickness can be calculated. A sub-model
calculates the percentage of crown volume scorched from
tree height and crown ratio inputs. A second sub-model
calculates bark thickness as a function of the stem
diameter, with 184 species-level bark thickness coeffi-
cients included in the program and additional genus-
level coefficients. FOFEM v6.7 also includes 38
species-specific tree mortality models (26 for gymno-
sperms, 12 for angiosperms), with unique predictors

and coefficients. All models in FOFEM were developed
from logistic regression and output values between 0 and
1, with 1 predicting a 100 percent likelihood of tree death
within three years post-fire.
The mortality models packaged into FOFEM were in-

corporated over time as new research was available on
the likelihood of tree death from fire. The various
models were developed from disparate datasets. While
some of the logistic regression models in FOFEM have
been tested for prediction accuracy using external data
(Hood et al. 2007; Ganio and Progar 2017; Grayson et al.
2017; Hood and Lutes 2017; Kane et al. 2017), there has
not been a systematic effort to independently evaluate
models across a range of tree taxa in the USA, largely
due to lack of existing evaluation data. To address the
lack of available testing data, we developed the largest
and most comprehensive collection of observations of
fire-caused tree mortality in the continental US, the Fire
and Tree Mortality (FTM) database, which is described
in detail in Cansler et al. (2020a) and available in an
open-access online archive (Cansler et al. 2020b). We
used these data to conduct the largest evaluation to date
of the post-fire tree mortality models included in
FOFEM.
Our primary research objective was to assess the pre-

diction accuracy of the post-fire tree mortality models in
FOFEM. The FTM database allowed us to assess

Table 1 Classification table of model predictions and model performance statistics calculated based on predicted and true
conditions, from this study of post-fire tree mortality models from the USA, from fires occurring from 1981 to 2016. Managers may
wish to use models or classification thresholds that perform optimally for different scenarios

True condition

Model performance statisticsPositive (P) = Dead Negative (N) = Live

Predicted
condition

Positive (P) = Dead True Positive (TP)
Dead trees that were predicted
to be dead

False Positive (FP)
Live trees that were predicted
to be dead

Positive predictive value (PPV)
PPV ¼ TP

TP þ FP
Dead trees that were predicted to
be dead divided by predicted
dead trees
Example use: Prescribed fire
planning where there is a need to
kill small shade-tolerant trees to re-
duce future fire risk.

Negative (N) = Live False Negative (FN)
Dead trees that were predicted
to be live

True Negative (TN)
Live trees that were predicted
to be live

Negative predictive value (NPV)
NPV ¼ TN

TN þ FN
Live trees that were predicted to
be live divided by predicted live
trees
Example use: Prescribed fire
planning where there is a need to
avoid killing large or old trees.

Model performance statistics Sensitivity (Sens)
Sens¼ TP

TP þ FN
Dead trees that were predicted to be
dead divided by total dead trees
Example use: Post-fire salvage in
campground, where there is a need to
remove any trees that may die and
become a hazard.

Specificity (Spec)
Spec¼ TN

TN þ FP
Live trees that were predicted to be
live divided by total live trees
Example use: Post-fire salvage where
there is a need to avoid harvesting large
trees that may survive (e.g., potential
seed trees or large wildlife trees.)

Accuracy (ACC)
ACC ¼ TP þ TN

TP þ TN þ FP þ TN
Correctly classified live and dead
trees divided by total trees
Example use: Need to optimize
multiple objectives.
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accuracy of 68 models. We evaluated model per-
formance in several ways, including both quantitative
and qualitative accuracy assessments on individual
models, and the directions of model error in relation
to predictor variables and geography. We determined
the best probability thresholds to use to assign live
or dead status for each model, and assessed whether
other potential sources of error influence model per-
formance for field-measured versus derived crown
injury, initial fires versus second fires, and geo-
graphic variation. We also assessed trends in model
error across predictor variables by taxa with associ-
ated species traits to support targeted development
of new models in the future. Lastly, we identified
data gaps in the FTM database that can be targeted
in future research.

Methods
Database
The FTM database contains over 170 000 tree-level
standardized field observations of fire injury and tree
mortality for obligate seeders and stem mortality for
resprouting species from various years after fire, up to
10 years (Cansler et al. 2020a, b). Some trees were
tracked through multiple fires, so the total number of in-
dividual trees is less than the number of observations.
The database includes trees burned in wildfires and pre-
scribed fires (i.e., human-ignited fires that were ignited
for resources benefit). Measurements of fire-caused in-
juries include percentage crown volume scorched (CVS),
percentage crown length scorched (CLS), percentage
crown volume killed (CVK), bark char height (BCH),
and cambium kill rating (CKR) (Hood and Bentz 2007;

Table 2 Descriptions of defense, injury, and biotic stress variables used in logistic regression models predicting tree mortality in the
First Order Fire Effects Model (FOFEM) decision support software system, in this study of post-fire tree mortality models from the
USA, from fires occurring from 1981 to 2016. These abbreviations are used throughout the paper to refer to these variables

Variable role Variable Abbreviation Description Range

Defense Bark thicknessab BT Average radial thickness of tree bark numeric; cm

Diameter at breast heightb DBH Diameter of a tree at 1.37 m above the ground numeric; cm

Injury Percentage crown volume scorchedab CVS Percentage of tree crown volume scorched or
consumed by the fire. Scorched foliage appears
brownish red within days after fire. Consumed
foliage is partially or completely consumed after
fire and remnant foliage and branches are black.

0 to 100

Percentage crown length scorchedb CLS Percentage of tree crown length scorched or
consumed by the fire. Scorched foliage appears
brownish red within days after fire. Consumed
foliage is partially or completely consumed after
fire and remnant foliage and branches are black.

0 to 100

Percentage crown volume killedb CVK Percentage of tree crown volume for which tree
buds (i.e., meristematic tissue that develops into
branches, flowers, or foliage; usually at the end
of stems), branches, and foliage were killed by fire.

0 to 100

Bark char heightb BCH Average vertical height from ground of blackened
bark on a tree bole. Char is blackened residue of
bark resulting from incomplete combustion and
an indicator of the duration that the tree bole was
exposed to flames and heat from the fire.

numeric; m

Cambium kill ratingb CKR Method used to estimate the amount of cambium
killed and stem injury from fire. Requires removing
a small sample of bark at four locations at a tree’s base.
Cambium kill means the death of the vascular meristematic
tissue (i.e., cambium tissue located between bark and
secondary xylem) during fire.

0 to 4

Biotic stressors Beetle presenceb BTL1 Presence of a bark beetle species that is primary
agent of mortality in trees.

0 = absent;
1 = present

Beetle presenceb BTL2 Presence of a bark beetle species that is primary agent
of mortality in trees. This is the same data as for BTL1,
but presence and absence is coded differently for use in
some predictive models.

−1 = absent;
1 = present

Ambrosia beetle presenceb AB Presence of ambrosia beetle −1 = absent;
1 = present

aVariable used in Ryan and Amman (R-A) model
bVariable used in species-specific pre-fire and post-fire models
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Hood and Lutes 2017; Table 2). The FTM also contains
presence and absence data for bark beetles, which act as
agents of mortality, and the data needed to calculate
bark thickness of many tree species.
Many models use bark thickness as the primary tree

defense variable. We followed methods in FOFEM to
calculate bark thickness (BT) for all trees with DBH
(diameter at breast height) measurements (Lutes et al.
2012). We calculated BT for all species except Pinus
palustris Mill. using the following equation:

BT ¼ BT coef DBHð Þ; ð1Þ
where BT is single bark thickness (i.e., thickness of bark
on one side of the tree; cm), BTcoef is a species-specific
bark thickness coefficient (Table 2), and DBH is the
diameter (cm) 1.37 m above ground. Thus, by definition,
we excluded trees that were shorter than 1.37 m from
the bark thickness calculations and any model evalua-
tions that used bark thickness as a predictor. For Pinus
palustris, BT was calculated using an equation imple-
mented in version 5.2 of FOFEM, which follows Wang
et al. (2007):

BT ¼ 0:435þ 0:031 DBHð Þ; ð2Þ
where BT is single bark thickness (cm) and DBH is stem
diameter at breast height (cm).
We used BTcoef in the FTM database to calculate BT.

FOFEM provides a BTcoef for 192 tree species. If a spe-
cies is absent, users can substitute a similar species for
modeling, or use one of the 24 BTcoef that are provided
at the generic level. Thus, for species lacking a species-
level BTcoef in FOFEM, the FTM database provides a
BTcoef from a similar species in the same genus, if a rea-
sonable substitute is available. For this model evaluation
analysis, the BTcoef was substituted from other species in
three cases, and from genera in four cases (see Table 3
footnotes).

Model evaluations for individual species
We assessed accuracy of all models—at the scale of indi-
vidual species—included in FOFEM for which there
were at least 50 observations with measurements of the
variables used in the model, and at least 10 live and 10
dead trees in the FTM database. We assessed accuracy
of the R-A model for 44 tree species and assessed 24
species-specific models for 13 species, using a subset of
data from the FTM database: 94 568 trees, 93 438 tree-
level observations (1.1% of trees had records from a sec-
ond fire), 351 fires, and 35 datasets (Fig. 1). We evalu-
ated the accuracy of species-level model predictions, at
the scale of individual trees, and examined group errors
in relation to main defense and injury predictor
variables.

For this model evaluation analysis, any second obser-
vation (e.g., a tree that was burned in a second known
fire) was treated as an independent record. This mirrors
how managers would use FOFEM for a second-entry fire
(but see “Exploring potential sources of error” section
below). Second observations were present in 32 of the
models evaluated and, when present, made up on aver-
age 5% of the sample (range, when present, 0.07% to
37.7%). We excluded FTM data from M. Battaglia, S.
Hood, and V. McDaniel that were used to create
species-specific models (Battaglia et al. 2009; Hood and
Lutes 2017; Keyser et al. 2018) from evaluation of those
models as data used to create models cannot be used for
external validation of those models. All scientific no-
menclature is listed in Table 3 and follows the PLANTS
Database (USDA NRCS 2019).
We assessed the R-A model for 44 species (Table 4).

The R-A logistic regression model equation is listed in
Table 5. FOFEM also includes 38 species-specific tree
mortality models, with unique predictors and coeffi-
cients. We assessed 24 species-specific models: 15
models intended to be applied before the fire for pre-
scribed fire planning purposes (hereafter, pre-fire
models; Table 5; Lutes et al. 2012) and 9 models
intended for use after the fire occurs to inform post-fire
management (hereafter, post-fire models; Table 6). Many
of the post-fire models include predictor variables that
can only be measured after fire, such as CKR or pres-
ence of bark beetles. Note that the pre-fire models pre-
dict post-fire mortality but are meant to be used before
the fire occurs, or when other factors such as basal in-
jury or bark beetle attack are unknown.
Many post-fire species-specific models include pres-

ence or absence of any beetle that acts as a primary
agent of mortality on that tree species as a predictor.
Primary beetles include Dendroctonus ponderosae (Hop-
kins; mountain pine beetle) on Pinus lambertiana, D.
ponderosae or Ips spp. (De Geer; engraver beetles) on
Pinus ponderosa, and D. pseudotsugae (Hopkins;
Douglas-fir beetle) on Pseudotsuga menziesii. Dendrocto-
nus valens (LeConte; red turpentine beetle), while not
considered a primary bark beetle, can indicate tree stress
and is included in some species-specific models. The
model for Abies concolor included ambrosia beetles (sub-
families Scolytinae and Platypodinae) as a predictor. Bee-
tle presence was used as a binary variable, coded two
different ways (Table 2) for use in different models.
We evaluated all models separately for each species;

hereafter, we refer to each species-model combination
as a “model”. For each model, we created a one-page
summary (hereafter, model evaluation figure) that dis-
plays information on the quality of the data used to
evaluate model performance, the performance statis-
tics of the model, model errors in relation to main
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Table 3 Species for which we evaluate model accuracy, and their taxonomic groups, distribution in North America, and fire-
adaptive traits. Species-specific models that include bark thickness coefficient (BTcoef) used the same BTcoef listed here. DBH =
diameter at breast height. Ellipsis (...) = unknown. Nomenclature according to USDA PLANTS database. Data are from the USA, from
fires occurring from 1981 to 2016

Scientific name Authority Common name Family Regiona
Leaf
habita

BTcoef

Gymnosperms

Abies amabilis (Douglas ex Loudon)
Douglas ex Forbes

Pacific silver fir Pinaceae W EG 0.047

Abies concolor (Gord. & Glend.) Lindl.
ex Hildebr.

white fir Pinaceae W EG 0.048

Abies grandis (Douglas ex D. Don)
Lindl.

grand fir Pinaceae W EG 0.046

Abies lasiocarpa (Hook.) Nutt. subalpine fir Pinaceae W EG 0.041

Abies magnifica A. Murray bis California red fir Pinaceae W EG 0.039

Calocedrus decurrens (Torr.) Florin incense-cedar Cupressaceae W EG 0.060

Chamaecyparis lawsoniana (A. Murray bis) Parl. Port Orford cedar Cupressaceae W EG 0.081

