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Abstract

Background: Wildfires of uncharacteristic severity, a consequence of climate changes and accumulated fuels, can
cause amplified or novel impacts to archaeological resources. The archaeological record includes physical features
associated with human activity; these exist within ecological landscapes and provide a unique long-term
perspective on human-environment interactions. The potential for fire-caused damage to archaeological materials
is of major concern because these resources are irreplaceable and non-renewable, have social or religious
significance for living peoples, and are protected by an extensive body of legislation. Although previous studies
have modeled ecological burn severity as a function of environmental setting and climate, the fidelity of these
variables as predictors of archaeological fire effects has not been evaluated. This study, focused on prehistoric
archaeological sites in a fire-prone and archaeologically rich landscape in the Jemez Mountains of New Mexico,
USA, identified the environmental and climate variables that best predict observed fire severity and fire effects to
archaeological features and artifacts.

Results: Machine learning models (Random Forest) indicate that topography and variables related to pre-fire
weather and fuel condition are important predictors of fire effects and severity at archaeological sites. Fire effects
were more likely to be present when fire-season weather was warmer and drier than average and within sites
located in sloped, treed settings. Topographic predictors were highly important for distinguishing unburned,
moderate, and high site burn severity as classified in post-fire archaeological assessments. High-severity impacts
were more likely at archaeological sites with southern orientation or on warmer, steeper, slopes with less
accumulated surface moisture, likely associated with lower fuel moistures and high potential for spreading fire.

Conclusions: Models for predicting where and when fires may negatively affect the archaeological record can be
used to prioritize fuel treatments, inform fire management plans, and guide post-fire rehabilitation efforts, thus
aiding in cultural resource preservation.
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Resumen

preservacion del recurso cultural.

Antecedentes: Incendios de severidades no caracteristicas, como consecuencia del cambio climatico y la
acumulacion de combustibles, pueden causar impactos amplificados y novedosos en recursos arqueoldgicos. El
registro arqueoldgico estd compuesto de caracteristicas fisicas asociadas con la actividad humana; estos existen
dentro de paisajes ecoldgicos y proveen de una perspectiva Unica, a largo plazo, de las interacciones humano-
ambientales. El potencial del fuego para dafar materiales arqueoldgicos es muy preocupante debido a que esos
recursos son irreemplazables y no renovables, tienen significados sociales y religiosos para los seres humanos, y son
protegidos por un cuerpo de legislacion bien extenso. Aunque estudios previos han modelado la severidad
ecoldgica del fuego en funcidn de variables ambientales y climéticas, la fidelidad de esas variables como
predictoras de los efectos del fuego en sitios arqueoldgicos no han sido evaluadas. Este estudio, focalizado en sitios
prehistéricos arqueoldgicos en un lugar propenso al fuego en un paisaje arqueoldgicamente rico de la Montanas
Jemez en Nuevo México, EEUU, determind las variables ambientales y climéaticas que mejor predijeron la severidad
observada vy los efectos del fuego en las caracteristicas y artefactos arqueolégicos.

Resultados: Los modelos de aprendizaje automatico (Machine learning models, Random Forest) indican que la
topografia y las variables relacionadas con el tiempo meteoroldgico previo al incendio y las condiciones de los
combustibles, son importantes predictores de los efectos del fuego y su severidad en sitios arqueoldgicos. Los
efectos del fuego mds probables que estuvieron presentes en estos sitios se dieron cuando el tiempo
meteoroldgico durante la estacion de fuego fue mas célido y seco que el promedio, y éstos estaban ubicados en
areas con pendiente y arbolados. Los predictores topogréficos fueron muy importantes para distinguir dreas no
quemadas, moderadamente quemadas y quemadas a alta severidad tal como fueron determinadas en
relevamientos arqueoldgicos post-fuego. Los impactos de la alta severidad fueron més frecuentes en sitios
arqueoldgicos con orientacion sur o en pendientes célidas y pronunciadas, con menor acumulacion de humedad
superficial y con un alto potencial de propagacion del fuego.