Juniperus deppeana Steud. alligator juniper Cupressaceae W EG 0.033b

Juniperus occidentalis Hook. western juniper Cupressaceae W EG 0.025

Juniperus osteosperma (Torr.) Little Utah juniper Cupressaceae W EG 0.025c

Juniperus scopulorum Sarg. Rocky Mountain
juniper

Cupressaceae W EG 0.025c

Larix occidentalis Nutt. western larch Pinaceae W DC 0.063

Picea engelmannii Parry ex Engelm. Engelmann spruce Pinaceae W EG 0.036

Pinus albicaulis Engelm. whitebark pine Pinaceae W EG 0.030

Pinus attenuata Lemmon knobcone pine Pinaceae W EG 0.030

Pinus contorta Douglas ex Loudon lodgepole pine Pinaceae W EG 0.028

Pinus coulteri D. Don Coulter pine Pinaceae W EG 0.068d

Pinus echinata Mill. shortleaf pine Pinaceae E EG 0.037

Pinus edulis Engelm. two-needle pinyon Pinaceae W EG 0.030e

Pinus elliottii Engelm. slash pine Pinaceae E EG 0.055

Pinus flexilis James limber pine Pinaceae W EG 0.030

Pinus jeffreyi Balf. Jeffrey pine Pinaceae W EG 0.068

Pinus lambertiana Douglas sugar pine Pinaceae W EG 0.072

Pinus monticola Douglas ex D. Don western white pine Pinaceae W EG 0.035

Pinus palustris Mill. longleaf pine Pinaceae E EG 0.435 +
0.031(DBH)f

Pinus ponderosa Lawson & C. Lawson ponderosa pine Pinaceae W EG 0.063

Pinus strobiformis Engelm. southwestern
white pine

Pinaceae W EG 0.03e

Pinus taeda L. loblolly pine Pinaceae E EG 0.052

Pinus virginiana Mill. Virginia pine Pinaceae E EG 0.033

Pseudotsuga menziesii (Mirb.) Franco Douglas-fir Pinaceae W EG 0.063

Thuja plicata Donn ex D. Don western redcedar Cupressaceae W EG 0.035

Tsuga heterophylla (Raf.) Sarg. western hemlock Pinaceae W EG 0.040

Tsuga mertensiana (Bong.) Carrière mountain hemlock Pinaceae W EG 0.040

Angiosperms

Acer rubrum L. red maple Aceraceae E DC 0.028

Cornus nuttallii Audubon ex Torr. & A. Gray Pacific dogwood Cornaceae W DC 0.062
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injury and defense variables, and provides a simple
qualitative summary of data quality and model per-
formance (Additional file 1).
To assess the data quality used in each model evalu-

ation, we summarized the number of tree observations
and mapped the number and locations of fires sampled.
We displayed these locations over maps of the species
range using the Atlas of United States Trees, which
shows species’ ranges within the North American con-
tinent (Little 1971). We created a bi-plot for each model,
which shows where the observations used to evaluate
models fall within the species’ bioclimatic niche space in
terms of temperature and precipitation. We produced
these plots by sampling a 30-arc second (~1 km) digital
elevation model (United States Department of the In-
terior US Geological Survey 2007) at fire locations
where the species was present, and 10 000 randomly
chosen points within each species’ range (Little 1971).
Annual climate data were sampled at fire locations
and associated mean elevations using the ClimateNA
v5.10 software package (available at http://tinyurl.
com/ClimateNA), based on methodology described in
Wang et al. (2016). We calculated 30-year normals
for 1981 to 2010 using the annual climate data, and

used those normals for plotting bioclimatic niche
space. The primary defenses are shown with bi-plots
(i.e., DBH, as an interpretable representation of bark
thickness) and injury (i.e., CVS, CLS, CVK, and BCH)
variables used in each model to show the combined
predictor space that is represented in the dataset, as
well as boxplots of the two predictor variables in the
margins. We produced plots using DBH instead of
bark thickness because they are linearly related and
DBH was the actual variable measured.
We calculated model performance statistics for each

model using receiver operating characteristic (ROC) curves,
which evaluate sensitivity and specificity (see definitions in
Table 1) over a range of probability thresholds at which a
tree or stem is classified as dead or alive. The area under the
ROC curve (AUC) for each model was calculated using the
package pROC (Robin et al. 2011) in the statistical program
R (R Development Core Team 2017). Confidence intervals
around the AUC were produced using 10 000 bootstraps of
our sample using the pROC package (Robin et al. 2011).
AUC values ≤0.5 suggest that the model does not perform
better than random chance, values between 0.7 and 8.0 are
acceptable, between 0.8 and 0.9 are excellent, and >0.9 are
outstanding (Hosmer and Lemeshow 2000).

Table 3 Species for which we evaluate model accuracy, and their taxonomic groups, distribution in North America, and fire-
adaptive traits. Species-specific models that include bark thickness coefficient (BTcoef) used the same BTcoef listed here. DBH =
diameter at breast height. Ellipsis (...) = unknown. Nomenclature according to USDA PLANTS database. Data are from the USA, from
fires occurring from 1981 to 2016 (Continued)

Scientific name Authority Common name Family Regiona
Leaf
habita

BTcoef

Notholithocarpus densiflorus (Hook. & Arn.) P.S. Manos,
C.H. Cannon, & S.H. Oh

tanoak Fagaceae W EG 0.052

Oxydendrum arboreum (L.) DC. sourwood Ericaceae E DC 0.036

Populus deltoides ssp.
wislizenig

W. Bartram ex Marshall Rio Grande
cottonwood

Salicaceae C DC 0.040h

Populus tremuloides Michx. quaking aspen Salicaceae C DC 0.044

Quercus alba L. white oak Fagaceae E DC 0.040

Quercus gambelii Nutt. Gambel oak Fagaceae W DC 0.045i

Quercus garryana Douglas ex Hook. Oregon white oak Fagaceae W DC 0.029

Quercus kelloggii Newberry California black oak Fagaceae W DC 0.030

Quercus montana Willd. chestnut oak Fagaceae E DC 0.049
aRegion and Leaf habit were derived from Plants National Database (USDA NRCS 2019). For region, Western = W, Eastern = E, Continental = C. For Leaf habit,
Evergreen = EG, Deciduous = DC
bFor Juniperus deppeana, we used the bark thickness coefficient for the genus Juniperus, because no species-specific coefficient was available
cFor Juniperus osteosperma and Juniperus scopulorum, we used the bark thickness coefficient for Juniperus occidentalis, because no species-specific coefficients
were available
dFor Pinus coulteri, we used the bark thickness coefficient for Pinus jeffreyi, because no species-specific coefficient was available
eFor Pinus edulis and Pinus strobiformis, we used the bark thickness coefficient for the genus Pinus, because no species-specific coefficients were available
fWe calculated Pinus palustris bark thickness following the equation in Wang et al. (2007). For results tables and figures in which species are ordered by bark
thickness coefficient, we used 0.049, which was the coefficient implemented in previous version of FOFEM (Wang et al. 2007)
gPopulus deltoides ssp. wislizeni is a subspecies of Populus deltoides that occurs in the Rio Grande watershed. This subspecies was formally considered a subspecies
of Populus fremontii, and available maps covering this subspecies’ range still include it with Populus fremontii. Genetic studies show that it has a genetic admixture
from both species (Cushman et al. 2014). Therefore, we mapped the range and climatic niche space of Populus deltoides ssp. wislizeni using merged range maps
for both Populus deltoides and Populus fremontii
hFor Populus deltoides ssp. wislizeni, we used the bark thickness coefficient for Populus deltoides
iFor Quercus gambelii, we used the bark thickness coefficient for the genus Quercus, because no species-specific coefficient was available
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We provided a table of model performance statistics over
a range of probability thresholds to aid in the selection of
probability thresholds for a given purpose (Table 1). We
calculated the specificity, sensitivity, true positive rate, true
negative rate, and overall accuracy (see definition in Table 1)
for nine thresholds from every 0.1 probability of mortality
increment from 0.1 to 0.9. Typically, a threshold of 0.5 is
used (i.e., trees that have a ≥50% probability of mortality are
classified as dead). Additionally, we used the pROC package
to identified probability thresholds for which the model per-
formed best (optimizing both specificity and sensitivity), and
the best thresholds with either ≥80% sensitivity or ≥80%
specificity.
We assessed species-level error, grouping data for each

species in relation to the primary crown injury variable
(i.e., CVS, CLS, CLK, and BCH) used in each model, and
in relation to the primary defense variable (DBH). For
each model, we graphically compared the predicted
probability of mortality (Pm) and the observed propor-
tion of trees or stems killed within binned observations
of the primary injury and defense variables. The number
of dead trees or stems was assessed by assigning live or
dead status based on a 0.5 threshold. For CVS, CLS, and
CLK, we tabulated proportional mortality using 10%
bins, with additional bins for 0% and 100% injury (e.g., 0,

≥1 and < 10, ≥10 and < 20, etc.). For BCH, we used 2 m
bins, with an additional bin for BCH = 0. For DBH we
used 10 cm DBH bins from 0 to 150 cm, and then 50
cm DBH bins >150 cm. We calculated the species-level
error rate used in each model as:

Error ¼ Nmodel −Nobs

Nbin
; ð3Þ

where Nmodel is the number of predicted deaths based
on a 0.5 threshold, Nobs is the number of observed
deaths, and Nbin is the number of total observations in
each injury variable bin.
For each model, we provided ratings of data quality

used to evaluate the models, model performance, and
the direction or error in model predictions. The logical
decision framework used to determine the qualitative
ratings is provided in Table 7. The data quality assess-
ment was meant to help both managers and researchers
determine if more data would allow for a better assess-
ment of the model. We based our data quality ratings of
poor, fair, acceptable, excellent, or outstanding in part
on the total number of trees, the number of live and
dead trees, and the number of fires sampled. If the data
quality was poor, we did not assess the model. Fair data

Fig. 1 Map of fire locations for all data used in this study to evaluate post-fire tree mortality models. Tree injury and post-fire mortality data used
are from the USA, for fires occurring from 1981 to 2016 (dots). Dot color represents the number of trees sampled in a fire event. Data are from
the Fire and Tree Mortality (FTM) database (Cansler et al. 2020a, b). Orange shading shows large fires that have occurred in the USA from 1984 to
2017 (data accessed from https://www.mtbs.gov)
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Table 4 Sample sizes and distributional statistics for assessment of model accuracy in this study of post-fire tree mortality models.
Data are from the USA, from fires occurring from 1981 to 2016. R-A = Ryan and Amman model, which can be applied to many
species; Pre-fire models predict morality after fire based on predictors available before fire; Post-fire models predict morality after fire
based on predictors available after fire. Dead and live tree status is for three years post fire, unless otherwise noted. Damage
variables are defined in Table 2 and model formulae are presented in Tables 5 and 6

Scientific name Model
Live
(n)

Dead
(n)

Total
(n)

Fires
(n)

DBH range
(cm)

Primary damage
variable range

Primary damage
variable

Abies amabilis R-A 47 64 111 1 17.5 to 113 0 to 95 CVS (%)

Abies concolor R-A 5 401 6 729 12 193 112 0.1 to 228.5 0 to 100 CVS (%)

Abies concolor Pre-fire 2 075 2 253 4 328 28 0.1 to 228.5 0 to 100 CLS (%)

Abies concolor Post-fire 524 396 920 7 12.7 to 218.4 0 to 100 CLS (%)

Abies grandis R-A 585 1 377 1 962 17 0.4 to 115.6 0 to 100 CVS (%)

Abies lasiocarpa R-A 190 594 784 23 2.5 to 99.1 0 to 100 CVS (%)

Abies lasiocarpa Pre-fire 13 260 273 18 2.5 to 99.1 0 to 100 CVS (%)

Abies lasiocarpa a Post-fire 40 10 50 7 13.5 to 99.1 0 to 100 CVS (%)

Abies magnifica R-A 315 192 507 13 0.3 to 155.9 0 to 100 CVS (%)

Abies magnifica Pre-fire 34 19 53 3 3.1 to 129.8 0 to 100 CLS (%)

Acer rubrum R-A 72 16 88 7 10.0 to 65.9 0 to 100 CVS (%)

Calocedrus decurrens R-A 1 370 1 753 3 123 48 0.1 to 182.2 0 to 100 CVS (%)

Calocedrus decurrens Pre-fire 468 1 107 1 575 17 0.1 to 182.2 0 to 100 CLS (%)

Chamaecyparis lawsoniana R-A 58 11 69 2 12.7 to 152.4 0 to 98 CVS (%)

Cornus nuttallii R-A 61 55 116 4 10.3 to 25.1 0 to 100 CVS (%)

Juniperus deppeana R-A 70 50 120 9 0.4 to 192 0 to 100 CVS (%)

Juniperus occidentalis R-A 30 23 53 4 12.4 to 104 0 to 100 CVS (%)

Juniperus osteosperma R-A 117 38 155 15 15.7 to 96.4 0 to 100 CVS (%)

Juniperus scopulorum R-A 79 34 113 16 8.9 to 59.5 0 to 100 CVS (%)

Larix occidentalis R-A 952 216 1 168 18 0.8 to 119.4 0 to 100 CVS (%)

Larix occidentalis Pre-fire 539 169 708 13 0.8 to 119.4 0 to 100 CVS (%)

Larix occidentalis Post-fire 412 125 537 9 14.0 to 119.4 0 to 100 CVS (%)

Notholithocarpus densiflorusa R-A 81 46 53 4 0.3 to 96.3 0 to 100 CVS (%)

Oxydendrum arboreum R-A 164 26 190 9 10.0 to 32.8 0 to 100 CVS (%)

Pinus albicaulis R-A 79 121 200 7 5.9 to 100.8 0 to 100 CVS (%)

Pinus albicaulisa Pre-fire 37 45 82 4 2.7 to 44.8 0 to 100 CVS (%)

Pinus attenuata R-A 97 160 257 7 15.1 to 72 0 to 100 CVS (%)

Pinus contorta R-A 1 875 4 131 6 006 34 0.3 to 102.9 0 to 100 CVS (%)

Pinus contorta Pre-fire 618 3 093 3 711 27 0.3 to 102.9 0 to 100 CVS (%)

Pinus contorta Post-fire 494 824 1 318 8 12.7 to 59.9 0 to 100 CVS (%)

Pinus coulteri b R-A 58 124 182 1 16.5 to 110 10 to 100 CVS (%)

Pinus echinata R-A 62 82 144 7 9.6 to 41.5 0 to 100 CVS (%)

Pinus edulis R-A 157 72 229 24 14.5 to 61 0 to 100 CVS (%)

Pinus elliottii R-A 258 58 316 2 5.0 to 18.5 0 to 100 CVS (%)

Picea engelmannii R-A 205 462 667 27 2.2 to 94 0 to 100 CVS (%)

Picea engelmannii Pre-fire 106 258 364 19 2.2 to 94 0 to 100 CVS (%)

Picea engelmannii Post-fire 62 173 235 6 13.5 to 94 0 to 100 CVS (%)

Pinus flexilis R-A 26 50 76 8 3.9 to 79 0 to 100 CVS (%)

Pinus jeffreyi R-A 391 269 660 23 6.5 to 248.9 0 to 100 CVS (%)

Pinus lambertiana R-A 995 1 390 2 385 56 0.1 to 205.8 0 to 100 CVS (%)
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quality indicated a small sample size, while acceptable
data quality indicated relatively larger samples sizes
(Table 7). For these rankings, subsequent model evalua-
tions with more data would be beneficial in determining
the model’s true accuracy. For the data to be ranked ex-
cellent or outstanding, the model evaluation had to use
observations across the full range of the crown injury
variable. To be ranked outstanding, the trees sampled
had to cover much of the species DBH range (see Table
3 for large-tree sizes), and the sites sampled had to pro-
vide reasonable coverage of the species’ temperature–
precipitation bioclimatic niche. We focused our

reporting of individual model results on models that had
acceptable, excellent, or outstanding data quality.
We provided a separate ranking of the performance of

the model. We based our model performance standards
on the AUC, as well as on the positive predictive value
(PPV) and negative predictive value (NPV) (Table 1).
Model performance ratings of excellent or outstanding
indicated that the model should be used without reser-
vation. Model performance of acceptable meant that the
model should be used with caution, or for specific appli-
cations that align with the circumstances under which
the model produces accurate predictions. Model

Table 4 Sample sizes and distributional statistics for assessment of model accuracy in this study of post-fire tree mortality models.
Data are from the USA, from fires occurring from 1981 to 2016. R-A = Ryan and Amman model, which can be applied to many
species; Pre-fire models predict morality after fire based on predictors available before fire; Post-fire models predict morality after fire
based on predictors available after fire. Dead and live tree status is for three years post fire, unless otherwise noted. Damage
variables are defined in Table 2 and model formulae are presented in Tables 5 and 6 (Continued)

Scientific name Model
Live
(n)

Dead
(n)

Total
(n)

Fires
(n)

DBH range
(cm)

Primary damage
variable range

Primary damage
variable

Pinus lambertiana Pre-fire 356 573 929 16 0.1 to 205.8 0 to 100 CLS (%)

Pinus lambertiana Post-fire 144 62 206 5 15.2 to 179.6 0 to 100 CLS (%)

Pinus monticola R-A 99 110 209 10 15.2 to 84.1 0 to 100 CVS (%)

Pinus palustris R-A 125 78 203 15 4.5 to 58.9 0 to 100 CVS (%)

Pinus palustris Pre-fire 125 78 203 15 4.5 to 58.9 0 to 100 CVS (%)

Pinus ponderosa R-A 28 787 14 965 43 140 226 0.1 to 208.3 0 to 100 CVS (%)

Pinus ponderosa Pre-fire 24 669 13 410 38 079 216 0.1 to 208.3 0 to 100 CVS (%)

Pinus ponderosa Pre-fire Black Hills 18 580 6 840 25 420 78 0.3 to 208.3 0 to 100 CLS (%)

Pinus ponderosa Post-fire scorch 371 224 595 3 7.6 to 120.1 0 to 100 CVS (%)

Pinus ponderosa Post-fire kill 366 222 588 3 7.6 to 120.1 0 to 100 CVK (%)

Pinus strobiformis R-A 33 26 59 4 0.5 to 60.4 0 to 100 CVS (%)

Pinus taeda R-A 224 101 325 5 10.1 to 43.3 0 to 100 CVS (%)

Pinus virginiana R-A 26 24 50 6 10.8 to 42.4 0 to 91 CVS (%)

Populus deltoides ssp. wislizeni b R-A 24 110 134 2 4.0 to 38 0 to 100 CVS (%)

Populus tremuloides R-A 391 474 865 26 0.3 to 59.9 0 to 100 CVS (%)

Populus tremuloides Pre-fire low 31 260 291 9 0.3 to 59.9 0 to 19 BCH (m)

Populus tremuloides Pre-fire moderate 31 260 291 9 0.3 to 59.9 0 to 19 BCH (m)

Pseudotsuga menziesii R-A 9 255 5 921 15 176 84 0.2 to 226.2 0 to 100 CVS (%)

Pseudotsuga menziesii Pre-fire 8 271 5 332 13 603 75 0.2 to 226.2 0 to 100 CVS (%)

Pseudotsuga menziesii Post-fire 166 55 221 3 10.2 to 88.4 0 to 100 CVS (%)

Quercus alba R-A 88 12 100 9 10.3 to 55 0 to 100 CVS (%)

Quercus gambelii R-A 318 94 412 19 2.3 to 80 0 to 100 CVS (%)

Quercus garryana R-A 101 11 112 4 11.4 to 41.9 0 to 100 CVS (%)

Quercus kelloggii R-A 219 184 403 28 0.3 to 97.2 0 to 100 CVS (%)

Quercus montana R-A 95 12 107 8 10 to 63.2 0 to 100 CVS (%)

Thuja plicata R-A 113 313 426 5 12.7 to 135.6 0 to 100 CVS (%)

Tsuga heterophylla R-A 337 1 164 1 501 14 12.7 to 199.5 0 to 100 CVS (%)

Tsuga mertensiana a R-A 337 223 560 2 5.0 to 89 0 to 100 CVS (%)
aPost-fire status from one year after fire
bPost-fire status from two years after fire
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performance of poor indicated that the model is unreli-
able and new modeling approaches were needed. Finally,
we described how often the model over-predicted or
under-predicted mortality by assessing the species-level
error rate (Table 7).

Exploring potential sources of error
In post-hoc analyses, we explored three potential sources
of error in our model evaluation data: (1) first versus
second fires; (2) field versus calculated versions of CVS;
and (3) unidentified spatial variables.
We included trees that had burned a second time as

independent observations in the model evaluations. This

reflects the use of the current models for second-entry
(or third, etc.) burns. For models in which there were
≥50 trees in both the live and dead classes, in both first
and second fires groups, we statistically compared the
performance of all models for first fires and second fires.
We calculated AUCs for both groups, and tested for
statistical differences in AUCs using the method of
DeLong et al. (1988) as modified for the pROC package to
test unpaired ROC curves (Robin et al. 2011). DeLong
et al. (1988) developed a method to compare ROC curves
by using the theory developed for generalized U-statistic,
and Robin et al. (2011) implemented a bootstrapping
method in the statistical programming language R (R

Table 5 Models predicting pre-fire tree mortality designed for use before the fire occurs, from this study of post-fire tree mortality
models from the USA, from fires occurring from 1981 to 2016. The Ryan and Amman model (R-A) model can be applied to any
species for which bark thickness can be estimated. The other models are species-specific; hereafter, “pre-fire models.” These models
are used in the First Order Fire Effects Modeling system (FOFEM), which predicts post-fire mortality for species in the USA. We
evaluated dead and live tree status at three years post fire, unless otherwise noted

Species Reference Model form a β0 β1 β2 β3 β4
R-A model (many
species)b

Ryan and Reinhardt 1988;
Ryan and Amman 1994

Pm ¼ 1

1þeðβ0þβ1 ð1 − eβ2BT Þþβ3CVS2 Þ
−1.941 6.316 −0.3937 −0.000535

Abies concolor Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CLS − β2CLS2þβ3CLS3 ÞÞ

−3.5083 0.0956 0.00184 0.000017

Abies lasiocarpa Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CVS − β2CVS2þβ3CVS3 ÞÞ

−1.6950 0.2071 0.0047 0.000035

Abies magnifica Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CLS3 ÞÞ

−2.3085 0.000004059

Calocedrus decurrens Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CLS3 ÞÞ

−4.2466 0.000007172

Larix occidentalis Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CVS − β2DBHÞÞ

−1.6594 0.0327 0.0489

Picea engelmannii Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CVSÞÞ

0.0845 0.0445

Pinus albicaulis b Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CVS − β2CVS2þβ3CVS3 − eDBHÞÞ

−0.3268 0.1387 0.0033 0.000025 0.0266

Pinus contorta Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CVS − β2CVS2þβ3CVS3 − β4DBHÞÞ

−0.3269 0.1387 0.0033 0.000025 0.0266

Pinus lambertiana Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CLS2 ÞÞ

−2.0588 0.000814

Pinus palustris Wang et al. 2007 Pm ¼ 1

1þeðβ0þðβ1BTÞþðβ2BT2 Þ − β3 ðCVS10 Þ
2 Þ

0.169 5.136 14.492 0.348

Pinus ponderosa c Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CVS3 ÞÞ

−2.7103 0.000004093

Pinus ponderosa d Keyser et al. 2006 Pm ¼ 1
1þeð − ðβ0þβ1DBHþβ2CLSþβ3 ðDBHÞðCLSÞÞÞ

1.104 −0.156 0.0013 0.001

Populus tremuloides e Brown and DeByle 1987 Pm ¼ 1
1þeðβ0þβ1DBH − β2CHÞ

−2.157 0.0858 0.118

Populus tremuloides f Brown and DeByle 1987 Pm ¼ 1
1þeðβ0þβ1DBH − β2CHÞ

−4.407 0.251 0.07

Pseudotsuga menziesii Hood and Lutes 2017 Pm ¼ 1
1þeð − ðβ0þβ1CVS − β2CVS2 − β3CVS3 ÞÞ

−2.0346 0.0906 0.0022 0.000019

aVariables used in the model are defined in Table 1
bPost-fire status data came from three years after fire, with the exception of the following: Notholithocarpus densiflorus R-A (1 year), Pinus
albicaulis pre-fire (1 year), Pinus coulteri R-A (2 years), Populus deltoides ssp. wislizeni R-A (2 years), Tsuga mertensiana R-A (1 year)
cPre-fire Pinus ponderosa model
dPre-fire Black Hills Pinus ponderosa model
ePre-fire moderate Populus tremuloides model
fPre-fire low Populus tremuloides model
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Table 7 Criteria for qualitative ratings of data quality, model performance, and direction or error in model predictions, in this study
of post-fire tree mortality models from the USA, from fires occurring from 1981 to 2016. Most model evaluation criteria are defined
in Table 1; AUC = area under the receiver operating characteristic curve. Defense and injury variables are defined in Table 2. SD =
standard deviation

Type Rating Criteria

Data quality Poora <50 observations total

or <10 live observations

or <10 dead observations

Fair ≥50 observations total

and ≥10 live observations

and ≥10 dead observations

Acceptable Meets “Fair” standards

and ≥5 fires were sampled

and ≥50 live observations

and ≥50 dead observations

Excellent Meets “Acceptable” standards

and at least 10 observations for every injury level bin (for models with CVS, CLS, CVK, only)

and minimum injury variable (CVS, CLS, CVK, BCH) = 0

and maximum injury variable (CVS, CLS, CVK) = 100

Outstanding Meets “Excellent” standards

and maximum DBH ≥100 cm

and maximum DBH ≥ large-tree DBH for speciesb

and observations are from sites ≥1 SD of the temperature range for the species

and observations are from sites ≤1 SD of the temperature range for the species

and observations are from sites ≥1 SD of the precipitation range for the species

and observations are from sites ≤1 SD of the precipitation range for the species

Model performance Poor AUC <0.7

and PPV <0.6

and NPV <0.6

Acceptable AUC ≥0.7

and either PPV ≥0.6

or NPV ≥0.6

Excellent and AUC ≥0.8

and PPV ≥0.7

and NPV ≥0.7

Outstanding Meets “Excellent” standards

and AUC ≥0.9

Over-predicts Rarely Species-level error rate >0.25 across <30% of the range of primary damage variable