Conclusiones: Los modelos para predecir cudndo y como los incendios pueden afectar negativamente los

registros arqueoldgicos, pueden usarse para priorizar los tratamientos de combustible, guiar los esfuerzos de
rehabilitacién post-fuego, e informar sobre el planeamiento del manejo del fuego, ayudando entonces a la

Background

The archaeological record includes physical features
(e.g, structures, remnants of agricultural fields, rock art,
and stone or ceramic artifacts) associated with human
activity; these exist within ecological landscapes and pro-
vide a unique and irreplaceable long-term perspective on
human-environment interactions (Scharf 2014; Hayashida
2005; Kelly and Thomas 2016). Archaeological resources
are vulnerable to the impacts of wildfires, which can cause
physical or chemical changes in materials or addition of
residues that temporarily or permanently alter attributes
important for determining artifact origin, age, cultural af-
filiation, or technology of production (Romme et al. 1993;
Buenger 2003; Davis 2018). In this manner, wildfire
impacts can compromise the interpretation of the
archaeological record and its potential for documenting
millennial-scale human history (Lissoway and Propper
1988; Johnson 2004; Rude and Jones 2012). Although a
growing, global body of work identifies vulnerabilities of
archaeological resources to sea level rise, storm events,
and glacial retreat (Rockman 2015; Daly 2011; Morgan
et al. 2016), less attention has been paid to the impacts of
wildfires, and particularly lacking are studies that associate

climate and landscape drivers of wildfire activity with
potential archaeological impacts.

Climate changes, linked to increasing wildfire severity in
many landscapes (Miller et al. 2009; van Mantgem et al.
2013; Singleton et al. 2019), exacerbate and accelerate
fire’s effects on archaeological resources (Davis 2018). Un-
characteristically severe fires can expose archaeological
materials to novel—and potentially more damaging—fire
environments than occurred in the long-term ecological
and cultural history of the region (Liebmann et al. 2016;
Roos and Scott 2018; Roos et al. 2020). In the south-
western United States, landscapes and archaeological
materials have been repeatedly exposed to wildfires in
the past; however, these fires were less severe than
those that have occurred in recent decades (Swetnam
et al. 2016; Roos et al. 2021). More than a century of
livestock grazing, logging, and fire exclusion have
lengthened intervals between fires in dry conifer forests,
leading to unnaturally high fuel loads, dense forest
canopies, and reduced structural and spatial heterogeneity
of vegetation (Covington et al. 1994; Allen et al. 2002;
Reynolds et al. 2013; Kalies and Kent 2016). Fires in these
forests are more intense, with larger patches of high-
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severity fire, than occurred historically (Covington et al.
1994; Westerling et al. 2006; Swetnam et al. 2016; Single-
ton et al. 2019). Amplified fire activity and proportionally
larger areas of high-severity fire within burned areas is
likely to continue with warming temperatures (Abatzoglou
and Williams 2016; Loehman et al. 2018, Singleton et al.
2019) until fire—fuel feedbacks eventually limit fire occur-
rence, size, and severity (Parks et al. 2016; Schoennagel
et al. 2017); thus, archaeological sites are at increasing risk
for negative impacts from wildfires in the coming decades.

In this study, we analyzed relationships among
environmental predictors and observed fire impacts
to archaeological sites, features, and artifacts in the
Jemez Mountains, New Mexico, USA—a region that
contains the nation’s best-preserved archaeological
record (Lissoway and Propper 1988). Although legis-
lation (e.g., the National Historic Preservation Act
[NHPA 1966] and the National Environmental Policy
Act [NEPA 1970]) and agreements between Ameri-
can Indian tribes and federal agencies require con-
sideration of management effects and disturbances to
the archaeological record and its preservation (Dockry
et al. 2017; Davis 2018), management and planning activ-
ities are constrained by lack of predictive information on
how and where archaeological resources are likely to be
affected by wildfires. Most previous studies have fo-
cused on inventorying the range of archaeological fire
effects present after specific fires, or experimentally
determining the temperatures at which archaeological
resources are negatively affected (e.g, Bronitsky and
Hamer 1986; Lissoway and Propper 1988; Traylor
et al. 1990; Fiero 1995; Lentz et al. 1996; Nisengard
et al. 2002; Buenger 2003; Sturdevant et al. 2009). To
our knowledge, ours is the only study to explicitly
model the environmental conditions likely to result in
the presence and severity of archaeological fire effects,
thus providing managers with information that can
aid in pre- and post-fire planning.

Across the western United States, the occurrence of
potentially damaging high-severity wildfires has been re-
lated to climate, topography, vegetation type, and fuel
availability (Alexander et al. 2006; Lentile et al. 2006;
Holden et al. 2009; Dillon et al. 2011; Birch et al. 2015;
Parks et al. 2018), and low-moisture conditions associated
with seasonal or persistent droughts that can increase the
ignitability and flammability of fuels (Westerling and
Swetnam 2003; Holden et al. 2009; Holsinger et al. 2016;
Parks et al. 2018). We expected that, if wildfire im-
pacts to archaeological resources were driven by the
same underlying mechanisms that dictate ecological
burn severity, we would find that predictors of higher
ecological burn severity also predict increasingly se-
vere archaeological impacts. If true, models of
ecological burn severity (e.g, Holden et al. 2009; Dillon
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et al. 2011) could also be used to anticipate archaeological
fire impacts.