Sometimes Species-level error rate >0.25 across >30% and <50% of the range of primary damage variable

Often or Species-level error rate >0.25 over 50% of the range of primary damage variable species-level
error rate >0.5 over 30% of the range of primary damage variable

Always Species-level error rate >0.5 over 50% of the range of primary damage variable

Under-predicts Rarely Species-level error rate <−0.25 across <30% of the range of primary damage variable

Sometimes Species-level error rate >−0.25 across >30% and <50% of the range of primary damage variable

Often or Species-level error rate <−0. 25 over 50% of the range of primary damage variable species-level
error rate <−0.5 over 30% of the range of primary damage variable

Always Species-level error rate <−0.5 over 50% of the range of primary damage variable
aExcluded from model evaluation analysis
bLarge-tree DBH values were the higher values of the typical DBH range for each species in the Silvics of North America (Burns and Honkala
1990). If not available from that source, we drew from the Fire Effects Information System database (USDA Forest Service 2019), or the
Gymnosperm Database (Earle 2019)
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Development Core Team 2017), allowing comparisons of
unpaired ROC curves. This, and all other statistical tests
in this study, were conducted using α = 0.05 to determine
statistical significance.
The FTM database includes CVS values taken directly

from field observations, and CVS calculated from other
measurements. These other measurements include CLS,
which may have been measured in the field or calculated
for other measured variables such as tree height, canopy
base height, or crown ratio (Cansler et al. 2020a). The
equation provided in the FOFEM Help manual (Lutes
et al. 2012), a rearranged version of the equation derived
in Peterson and Ryan (Peterson and Ryan 1986), was
used to calculate CVS from CLS in those cases. We ex-
pected that field measurements would be more accurate
representations of CVS than derived values, but it is un-
clear from previous research if these differences are large
enough to affect model performance. Therefore, we used
the same sample size requirements and statistical
methods as described above for comparing fires and sec-
ond fires to compare model performance using field-
based measurements of CVS and calculated CVS.
We also explored geographic variation in model per-

formance at the fire scale. This could be caused by ob-
server bias between fires, geographic variation in species’
ability to withstand and recover from fire injury, unique
burning characteristics for individual fire events (e.g.,
low soil moistures causing high soil heating and associ-
ated root damage; Shearman et al. 2019), and additional
geographically and temporally associated stressors such
as drought (van Mantgem et al. 2013). Teasing apart
these different causes of error is beyond the scope of this
paper, but we did qualitatively assess if model error var-
ied regionally, so that model users can consider whether
models tend to over-predict or under-predict mortality
at their location. For models with data from ≥10 fires
that had at least 10 tree observations within them, we
visually assessed if there were regional groupings of fire-
scale error using mapped differences between the fire-
scale mean predicted levels of mortality and fire-scale
percentages of observed mortality. We summarized
qualitative observations in tabular form.

Do species-specific models perform better than the R-A
model?
We tabulated model performance statistics between dif-
ferent models applied to the same species. We expected
that the species-specific pre-fire and post-fire models
would perform better than the R-A model. As above, we
tested for statistical differences in the AUC between
models using the method of DeLong et al. (1988) as
modified for the pROC package to test unpaired ROC
curves (Robin et al. 2011). Paired ROC curves are cre-
ated from the same sample dataset, but with different

predictive models, while unpaired ROC curves are cre-
ated from different sample datasets (Robin et al. 2011).
In the two cases for which our ROC curves were
paired—the two Pinus palustris models, and the low-
severity and moderate-severity models for Populus tre-
muloides—we used the paired test from DeLong et al.
(1988) instead.

R-A model performance across species
We wanted to identify any trends in R-A model per-
formance across the 44 species assessed. We explored
whether performance varied between division (gymno-
sperms versus angiosperms), families, regions, leaf habit
(deciduous versus evergreen), and species bark thickness.
We qualitatively compare model performance among
these groups, and visually assessed whether the direction
of model errors was related to species’ main defensive
trait, bark thickness. In relation to bark thickness, we
assessed differences in model performance between sub-
jectively defined groups of species: thin-barked (BTcoef ≤
0.035), moderately thick-barked (0.036 ≤ BTcoef < 0.049),
and thick-barked (BTcoef ≥ 0.049). We plotted the
species-level error rate in relation to the crown volume
scorched and in relation to DBH for each R-A model,
ordered from thin-barked to thick-barked species (Table
3).

Results
Performance of individual R-A models
We summarized results for the R-A model for individual
species, focusing on models that had acceptable (12), ex-
cellent (10), or outstanding (4) data quality (Table 8).
We provided four illustrative examples of the model
evaluation figures. All 68 model evaluation figures are
included in Additional file 1. We organized this section
by region and taxonomical division, and within those
groups, by thin-barked, moderately thick-barked, and
thick-barked species. We summarized typical model per-
formance and highlighted species for which the R-A
model performed very well or very poorly. We encour-
age readers to examine the figures in Additional file 1 to
better understand the detailed results for species of
interest.

Thin-barked gymnosperms
The R-A model consistently over-predicted mortality for
thin-barked (BTcoef ≤ 0.035) Western conifers. The
model evaluation figure for Pinus contorta provides a
typical example of results for this group (Fig. 2). We ex-
plained the figure in detail in the caption of Fig. 2 to
provide information on this specific model, and as a
guide for critical interpretation of the additional model
figures in Additional file 1.
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The model evaluation for many other thin-barked co-
nifers—including Pinus edulis, Juniperus deppeana,
Pinus monticola, and Thuja plicata—followed a similar
pattern as P. contorta (Fig. 3, Additional file 1). Thin-
barked species showed a consistent pattern of high sen-
sitivities and low specificities, and low PPVs and high
NPVs (Fig. 3). There were a few exceptions to this pat-
tern. The model for Pinus attenuata had a similar pat-
tern of relatively higher sensitivities and lower
specificities, but the errors were more balanced across
the range of crown scorch. The model for P. contorta,
which was evaluated using a large set of observations,
only slightly over-predicted mortality across the full
range of CVS.

Moderately thick-barked gymnosperms
Most gymnosperms with intermediate bark thickness
(0.036 ≤ BTcoef < 0.049) had AUC values >0.75, but
sometimes had unbalanced errors, continuing the pat-
tern of high sensitivities and low specificities (Fig. 3).
Abies magnifica and Pinus echinata follow this pattern.
Tsuga heterophylla, Abies lasiocarpa, and Abies grandis
had relatively balanced errors, and acceptable per-
formance overall. The models for Picea engelmannii
performed poorly, and flipped the typical trend with
higher specificity than sensitivity, and higher PPV
than NPV. The model for P. echinata, an eastern
gymnosperm, performed poorly (AUC = 0.55), with
higher sensitivity and low specificity, low PPV, and
low NPV. The modest sample for P. echinata (n =
144), which included some sites on the margins of
this species’ climate niche (Additional file 1), means
that results should be interpreted with caution.

Thick-barked gymnosperms
The R-A model generally performed best for gymno-
sperms with thick bark (BTcoef < 0.049) AUC values
were over 0.8 for most Western conifers, including Abies
concolor, Calocedrus decurrens, Larix occidentalis, Pinus
ponderosa (Fig. 4), Pseudotsuga menziesii, Pinus jeffreyi,
and Pinus lambertiana. Included in this group are the
only R-A models that met our criteria for outstanding

models—AUC values ≥0.90, and both PPV and NPV
≥0.7: C. decurrens, P. jeffreyi, and P. lambertiana
(Table 9). Two models for thick-barked species did not
perform as well—Chamaecyparis lawsoniana (AUC =
0.633) and Pinus coulteri (AUC = 0.611)—but these
were species for which the data quality was only fair.
The species-model evaluation figures for C. lawsoniana
is demonstrative of why the amount, quality, and repre-
sentativeness of the data should be considered when
interpreting model results (Fig. 5).
The R-A models did not perform as well for the East-

ern thick-barked gymnosperms Pinus palustris and
Pinus taeda (Fig. 3). Models for Pinus elliottii and P.
palustris were similar in that they had very low specifi-
city, low overall accuracy, and both PPVs and NPVs
were relatively low. Interpreting the errors associated
with P. palustris is complicated because the direction of
error varies over the mid-ranges of CVS. This may in
part be driven by limitations of the validation data: there
were not many trees of this species with high level of
CVS (Additional file 1). Both P. elliottii and P. palustris
are species with large, protected buds, which can result
in large differences between CVS and CVK, reflecting a
limitation of the R-A model, which uses CVS to predict
post-fire tree mortality. The model for P. taeda did not
perform well overall (AUC = 0.68 and accuracy at 0.5 =
0.67), but errors were fairly well balanced. Mortality was
over-predicted when CVS = 0%, and under-predicted
when 0% < CVS < 50%. The high levels of mortality at
relatively low levels of crown volume scorched may be
indicative of other, unmeasured types of injuries causing
mortality, but the magnitude of these errors may also re-
flect small sample sizes for trees with 0% < CVS < 50%
(Additional file 1).

Angiosperms
The R-A models for angiosperms, particularly those with
thin and moderately thick bark (e.g., BTcoef < 0.049) did
not perform as well as the models for gymnosperms
(Fig. 6). Much like the models for thin-barked gymno-
sperms, mortality was consistently over-predicted,

Table 8 Count of models for different qualitative ratings of data quality and model performance, from this study of post-fire tree
mortality models from the USA, from fires occurring from 1981 to 2016. R-A = Ryan and Amman model, which can be applied to
many species; SS = species-specific pre-fire and post-fire models. See Table 7 for rating criteria

Model performance

Data quality Poor Acceptable Excellent Outstanding Total

Fair 10 (R-A = 10) 13 (R-A = 8, SS = 5) 1 (R-A = 1) 4 (SS = 4) 28 (R-A = 19, SS = 9)

Acceptable 5 (R-A = 4, SS = 1) 9 (R-A = 7, SS = 2) 2 (SS = 2) 0 16 (R-A = 11, SS = 5)

Excellent 1 (R-A = 1) 10 (R-A = 8, SS = 2) 5 (R-A = 1, SS = 4) 2 (SS = 2) 18 (R-A = 10, SS = 8)

Outstanding 0 1 (R-A = 1) 0 5 (R-A = 3, SS = 2) 6 (R-A = 4, SS = 2)

Total 16 (R-A = 15, SS = 1) 33 (R-A = 24, SS =9 8 (R-A = 2, SS = 6) 11 (R-A = 3, SS = 8) 69 (R-A = 45, SS = 24)
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Fig. 2 (See legend on next page.)
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particularly for higher levels of CVS. Models predicting
mortality of Quercus L. species after fire performed
poorly because the main damage variable (CVS) had a
weak relationship with observed mortality (Additional
file 1). Quercus kelloggii provides an illustrative example
(Fig. 7). Q. kelloggii had higher levels of mortality at CVS
>75% than other Quercus species, and higher mortality
in small-diameter trees, but the model showed high sen-
sitivity and low specificity, consistent with other oak spe-
cies. Quercus gambelii had a large overall sample size (n
= 444) and large sample size of live and dead stems (n =
331 and n = 113, respectively), and the other Quercus
species that had smaller samples and only fair data qual-
ity all exhibited similar patterns of low mortality, and
similar directional errors in predictions in relation to the
main injury and defense variables (Additional file 1).
The consistency of the modeling errors across Quercus
species supports that oak survival with high levels of
crown scorch is a real trend, not an anomaly driven by
small samples sizes of some Quercus species.
Relative to other angiosperms, the R-A models for

Populus L. species performed relatively well (Additional
file 1; Fig. 6). The model for P. tremuloides had an AUC
= 0.73, at the 0.5 threshold. Higher levels of sensitivity
and specificity could be achieved by adjusting the
threshold. P. tremuloides that burned tended to have no
CVS or 100% CVS, with a median value of 0% CVS for
both live and dead trees, leading to low samples at mid-

levels of CVS, and high oscillations in observed mortality
(Additional file 1).
In contrast to thin-barked angiosperms, the R-A

models for Cornus nuttallii had a high AUC (0.947).
Nevertheless, it continued the pattern in angiosperms of
high sensitivities (1.0) and low specificities (0.06). The
model for C. nuttallii almost always over-predicted mor-
tality, although good performance in all model perform-
ance statistics (≥0.8) could be achieved by adjusting the
threshold (Additional file 1).

Exploring additional potential sources of error
Ten models met our sample size criteria for comparing
first and second fires (Table 10). All comparisons dem-
onstrated significantly higher AUC levels for first fires.
In some cases, the AUC values for both groups were
high, but in other cases—the pre-fire models for Abies
concolor, Calocedrus decurrens, Pinus lambertiana, and
both the RA and pre-fire model for Pseudotsuga menzie-
sii—the AUC scores were much lower (<0.70) for second
fires.
We also compared models using field-based measure-

ment and the calculated version of CVS for seven
models (Table 11). We found that models using field-
based measurements had significantly higher AUC
scores for four of the models. Field-based measurements
had significantly lower AUCs for the Pinus ponderosa
pre-fire model. Only in one case, the R-A model for

(See figure on previous page.)
Fig. 2 Model results for the Pinus contorta Ryan and Amman (R-A) model, from our study to evaluate post-fire tree mortality models. This figure
allows for a thorough assessment of model quality and data quality for the P. contorta R-A model. (A) Map shows locations of fires occurring
from 1981 to 2016 within the USA from which data to evaluate the model were sampled. Fire locations are plotted over the species’ range
(green polygons). P. contorta had excellent data quality, with observations coming from 34 fires, dispersed across the species range within the
USA. BTcoef = species-specific bark thickness coefficient. (B) The bi-plot shows where the observations used to evaluate models (orange points)
fall within the species’ bioclimatic niche space (black points) in terms of temperature (x-axis) and precipitation (y-axis). Fires were located across
the temperature niche of the species, but on the lower range of the precipitation niche. (C) Model evaluation summary statistics including the
AUC (area under the receiver operator characteristic curve) at 0.5 threshold for determining mortality, and confidence intervals (CI) around the
AUC. Model evaluation statistics include accuracy, sensitivity (Sens.), specificity (Spec.), positive predicted values (PPV), and negative predictive
values (NPV), summarized over a range of probability thresholds (0.1 to 0.9; rows), with the commonly used threshold of 0.5 shown in bold.
Warmer colors indicate greater values. The top three bold rows show model performance metrics for the “best” threshold, which optimizes
sensitivity and specificity, the best threshold with sensitivity >0.8, and the best threshold with specificity >0.8. The model accuracy statistics
indicate a high AUC (0.803), but at the typically used 0.5 threshold, model sensitivity is very high and model specificity is very low. This means
that the model accurately predicts which trees are going to die, but makes inaccurate predictions regarding which trees are going to live, which
is reflected in the low positive predicted values (PPV) and high negative predictive values (NPV): many trees predicted to die do not actually die,
while most trees predicted to live do live. By adjusting the threshold used to assign either trees to live or dead classes to a high value, either
high sensitivity or specificity can be obtained with this model with the evaluation data (top bold rows). (D) The distributions of defense (diameter
at breast height [DBH], as an interpretable representation of bark thickness) and injury (crown volume scorch) variables used in the model are
shown with bi-plots. Box plots in the margins of (D) show median (bar), interquartile range (IQR; box; 25th and 75th percentiles), and whiskers
show the minimum and maximum values that do not exceed a 1.5 × IQR. Dots are values outside IQR. There were 6006 total observations, and
1875 and 4131 observations in the live and dead categories, respectively, well distributed over the primary injury and defense variables. (E and F)
Assessment of species-level error comparing the predicted probability of mortality using a 0.5 threshold (Pm; orange points show values and
shading shows range) and the observed proportion of trees or stems killed (gray points) within binned observations of the primary injury
variables (E), and the DBH (F). (E) The model accurately predicts mortality over the range of percentage crown volume scorched (CVS) and (F)
tree diameter at breast height. Qualitative ratings of data quality, model performance, and direction or error in model predictions are listed at the
bottom of the figure. Model evaluation figures, such as this one, are available for each model evaluated for individual species in Additional file 1
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Fig. 3 Model evaluation summary statistics and qualitative ratings for the Ryan and Amman (R-A) model for gymnosperms, from our study to
evaluate post-fire tree mortality models. AUC = area under the receiver operator characteristic curve; Acc. = accuracy; Sens. = sensitivity; Spec. =
specificity; PPV = positive predictive value; NPV = negative predictive value; see Table 1 for formulas. Warmer colors indicate higher values.
Species are ordered from thin-barked to thick-barked species, based on species’ bark-thickness coefficient. Data used to evaluate post-fire tree
mortality models are from the USA, from fires occurring from 1981 to 2016
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Abies magnifica, was the AUC value for the calculated
version of the AUC lower than 0.7. Overall, models still
performed relatively well using the calculated version of
CVS.
We examined the spatial structure of fire-scale errors

for 22 species-model combinations when sufficient data,
both within and across fires, was present (Additional file
2). In Table 12, we provided qualitative summaries of
the direction of fire-scale errors and described any visu-
ally obvious regional patterns in error direction and
magnitude. The R-A models for Abies concolor, Pinus
contorta, Pinus ponderosa, and Pseudotsuga menziesii
had fire-scale errors that showed visible patterns of re-
gional variation, as did the pre-fire models for Abies con-
color, Pinus contorta, Picea engelmannii, and Pinus
ponderosa.

Systematic errors in FOFEM 5 model performance
Approximately 77% of R-A models tested had either
excellent or good predictive ability. The models that
performed poorly were primarily for angiosperms or
thin-barked conifers. R-A model performance differed
between angiosperms and gymnosperms, and across
the gradient from thin-barked to thick-barked species.
The evaluation of R-A model error across levels of
CVS offers additional insights (Additional file 3). For
conifers, the R-A model made accurate predictions of
mortality across all levels of CVS for very thick-
barked species, over-predicted mortality at higher
levels of CVS for moderately thick-barked species,
and under-predicted mortality at low levels of CVS
for many thin-barked species (Table 13). For gymno-
sperms with intermediate bark thickness (e.g., 0.35 ≤
BTcoef ≤ 0.52), the R-A model moderately under-
predicted mortality at low levels of CVS (e.g., ≤40%).
For gymnosperms with thick bark (e.g., BTcoef ≥ 0.55),
the R-A model moderately over-predicted mortality at
high levels of CVS (e.g., ≥60%).
Errors also showed patterns across the DBH

ranges—and thus the bark-thickness ranges—of spe-
cies (Additional file 4). In gymnosperms, mortality
was often over-predicted for smaller trees (DBH <30
cm), particularly for thin-barked species (BTcoef <
0.35), and under-predicted at the high end of a spe-
cies’ DBH range. Some of the angiosperms followed
this same pattern (e.g., Populus tremuloides, Quercus
gambelii, and Notholithocarpus densiflorus), but for
many other angiosperms, mortality was over-predicted
across their DBH range (e.g., Acer rubrum, Quercus
garryana, Oxydendrum arboreum, Quercus alba, and
Quercus montana). For some species, like Pinus elliot-
tii and Cornus nuttallii, the DBH range represented
in the dataset was fairly narrow, making it difficult to
assess trends.

Do pre-fire and post-fire models perform better than the
R-A model?
We expected that the species-specific models would per-
form significantly better than the R-A models. However,
the species-specific pre-fire models had significantly
higher AUCs than the R-A models for only five of the
13 models: Pinus albicaulis, Picea engelmanii, Populus
tremuloides (both models), and Pseudotsuga menziesii
(Fig. 8). The species-specific post-fire models performed
better than the pre-fire models, and had significantly
higher AUCs than the R-A models for six of the nine
post-fire models, including for Pinus contorta, Picea
engelmanii, Pinus ponderosa (both the post-fire crown
scorch and crown kill post-fire models), and Pseudotsuga
menziesii (Fig. 8).
Counter to our expectations, the species-specific

pre-fire models had significantly lower AUCs than the
R-A for Abies concolor, Calocedrus decurrens, Pinus
contorta, and both the pre-fire Black Hills and crown
scorch Pinus ponderosa models (Table 5); the species-
specific post-fire model for Abies concolor also had a
significantly lower AUC than the R-A model. In other
cases, models were not significantly different. Both
the R-A model and the pre-fire model for Pinus
palustris performed very poorly, with AUCs ≤0.66.
The pre-fire models for Pinus palustris severely
under-predicted mortality across the range of CVS for
the trees in our dataset (Additional file 1).
Another way to compare models is based on how bal-

anced their errors were: for models to be ranked as ex-
cellent or outstanding in our qualitative ratings, they
had to have both PPV and NPV >0.7, indicating good
predictive power for both dead and live trees. Five
models—Larix occidentalis (pre-fire and post-fire
models), Pinus ponderosa (both pre-fire models), and
Pinus contorta (pre-fire model)— performed better than
the R-A models when PPV and NPV were considered,
even though the AUCs were not significantly different or
were significantly lower (Table 9).

Discussion
Data quality
The FTM database provides an unprecedented opportun-
ity to evaluate the tree and stem mortality models in
FOFEM. This is the first model evaluation for many spe-
cies, such as the Quercus and Juniperus species. Neverthe-
less, the data quality of these evaluations vary substantially
between the models assessed (Tables 8 and 9, Additional
file 1). For many angiosperms, data quality is only at the
fair level (Table 9), meaning that data are limited in terms
of the number of fires, number of live or dead trees, or
range of damage variables observed (Table 7). Twenty-
three models for Western conifers and the R-A model for
Populus tremuloides have data quality that we considered
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Fig. 4 (See legend on next page.)
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excellent or outstanding (Table 9). Few tree species met
the outstanding data quality ranking because their ranges
extend outside the US, but the FTM database currently
only includes data from within the US. The model evalua-
tions for which the data quality is only fair should be con-
sidered provisional and used primarily to identify
consistent patterns in model performance across taxa.
Our results highlight species and regions for which

new data collection or new model development could be
prioritized. We were unable to assess the R-A models
for 148 species for which FOFEM has built-in bark
thickness coefficients and for five species-specific post-
fire models (Additional file 5). Over 80% of the species
in Additional file 5 are angiosperms. In both the eastern
and western US, oak woodlands and other angiosperm-
dominated ecosystems are primary targets for prescribed
fire and restoration (e.g., Stambaugh et al. 2015; Long
et al. 2016). Species that we identify as having low-
quality data could be prioritized as these efforts move
forward. Nevertheless, the FTM database provides a
foundation that future data collection can build on to
support model evaluation and model development for
many species. Sixty-six of these species have at least one
observation in the FTM database with the relevant pre-
dictor variables for given model, and 40 have observa-
tions at three years post fire (Additional file 5).
The maps of the evaluation data (Fig. 1) and the maps

for each species-specific model (Additional file 1) demon-
strate substantial geographic gaps in data availability. Our
objectives for the FTM database were to collect observa-
tions of post-fire tree and stem mortality in the

continental US, but many of the species evaluated here
and included in FOFEM have ranges extending into
Canada and Mexico. Data from the eastern USA are ex-
tremely limited. Data were also limited from the Inter-
mountain West (e.g., Nevada and Utah) and the Central
Rockies (e.g., Colorado) for many of the widespread West-
ern conifer species we assessed. Although mechanisms of
injury from fire should be consistent across species’
ranges, the stress that individual trees experience may dif-
fer due to contrasting climate, soils, competitors, or other
conditions. Therefore, including data from throughout
species’ ranges may yield additional insights.

Model evaluation
Model performance across studies
Logistic regression is one of the most widely used ap-
proaches for predicting post-fire tree and stem mor-
tality. Logistic models have been used to identify
relevant variables that help us understand contribu-
tors to the mortality process and have been used to
predict individual and stand-scale mortality (Woolley
et al. 2012). Because logistic regression models have
been shown to make effective predictions and can
translate to management applications, they have been
implemented operationally in models simulating fire
effects, either as part of a larger-scale modeling
process, or as management decision support systems
(Hood et al. 2018).
Our results support the applicability of logistic regres-

sion modeling for predicting tree and stem mortality
after fire. Of the 68 models evaluated, 45 had AUC

(See figure on previous page.)
Fig. 4 Model results for the Pinus ponderosa Ryan and Amman (R-A) model. (A) Map shows locations of fires occurring from 1981 to 2016 within
the USA from which data to evaluate the model were sampled. Fire locations are plotted over the species’ range (green polygons). P. ponderosa
was incredibly well sampled across its geographic range in the US, with data used to evaluate the R-A model from 43 140 trees and 226 fires.
BTcoef = specific specific bark thickness coefficient. (B) The bi-plot shows where the observations used to evaluate models (orange points) fall
within the species’ bioclimatic niche space (black points) in terms of temperature (x-axis) and precipitation (y-axis). (C) Model evaluation summary
statistics including the AUC (area under the receiver operator characteristic curve) at 0.5 threshold for determining mortality, and confidence
intervals (CI) around the AUC. Model evaluation statistics include accuracy, sensitivity (Sens.), specificity (Spec.), positive predicted values (PPV), and
negative predictive values (NPV), summarized over a range of probability thresholds (0.1 to 0.9; rows), with the commonly used threshold of 0.5
shown in bold. Warmer colors indicate greater values. The top three bold rows show model performance metrics for the “best” threshold,
which optimizes sensitivity and specificity, the best threshold with sensitivity >0.8, and the best threshold with specificity >0.8. This
model showed higher sensitivity than specificity, but performed well overall (AUC = 0.887). (D) The distributions of defense (diameter
at breast height [DBH], as an interpretable representation of bark thickness) and injury (crown volume scorch) variables used in the
model are shown with bi-plots. Box plots in the margins of D show median (bar), interquartile range (IQR; box; 25th and 75th
percentiles), and whiskers show the minimum and maximum values that do not exceed a 1.5 × IQR. The scatter plot shows that trees
that survived and died after fire were sampled across the ranges of percentage crown volume scorched (CVS) and diameter at breast
height (DBH). (E) and (F) Assessment of species-level error comparing the predicted probability of mortality using a 0.5 threshold (Pm;
orange points show values and shading shows range) and the observed proportion of trees or stems killed (gray points) within binned
observations of the primary injury variables (E), and the DBH F. (E) The model over-predicted mortality at middle to high values of CVS,
and (F) under-predicted mortality for the small sample of very large trees. Qualitative ratings of data quality, model performance, and
direction or error in model predictions are listed at the bottom of the figure. This model had excellent data quality, but did not qualified
as having outstanding data quality because samples were only from within the US and did not cover the species’ full climatic range
(Additional file 5)
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Table 9 Qualitative ratings of data quality and model performance, from this study of post-fire tree mortality models from the USA,
from fires occurring from 1981 to 2016. R-A = Ryan and Amman model, which can be applied to many species; Pre-fire models
predict mortality after fire based on predictors available before fire; Post-fire models predict mortality after fire based on predictors
available after fire. Model formulas are in Tables 5 and 6, and model variables are defined in Table 3. See Table 7 for rating criteria.
Species not evaluated due to poor data quality are listed in Additional file 3

Data quality

Model performance

Poor Acceptable Excellent Outstanding

Species Model Species Model Species Model Species Model

Fair Abies amabilis R-A Abies lasiocarpa Pre-fire Populus deltoides
ssp. wislizeni

R-A Pinus albicaulis Pre-fire

Acer rubrum R-A Abies lasiocarpa Post-fire Pinus ponderosa Post-fire scorch

Chamaecyparis
lawsoniana

R-A Abies magnifica Pre-fire Pinus ponderosa Post-fire kill

Oxydendrum arboreum R-A Juniperus occidentalis R-A Pseudotsuga
menziesii

Post-fire

Pinus coulteri R-A Juniperus osteosperma R-A

Pinus elliottii R-A Juniperus scopulorum R-A

Pinus virginiana R-A Notholithocarpus
densiflorus

R-A

Quercus alba R-A Pinus flexilis R-A

Quercus garryana R-A Pinus strobiformis R-A

Quercus montana Populus tremuloides Pre-fire low

Populus tremuloides Pre-fire
moderate

Tsuga mertensiana R-A

Acceptable Pinus attenuata R-A Cornus nuttallii R-A Larix occidentalis Post-fire

Pinus echinata R-A Juniperus deppeana R-A Pinus
lambertiana

Post-fire

Pinus palustris R-A Picea engelmannii Pre-fire

Pre-
fire

Post-fire

Pinus taeda R-A Pinus albicaulis R-A

Pinus edulis R-A

Pinus monticola R-A

Quercus gambelii R-A

Quercus kelloggii R-A

Thuja plicata R-A

Excellent Picea engelmannii R-A Abies concolor Post-fire Abies concolor R-A Pinus contorta Post-fire

Abies grandis R-A Abies concolor Pre-fire Pseudotsuga
menziesii

Pre-fire

Abies lasiocarpa R-A Larix occidentalis Pre-fire

Abies magnifica R-A Pinus ponderosa Pre-fire

Pinus contorta R-A Pre-fire
Black Hills

Pinus contorta Pre-fire

Pinus ponderosa R-A

Populus tremuloides R-A

Pseudotsuga menziesii R-A

Tsuga heterophylla R-A

Outstanding Larix occidentalis R-A Calocedrus decurrens R-A

Calocedrus decurrens Pre-fire

Pinus jeffreyi R-A

Pinus lambertiana R-A

Pre-fire
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values ≥0.8, indicating excellent performance, and 16
had AUCs <0.7, indicating poor performance. The R-A
model, based on the equation in Ryan and Amman
(1994), performed acceptably for 25 of the 45 of species
tested, and had excellent or outstanding performance for
five additional species. Our verification for this model,
and for using bark thickness and crown damage as the
primary predictors of post-fire tree mortality for western
North American conifers, is supported by other studies
that evaluated model performance with datasets that
are independent of those used to create the models
(Sieg et al. 2006; Hood et al. 2007; Thies and Wes-
tlind 2012; Ganio and Progar 2017; Grayson et al.
2017; Kane et al. 2017). Although our results allow us
to describe the conditions under which each model
produces errors, readers should not lose sight of the
overall efficacy of these models, especially for West-
ern conifers. It is rare to have a simple model—one
using only two variables—so effectively capture an
important ecological process.
In their review of logistic regression models used to

predict post-fire tree mortality in western North
American conifers, Woolley et al. (2012) identified
116 logistic regression models, from 33 studies, that
made predictions for 19 species. Only 13 of the 116
models had been evaluated with independent datasets
(Woolley et al. 2012). Since then, several new studies
have independently evaluated post-fire mortality logis-
tic regression models. Generally, we observed better
model performance than previous studies. For ex-
ample, Ganio and Progar (2017) validated 14 models
for Pinus ponderosa, and six models for Pseudotsuga

menziesii, and found lower AUC scores than we did
for the three models common to both their study and
this study: Pinus ponderosa post-fire scorch model,
Pseudotsuga menziesii R-A model, and Pseudotsuga
menziesii post-fire model.
Comparisons with other studies indicate that the

direction of error in model predictions likely varies
among datasets, perhaps due to variation in how a
fire burned, seasonal differences related to phenology,
or due to regional and inter-annual differences in
stress. In line with our findings, Kane et al. (2017)
found high sensitivity and low specificity for the R-A
model for Abies concolor, Calocedrus decurrens, Juni-
perus osteosperma, Pinus contorta, Quercus gambelii,
and Quercus kelloggii and, like this study, found the
opposite pattern of low sensitivity and high specificity
for Pinus lambertiana. In contrast to our results,
Kane et al. (2017) found low sensitivity and high spe-
cificity for Pinus ponderosa and Populus tremuloides.
The patterns of sensitivity and specificity (their “true
positive rate” and “true negative rate,” respectively)
found by Grayson et al. (2017) for the R-A model
were the same as those we observed for three conifer
species (Chamaecyparis lawsoniana, Pinus contorta,
and Pinus lambertiana), but not for the other nine
species common to both studies (Abies magnifica,
Abies contorta, Abies grandis, Calocedrus decurrens,
Larix occidentalis, Picea engelmannii, Pinus monticola,
Thuja plicata, and Tsuga heterophylla). The database
that Kane et al. (2017) drew on, from the US Na-
tional Park Service Fire Effects Monitoring Program,
and the data from Grayson et al. (2017) and Ganio

(See figure on previous page.)
Fig. 5 Model results for the Chamaecyparis lawsoniana Ryan and Amman (R-A) model. (A) Map shows locations of fires occurring from
1981 to 2016 within the USA from which data to evaluate the model was sampled. Fire locations are plotted over the species’ range
(green polygons). Note the small samples size (n = 69), the small number of fires sampled (n = 2), and the small number of dead trees
(n = 11; D). The small sample size in part reflects the relatively small natural range of this species. BTcoef = specific specific bark
thickness coefficient. (B) The bi-plot shows where the observations used to evaluate models (orange points) fall within the species’
bioclimatic niche space (black points) in terms of temperature (x-axis) and precipitation (y-axis). (C) Model evaluation summary statistics
including the AUC (area under the receiver operator characteristic curve) at 0.5 threshold for determining mortality, and confidence
intervals (CI) around the AUC. Model evaluation statistics include accuracy, sensitivity (Sens.), specificity (Spec), positive predicted values
(PPV), and negative predictive values (NPV), summarized over a range of probability thresholds (0.1 to 0.9; rows), with the commonly used
threshold of 0.5 shown in bold. Warmer colors indicate greater values. The top three bold rows show model performance metrics for the
“best” threshold, which optimizes sensitivity and specificity, the best threshold with sensitivity >0.8, and the best threshold with specificity
>0.8. (D) The distributions of defense (diameter at breast height [DBH], as an interpretable representation of bark thickness) and injury
(crown volume scorch) variables used in the model are shown with bi-plots. Box plots in the margins of (D) show median (bar),
interquartile range (IQR; box; 25th and 75th percentiles), and whiskers show the minimum and maximum values that do not exceed a 1.5
× IQR. (E) and (F) Assessment of species-level error comparing the predicted probability of mortality using a 0.5 threshold (Pm; orange
points show values and shading shows range) and the observed proportion of trees or stems killed (gray points) within binned
observations of the primary injury variables (E), and the DBH (F). Despite the low values of the model accuracy statistics (C), the
predicted mortality follows the expected mortality over both the range of percentage crown volume scorched and diameter at breast
height (DBH; E and F). The small sample of dead trees, some of which were large-diameter trees with <25% crown volume scorch (D)
likely caused the low observed sensitivity of the model. Qualitative ratings of data quality, model performance, and direction or error in
model predictions are listed at the bottom of the figure
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and Progar (2017) were both included in the FTM
database, and thus this study draws on these same
data.

Model performance varies across taxa, measurement
methods, times burned, and regions
Our results show that models performed well for coni-
fers, which make up the dominant canopy component of
many forests in western North America. For example,
the only R-A models that met our criteria for outstand-
ing models (AUC values ≥0.9, and both PPV and NPV
≥0.7) were for Calocedrus decurrens, Pinus jeffreyi, and
Pinus lambertiana (Table 9). In contrast, the model per-
formed poorly for many Southwestern species and
Southeastern species, including species for which pre-
scribed fire programs often target a decrease in density
(e.g., Quercus gambelii). The R-A performed relatively
well for some angiosperms, including Populus deltoides
spp. wislizeni, Notholithocarpus densiflorus, and moder-
ately well for Populus tremuloides and Cornus nuttallii
(Fig. 6). Nevertheless, five of 11 angiosperms had AUCs
<0.7. Model sensitivity and NPV was highest, and model
sensitivity and PPV was lowest, for thin-barked gymno-
sperms (Fig. 3).
The trends in the performance of the R-A model

related to taxa and bark thickness indicate that differ-
ent approaches—such as different model forms, better
estimates of bark thickness, and additional predic-
tors—may be warranted for angiosperms and thin-
barked conifers. New models for 10 Eastern angio-
sperms were recently developed by Keyser et al.

(2018) that used maximum bole char height and DBH
as predictors, and found good model fit, particularly
for thin-barked species. Because many angiosperms
are deciduous, assessing crown scorch is complicated
by season (i.e., burns occurring during leaf-off that
fail to reflect branch injury or burns near leaf-off
when the physiological cost of replacement is reduced
or absent). For ecosystems in which fire is generally
low severity and may not scorch or consume tree
crowns, damage to the stem—as measured by bark
char height, percentage of bole circumference charred,
or cambium kill rating—may be more meaningful
measurements of fire-caused injury and better predic-
tors of mortality (Catry et al. 2013). Including damage
to stem may also be important for angiosperms be-
cause their growth form can be non-vertical, allowing
the fire to scorch the crown while not burning the
base of the stem. Patchy fire spread and an associated
lack of coupling of injuries to the stem and the can-
opy may be one reason the models for angiosperms
strongly over-predict mortality of small trees. Also,
many angiosperms are able to produce epicormic
shoots from their stems (Meier et al. 2012; Pausas
and Keeley 2017). Species that resprout from their
stem may be relatively resilient to crown volume
scorch. Instead, damage to the cambium on the main
stem may be a better predictor (Catry et al. 2010,
2013; Keyser et al. 2018), or a different relationship
with CVS may need to be parameterized (Furniss
et al. 2019). Data collection and modeling of actual
mortality as opposed to just stem mortality of

Fig. 6 Model evaluation summary statistics and qualitative ratings for the FOFEM 5 model for angiosperms, from our study to evaluate post-fire
tree mortality models. AUC = area under the receiver operator characteristic curve; Acc. = accuracy; Sens. = sensitivity; Spec. = specificity; PPV =
positive predictive value; NPV = negative predictive value; see Table 1 for formulas. Warmer colors indicate higher values. Species are ordered
from thin-barked to thick-barked species, based on species’ bark-thickness coefficient. Data used to evaluate post-fire tree mortality models are
from the USA, from fires occurring from 1981 to 2016
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resprouting species, as has been conducted in the US
(e.g., Keeley et al. 2008) and other global ecosystems
(Pinard et al. 1999; Barlow and Peres 2008; Hoffmann
et al. 2009), might be a more informative approach
for managers and ecosystem models in North
America.
In summary, the R-A model consistently over-

predicted mortality for angiosperms, resulting in high
sensitivity and low specificity. For conifers, R-A

slightly over-predicted mortality for thick-barked spe-
cies. It also under-predicted mortality at low levels of
CVS for moderately thick-barked conifers, perhaps in-
dicating that injuries to the stems and roots need to
be accounted for when modeling mortality of these
species, as well. The species-specific models we evalu-
ated typically offered the most accurate model predic-
tions, but it is impractical to parameterize models for
every species. Modeling approaches based on species

Table 10 Statistical comparison of AUCs (area under the receiver operating characteristic [ROC] curve) between samples burned in
one fire and those burned by a second fire. We tested for statistical differences in AUCs between first and second fires using the
method of DeLong et al. (1988) as modified for the pROC package in the statistical program R to test unpaired ROC curves (Robin
et al. 2011). U = generalized U-statistic; R-A = Ryan and Amman model, which can be applied to many species; Pre-fire models
predict morality after fire based on predictors available before fire. Data used to evaluate post-fire tree mortality models are from the
USA, from fires occurring from 1981 to 2016

Model

Burned once Burned twice

U df Pn AUC n AUC

Abies concolor – R-A 11 343 0.894 850 0.862 2.41 937 0.016

Abies concolor – Pre-fire 3 889 0.901 439 0.630 9.62 467 <0.001

Calocedrus decurrens – R-A 2 910 0.972 213 0.861 4.16 217 <0.001

Calocedrus decurrens – Pre-fire 1 405 0.961 170 0.650 6.91 176 <0.001

Pinus lambertiana – R-A 2 286 0.904 99 0.742 2.51 100 0.014

Pinus lambertiana – Pre-fire 857 0.921 72 0.650 3.89 74 <0.001

Pinus ponderosa – R-A 42 133 0.888 1007 0.840 3.18 1036 0.002

Pinus ponderosa – Pre-fire 37 072 0.869 1007 0.783 4.67 1034 <0.001

Pseudotsuga menziesii – R-A 15 101 0.892 75 0.627 4.06 74 <0.001

Pseudotsuga menziesii – Pre-fire 13 528 0.924 75 0.545 5.95 2000 <0.001

(See figure on previous page.)
Fig. 7 Model results for the Quercus kelloggii Ryan and Amman (R-A) model. Q. kelloggii provides an illustrative example of the problem with the
R-A model exhibited for many Quercus species: the main damage variable—percentage crown volume scorched (CVS)—has a weak relationship
with observed mortality. (A) Locations of fires occurring from 1981 to 2016 within the USA from which data to evaluate the model was sampled.
Fire locations are plotted over the species’ range (green polygons). BTcoef = specific specific bark thickness coefficient. (B) The bi-plot shows
where the observations used to evaluate models (orange points) fall within the species’ bioclimatic niche space (black points) in terms of
temperature (x-axis) and precipitation (y-axis). (A) and (B) Q. kelloggii was relatively well sampled across its range and environmental niche,
particularly compared to other Quercus species. (C) Model evaluation summary statistics including the AUC (area under the receiver operator
characteristic curve) at 0.5 threshold for determining mortality, and confidence intervals (CI) around the AUC. Model evaluation statistics include
accuracy, sensitivity (Sens.), specificity (Spec.), positive predicted values (PPV), and negative predictive values (NPV), summarized over a range of
probability thresholds (0.1 to 0.9; rows), with the commonly used threshold of 0.5 shown in bold. At a 0.5 threshold, the model had very high
sensitivity (0.96), and high NPV (0.80), but low accuracy (0.49), low specificity (0.10), and relatively low PPV (0.49). Warmer colors indicate higher
values. The top three bold rows show model performance metrics for the “best” threshold, which optimizes sensitivity and specificity, the best
threshold with sensitivity >0.8, and the best threshold with specificity >0.8. (D) The distributions of defense (diameter at breast height [DBH], as
an interpretable representation of bark thickness) and injury (crown volume scorch) variables used in the model are shown with bi-plots. Box
plots in the margins of (D) show median (bar), interquartile range (IQR; box; 25th and 75th percentiles), and whiskers show the minimum and
maximum values that do not exceed a 1.5 × IQR. Like all the Quercus species, the sample was unbalanced, with more live tress (n = 219) than
dead (n = 184) and the average CVS was higher for live trees than dead trees. (E) and (F) Assessment of species-level error comparing the
predicted probability of mortality using a 0.5 threshold (Pm; orange points show values and shading shows range) and the observed proportion
of trees or stems killed (gray points) within binned observations of the primary injury variables (E), and the DBH (F). (E) The lack of a relationship
between CVS and mortality is apparent in this panel, which shows that model predictions and observed levels of mortality diverge as crown
scorch increases, with no relationship between observed mortality and CVS level except when CVS >80%. (F) The proportion of observed
mortality in smaller-diameter trees is much lower than the model predicts. Qualitative ratings of data quality, model performance, and direction
or error in model predictions are listed at the bottom of the figure
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traits or suites of traits may be a good middle ground
(Hood et al. 2018). There is considerable promise in
using mechanistically linked traits including bark
thickness (Hengst and Dawson 1994; Lawes et al.
2011), protected buds (Hood et al. 2010), epicormic
resprouting ability (Hoffmann et al. 2009; Catry et al.
2010, 2013; Pausas and Keeley 2017), presence of a
primary bark beetle (Hood and Bentz 2007; Davis
et al. 2012), and depth of surface roots (Varner et al.
2009) to model mortality probabilities for groups of
species. Integrating pre-fire and post-fire stress from
drought and competition may also improve models
(van Mantgem et al. 2003, 2013; Nesmith et al. 2015),
and could potentially be coupled with a species-traits
approach since the same physiological processes—im-
pairment of hydraulic integrity and carbon demand—
are important for both fire- and drought-driven mor-
tality (Michaletz et al. 2012; West et al. 2016; Bär
et al. 2018). Contingent relationships may require a
more flexible statistical modeling approach than logis-
tic regression modeling (Menges and Deyrup 2001;
Shearman et al. 2019). The FTM database illustrates
the need for a robust comparison of different statis-
tical approaches and method for accounting for differ-
ent species traits, as well as adding even
representation of the full range of predictor variables.
While model refinement is an ongoing process,

practitioners are still reliant on existing decision sup-
port systems to inform planning and land manage-
ment decisions. Our approach to identifying
thresholds and model evaluation results could be eas-
ily incorporated into FOFEM and associated models.
These updates could be coupled with guidance on
how to set threshold values to optimize prediction

accuracies in a way that mirrors management objec-
tives and quantifies uncertainty of this widely used
decision support tool. By adjusting the thresholds, we
were able to obtain discriminating sensitivities and speci-
ficities above 80% for most models (Additional file 1).
Adjusting the thresholds does not make sense for species
for which the suggested adjusted thresholds were unrealis-
tically high or low. For example, for Populus deltoides, a
threshold of 1 would be needed to achieve specificity of
>0.8, reflecting the low specificity of the model, despite
high accuracy, sensitivity, PPV, and NPV. Applying sug-
gested thresholds in cases for which the adjust thresh-
old is within reasonable bounds (e.g., 0.10 ≤ threshold
≤ 0.90) may be sensible.
We did not evaluate all steps in the FOFEM model-

ing process. The pre-fire and R-A models most
commonly use percentage crown scorch (either per-
centage of crown length or percentage of crown vol-
ume), which cannot be observed prior to the fire.
Instead, FOFEM allows users to either enter predicted
flame length (often generated based on experience or
via fire behavior prediction software from fire inten-
sity) or scorch height, as well as tree height and live
crown ratio; percentage crown scorch is then calcu-
lated from these inputs (Lutes et al. 2012). The error
we showed between field-based and calculated CVS
scores reflects error in FOFEM in a step in this
process, when CLS is converted to CVS using a stan-
dardized equation (Peterson and Ryan 1986). We
should expect more error in modeled variables; never-
theless, this equation is also in need of external valid-
ation, and may need to be modified for species with
different canopy architecture than the species for it
was developed. Barker et al. (2019) evaluated

Table 11 Statistical comparison of AUCs (area under the receiver operating characteristic [ROC] curve) between samples for which
percentage crown volume scorched (CVS) was sampled in the field and calculated based on other measurements of canopy injury
(e.g., crown length scorch, change in crown ratio, change in canopy base height). We tested for statistical differences in AUCs
between first and second fires using the method of DeLong et al. (1988) as modified for the pROC package in the statistical
program R to test unpaired ROC curves (Robin et al. 2011). U = generalized U-statistic; R-A = Ryan and Amman model, which can be
applied to many species; Pre-fire models predict morality after fire based on predictors available before fire. Data used to evaluate
post-fire tree mortality models are from the USA, from fires occurring from 1981 to 2016

Model

Field measurements Calculated

U df Pn AUC n AUC

Abies concolor – R-A 11 621 0.897 572 0.746 7.32 593 <0.001

Abies magnifica – R-A 291 0.885 216 0.634 4.56 275 <0.001

Pinus lambertiana – R-A 2 264 0.903 121 0.826 1.91 126 0.059

Pinus ponderosa – R-A 30 672 0.894 12 468 0.888 1.50 19 575 0.133

Pinus ponderosa – Pre-fire 25 612 0.868 12 467 0.880 −2.47 21 735 0.013

Pseudotsuga menziesii – R-A 14 260 0.894 916 0.880 2.83 22 940 0.005

Pseudotsuga menziesii – Pre-fire 12 687 0.921 916 0.880 8.30 21 617 <0.001
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mortality based on multiple simulated weather scenar-
ios, and assessed errors in predicted mortality at
stand, forest type, and species scales. They found high
model errors, with mortality being over-predicted for
more extreme fire-weather scenarios due to over-
predictions of flame lengths (Barker et al. 2019).
Thus, validating other steps in the simulation

modeling process with independent datasets is very
much needed. Information on how uncertainty is
compounded through multiple steps in the model is
also needed.
Bark thickness is modeled based on DBH using

species-specific bark thickness coefficients. The coeffi-
cients and the assumption of a linear relationship between

Table 12 Descriptive summaries of our visual evaluations, using the maps in Additional file 2, of the presence of regional patterns in
fire-scale model prediction error, from this study of post-fire tree mortality models from the USA, from fires occurring from 1981 to
2016. Models are defined in Tables 5 and 6

Model Direction or errors Regional patterns in errors

Abies concolor − R-A Errors in both directions Consistently under-predicts mortality
west of the Oregon Cascades

Abies concolor − Pre-fire Under-predicts to accurate in most fires Consistently under-predicts mortality
west of the Oregon Cascades

Abies grandis − R-A Under-predicts to accurate in most fires No obvious spatial pattern

Abies lasiocarpa − R-A Accurate in most fires No obvious pattern

Calocedrus decurrens − R-A Over-predicts to accurate in most fires No obvious pattern

Calocedrus decurrens − Pre-fire Under-predicts to accurate in most fires Not enough spatial variation in fire
locations to assess spatial patterns

Larix occidentalis − R-A Errors in both directions No obvious pattern

Pinus contorta − R-A Errors in both directions Under-predicts in the western part
of the species’ range, and over-predicts
in the eastern part of the species’ range

Pinus contorta − Pre-fire Under-predicts to accurate in most fires Higher model accuracy in eastern part
of species’ range

Picea engelmannii − R-A Errors in both directions No obvious pattern

Picea engelmannii − Pre-fire Errors in both directions Higher model accuracy in northern part
of species’ range within the USA

Pinus jeffreyi − R-A Small errors in both directions No obvious pattern

Pinus lambertiana − R-A Under-predicts to accurate in most fires No obvious pattern

Pinus lambertiana − Pre-fire Accurate in most fires Not enough spatial variation in fire locations
to assess spatial patterns

Pinus ponderosa − R-A Errors in both directions Under-predicts more often in western Oregon
and Washington, and over-predicts more often
in eastern Oregon, eastern Washington, Idaho,
and Montana. No obvious pattern of direction
of errors in the Intermountain Region and
southwestern USA.

Pinus ponderosa − Pre-fire Under-predicts in most fires Under-predicts more strongly in western Oregon
and Washington, and is accurate more often in
eastern Oregon, eastern Washington, Idaho, and
Montana. No obvious pattern of direction of errors
in the Intermountain Region and southwestern USA.

Pinus ponderosa − Pre-fire Black Hills Errors in both directions No obvious pattern

Populus tremuloides − R-A Errors in both directions No obvious pattern

Pseudotsuga menziesii − R-A Errors in both directions Model is more accurate in Pacific Northwest and
Northern Rocky Mountains than in the Sierra Nevada
and Southwest

Pseudotsuga menziesii − Pre-fire Errors in both directions No obvious pattern

Quercus gambelii − R-A Errors in both directions Under-predicts in southern Utah and over-predicts
in Arizona and New Mexico

Tsuga heterophylla − R-A Slightly under-predicts in most fires No obvious pattern
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Table 13 The direction of error in model predictions by species evaluated, from this study of post-fire tree mortality models from
the USA, from fires occurring from 1981 to 2016. Data used to evaluate post-fire tree mortality models are from the USA, from fires
occurring from 1981 to 2016. Models are defined in Tables 5 and 6; R-A = Ryan and Amman model, which can be applied to many
species; Pre-fire models predict morality after fire based on predictors available before fire; Post-fire models predict morality after fire
based on predictors available after fire. Criteria for assigning qualitative descriptors of frequency of under-prediction and over-
prediction are defined in Table 7

Under-
predicts

Over-predicts

Rarely Sometimes Often Always

Species Model Species Model Species Model Species Model

Often Abies amabilis R-A

Pinus palustris Pre-fire

Populus tremuloides Pre-fire low

Sometimes Abies magnifica Pre-fire

Picea engelmannii R-A

Pinus coulteri R-A

Pinus ponderosa Post-fire
scorch

Populus tremuloides Pre-fire
moderate

Tsuga heterophylla R-A

Rarely Abies concolor R-A Pinus edulis R-A Abies magnifica R-A Abies lasiocarpa Post-
fire

Abies concolor Pre-fire Pinus palustris R-A Calocedrus
decurrens

R-A Acer rubrum R-A

Abies concolor Post-fire Populus deltoides ssp.
wislizeni

R-A Juniperus
osteosperma

R-A Cornus nuttallii R-A

Abies grandis R-A Juniperus deppeana R-A

Abies lasiocarpa R-A Larix occidentalis R-A Juniperus occidentalis R-A

Abies lasiocarpa Pre-fire Pinus albicaulis R-A Juniperus scopulorum R-A

Calocedrus decurrens Pre-fire Pinus flexilis R-A Notholithocarpus
densiflorus

R-A

Chamaecyparis
lawsoniana

R-A Pinus ponderosa R-A Oxydendrum arboreum R-A

Larix occidentalis Pre-fire Quercus kelloggii R-A Pinus elliottii R-A

Larix occidentalis Post-fire Pinus strobiformis R-A

Picea engelmannii Pre-fire Pinus virginiana R-A

Picea engelmannii Post-fire Quercus alba R-A

Pinus albicaulis Pre-fire Quercus gambelii R-A

Pinus attenuata R-A Quercus garryana R-A

Pinus contorta R-A Quercus montana R-A

Pinus contorta Pre-fire Tsuga mertensiana R-A

Pinus contorta Post-fire

Pinus echinata R-A

Pinus jeffreyi R-A

Pinus lambertiana R-A

Pinus lambertiana Pre-fire

Pinus lambertiana Post-fire

Pinus monticola R-A

Pinus ponderosa Pre-fire
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DBH and bark thickness have not been evaluated for
many species. Substantial evidence exists that bark on the
most fire-resistant species follows a negative allometry;
that is, these species add bark at a proportionally higher
rate as juveniles, thereby protecting their underlying
cambium at the tree’s most vulnerable time (Jackson
et al. 1999). Bark is an important protective trait for
woody plant species, and thickness is only one of
suite of protective properties provided by bark. Other
heat-protective traits include moisture content, sur-
face roughness, and thermal diffusivity (Hare 1965;
Dickinson and Johnson 2001). Likewise, the bark
thickness relationship in FOFEM assumes that bark
thickness of a tree just reaching 1.37 m in height
(e.g., breast height) is 0. This further discounts fire-
prone species that over-allocate to bark, particularly
as saplings, a pattern found in Quercus and Pinus and
other fire-prone genera (Jackson et al. 1999; Ham-
mond et al. 2015). The R-A model consistently over-
predicted mortality of small-diameter trees, which
may reflect underestimated bark thickness of these
small-diameter trees (Additional file 4). Non-linearity
over size (or age) could be an important addition to
FOFEM, given its importance in differentiating species
and models in our analysis, but additional data on
bark thickness relationships to size by species are
needed to test this hypothesis.
Our maps of fire-scale error indicate that model per-

formance may vary regionally for some species. Potential
causes of this spatial variation in model error include
differences in the size of trees and range of fire injuries
in individual fires (i.e., reflect error that is correlated

with predictor variables), local environmental differences
(e.g., deeper litter and duff in more productive regions
and long-unburned regions), interspecific variation in
fire defense traits, and regional stress from drought and
bark beetles. While wildfires may typically burn under
higher intensities than prescribed fire, theoretically, if
fire injuries to trees are similar, there should be no
difference among fire types (i.e., wildfire, wildland fire
use, or prescribed fires). Conversely, differences in the
patchiness of surface fuel combustions between wild-
fires and prescribed fires (Blomdahl et al. 2019) or be-
tween prescribed fires with differing ignition patterns
(Hiers et al. 2020) could translate to differences in
model performance between wildfires and prescribed
fires. Future research could explore these sources of
spatial error and determine if regionally specific
models are needed for some species. In the meantime,
managers can use these maps, in addition to the indi-
vidual species results, as an additional consideration
when they are using FOFEM to make operational
predictions.

Conclusion
We suggest a three-pronged approached to future de-
velopment and use of post-fire tree and stem mortal-
ity models. First, existing empirical models should
continue to be validated and modified to improve
prediction accuracy. For example, allowing choice of
thresholds for different management outcomes (Table
1) could be integrated into decision support software
systems. Estimates of model uncertainty are also
needed in decision support systems so that managers

Table 13 The direction of error in model predictions by species evaluated, from this study of post-fire tree mortality models from
the USA, from fires occurring from 1981 to 2016. Data used to evaluate post-fire tree mortality models are from the USA, from fires
occurring from 1981 to 2016. Models are defined in Tables 5 and 6; R-A = Ryan and Amman model, which can be applied to many
species; Pre-fire models predict morality after fire based on predictors available before fire; Post-fire models predict morality after fire
based on predictors available after fire. Criteria for assigning qualitative descriptors of frequency of under-prediction and over-
prediction are defined in Table 7 (Continued)

Under-
predicts

Over-predicts

Rarely Sometimes Often Always

Species Model Species Model Species Model Species Model

Pinus ponderosa Pre-fire Black
Hills

Pinus ponderosa Post-fire kill

Pinus taeda R-A

Populus tremuloides R-A

Pseudotsuga menziesii R-A

Pseudotsuga menziesii Pre-fire

Pseudotsuga menziesii Post-fire

Thuja plicata R-A
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can apply precautionary principles to planned opera-
tions. Second, researchers could target data collection
and modeling on data gaps in the FTM database and
poorly performing models identified in this study, and
track stem versus individual mortality in basal
resprouting species. Additional variable collection for
thin-barked gymnosperms and angiosperms and thick-

barked Eastern conifers may be necessary to
parameterize accurate models. Third, researchers
should explore development of models for species with a
common set of traits using a diversity of statistical ap-
proaches to produce models with stronger mechanistic
linkages to processes and, hopefully, greater prediction
accuracy.

Fig. 8 Model evaluation summary statistics and qualitative ratings for species for which multiple models were evaluated. AUC = area under the receiver
operator characteristic curve; Acc. = accuracy; Sens. = sensitivity; Spec. = specificity; PPV = positive predictive value; NPV = negative predictive value; see
Table 1 for formulas. Warmer colors indicate higher values. Group represents statistically significant differences between model area under receiver
operator characteristic curve (AUC) values, and group labels are assigned alphabetically to groups with higher AUC values. Data used to evaluate post-fire
tree mortality models are from the USA, from fires occurring from 1981 to 2016
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42408-020-00082-0.

Additional file 1. Species-level model evaluations and data
visualizations for 68 logistic regression models predicting mortality after
fire used in the First Order Fire Effects Model (FOFEM version 6.7)
software system. Data used in this study to evaluate post-fire tree mortal-
ity models are from the USA, from fires occurring from 1981 to 2016.
Each page shows information on data quality and model performance
for a model as applied to an individual species, presented in alphabetical
order by species name, and then by model type: Ryan and Amman (R-A),
pre-fire species-specific models, and then post-fire species-specific
models. Model equations are listed in Tables 5 and 6. Mortality was
assessed three years post fire except for the following models: Abies lasio-
carpa post fire (1 year), Notholithocarpus densiflorus R-A (1 year), Pinus
albicaulis pre fire (1 year), Pinus coulteri R-A (2 years), Populus deltoides ssp.
wislizeni R-A (2 years), Tsuga mertensiana R-A (1 year). The species and the
model are listed on the top of each model summary figure, along with a
description of the species’ distribution in North America, its leaf habit,
taxonomical division and family. (Top left) Map shows locations of fires
occurring from 1981 to 2016 within the USA from which data to evaluate
the model were sampled. Fire locations are plotted over the species’
range (green polygons). (Top right) The bi-plot shows where the obser-
vations used to evaluate models (orange points) fall within the species’
bioclimatic niche space (black points) in terms of temperature (x-axis)
and precipitation (y-axis). (Middle left) Model evaluation summary statis-
tics including the AUC (area under the receiver operator characteristic
curve) and the confidence intervals (CI) around the AUC. Model evalu-
ation statistics also include accuracy, sensitivity (Sens.), specificity (Spec.),
positive predicted values (PPV), and negative predictive values (NPV),
summarized over a range of probability thresholds (0.1 to 0.9; rows), with
the commonly used threshold of 0.5 shown in bold (see Table 1 for a
complete description of model summary statistics). Warmer colors indi-
cate greater values. The top three bold rows show model performance
metrics for the “best” threshold, which optimizes sensitivity and specifi-
city, the best threshold with sensitivity >0.8, and the best threshold with
specificity >0.8. (Middle right) Scatter plot shows the distribution of
defense (diameter at breast height [DBH], as an interpretable representa-
tion of bark thickness) and injury (i.e., crown volume scorch, crown length
scorch, crown volume kill, bark char height) variables used in the model
are shown with bi-plots. Box plots in the margins of show median (center
bar), interquartile range (IQR; box; 25th and 75th percentiles), and whis-
kers show the minimum and maximum values within 1.5×IQR. Dots are
values outside IQR. (Bottom left and bottom right) We assessed
species-level error, grouping data in relation to the primary crown injury
variable used in thus model (i.e., crown volume scorched, crown length
scorched, crown length killed, or bark char height), and the DBH, as a
measure of defense from heating. The predicted probability of mortality
using a 0.5 threshold (Pm; orange points show values and shading shows
range) and the observed proportion of trees or stems killed (gray points)
within binned observations of the primary injury variables (bottom left),
and the DBH (bottom right). Qualitative ratings of data quality, model
performance, and direction or error in model predictions are listed at the
bottom of each figure. Table 7 defines the qualitative ratings.

Additional file 2. Evaluation of fire-scale model error for 21 models that
had ≥10 fires with ≥10 trees in each fire, in our study of post-fire tree
mortality models from the USA, from fires occurring from 1981 to 2016.
Each page shows a map, at the scale of the conterminous United States,
with the location of fires. Fire locations are colored by the direction of
model error. Pages show models in alphabetical order by species name,
and then by model type: Ryan and Amman (R-A), and then pre-fire
species-specific models. The species and the model are listed on the top
of each figure.

Additional file 3. Difference between the probability of predicted
mortality (Pm) and proportional observed mortality (y-axis) over the range
of crown volume scorch (CVS; x-axis). Larger dot sizes represent
exponentially larger sample sizes; missing dots means no data exist.
Values above the bold dashed line mean that the model over-predicts

mortality, and values below the line means that the model under-
predicts mortality. Red shaded areas show where over-prediction of
>0.25 (light red) and >0.50 are, and blue shaded areas show under-
prediction of <−0.25 (light blue), and <−0.5 (dark blue). Shaded classes
correspond to qualitative summary descriptions of over-prediction and
under-predictions (Table 13). Lines and points are orange for angiosperms
and aqua for gymnosperms. Species are ordered from thin-barked to
thick-barked, and the species-specific bark thickness coefficient (BT coef.)
is shown at the top of each pane. Data used to evaluate post-fire tree
mortality models are from the USA, from fires occurring from 1981 to
2016.

Additional file 4. Difference between the probability of predicted
mortality (Pm) and proportional observed mortality (y-axis) over the range
of diameter at breast height (DBH; x-axis) values for R-A models. Larger
dots represent exponentially larger sample sizes; missing dots means no
data exist. Values above the bold dashed line mean that the model over-
predicts mortality, and values below the bold dashed line means that the
model under-predicts mortality. Red shaded areas show where over-
prediction of >0.25 (light red) and >0.50 are, and blue shaded areas show
under prediction of <−0.25 (light blue), and <−0.5 (dark blue). Lines and
points are orange for angiosperms and aqua for gymnosperms. Species
are ordered from thin-barked to thick-barked, and the species-specific
bark thickness coefficient (BT coef.) is shown at the top of each pane.
Data used to evaluate post-fire tree mortality models are from the USA,
from fires occurring from 1981 to 2016.

Additional file 5. Species and models included in the Fires Order Fire
Effects Model (FOFEM) software system that we were not able to
evaluate in our study of post-fire tree mortality models from the USA,
from fires occurring from 1981 to 2016. Models are defined in Tables 5
and 6; R-A = Ryan and Amman model, which can be applied to many
species; Pre-fire models predict mortality after fire based on predictors
available before fire; Post-fire models predict mortality after fire based on
predictors available after fire. For the R-A models, FOFEM has built-in bark
thickness coefficients for these species. We also included the number of
observations with relevant predictor variables for any year post fire, and
at 3 years post fire, and total number of observations in the FTM data-
base. We excluded FTM data from M. Battaglia, S. Hood, and V. McDaniel
that were used to create species-specific models (Battaglia et al. 2009;
Hood and Lutes 2017; Keyser et al. 2018) from the totals provided here,
because data used to create models cannot be used for external
validation of those models.
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