Through this analysis, we determined the environmen-
tal conditions under which wildfires result in observable
impacts to archaeological sites, artifacts, and features.
Specifically, we sought to determine the importance of
variables related to topography, vegetation, fuels, or wea-
ther as predictors of the following: (1) presence of fire
effects on archaeological artifacts and features, and (2)
the observed burn severity (i.e, unburned, low, moder-
ate, or high severity) at archaeological sites.

Methods

Study area

Fires and archaeological sites included in this study are
within the Jemez Mountains of northern New Mexico
(Fig. 1), a mainly forested landscape of mesas and can-
yons ranging in elevation from 1500 to 3500 m above
sea level. Along this gradient, vegetation communities
include woodlands of pifion pine (Pinus edulis var. edulis
Engelm.) and juniper (Juniperus monosperma [Engelm.]
Sarg., Juniperus scopulorum Sarg.), forests of ponderosa
pine (Pinus ponderosa P. Lawson & C. Lawson), fre-
quently with a Gambel oak (Quercus gambelii Nutt.)
understory, and mixed conifer forests of ponderosa pine,
Gambel oak, white fir (Abies concolor [Gordon & Glend.]
Lindl. ex Hildebr.), Douglas-fir (Pseudotsuga menziesii
var. glauca [Mayr] Franco), southwestern white pine
(Pinus strobiformis Engelm.), limber pine (Pinus flexilis
E. James), and aspen (Populus tremuloides Michx.)
(Touchan et al. 1996; Muldavin et al. 2011). Prior to hu-
man land use and management activities that limited fire
occurrence and spread, dry conifer forests in the region
experienced frequent, low-severity surface fires; however,
in the past four decades, wildfires with larger components
of high-severity fire than occurred in fires of the past have
burned across the Jemez Mountains (Grissino Mayer and
Swetnam 2000; Allen 2007; Coop et al. 2016; Roos
et al. 2020).

The Jemez Mountains contain a large number and variety
of archaeological sites, features, and artifacts (Elliott 1991;
Anschuetz and Scheick 2006). At higher elevations (above
about 2500 m), most sites are scatters of stone artifacts or
obsidian quarries, associated with momentary usage and re-
source procurement (Kulisheck 2010). At elevations below
2500 m, the majority of archaeological sites consist of stone
masonry architectural features with associated scatters of
ceramic and stone artifacts (Elliott 1986; Kulisheck 2005).
Two types of structures are recognized: (1) apartment-style
pueblo villages of 50 to 1800 rooms; and (2) small, isolated
one- to four-room structures (field houses) that are generally
associated with agricultural fields and may have been used
for temporary residence or as hunting camps, lookouts, or
storage structures (Preucel 1990; Kulisheck 2005).
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Fig. 1 Location of archaeological sites (blue dots) and wildfires (black perimeters, labeled) in the Jemez Mountains, New Mexico, USA (2000 to
2011) used in this study's analysis of environmental predictors of fire effects and burn severity. Fires included the Cerro Grande Fire (2000), Lakes
Fire (2002), Virgin Fire (2003), Virgin Canyon Fire (2010), and the Las Conchas Fire (2011). Note that some areas and archaeological sites have
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Collectively, these sites are evidence of a dual-residence
land-use pattern by ancestral pueblo peoples between ap-
proximately 1200 and 1600 CE (Common Era; Preucel 1990;
Orcutt 1999), in which field houses were occupied and used
in association with agricultural activities distal to the pueblo
villages that sustained concentrated occupation outside of
the growing season.

Data

Archaeological data sources

Our dataset was derived from archaeological assessments
conducted after five fires that occurred in the Jemez
Mountains during or after the year 2000, corresponding to
the time period in which the Landscape Fire and Resource
Management Planning Tools (LANDFIRE) program
began to produce spatial vegetation and fuels data.
Archaeological sites in our analysis included prehistoric
artifact scatters (predominantly ceramic artifacts, i.e.,
sherds), field houses and other small masonry

structures, multi-roomed pueblo villages, rock shelters,
rock alignments, and rock art, all dating from prior to
the eighteenth century CE (Kulisheck and Elliott 2005).
We excluded historical period (eighteenth century CE
and later) sites (e.g, wooden cabins and corrals, or
trash scatters) to maintain the focus on the prehis-
toric archaeological record and because previous stud-
ies have established that historical wood structures are
consumed by fire regardless of severity (Fiero 1995). We
also excluded prehistoric obsidian scatters (quarries), be-
cause these occurred across a relatively narrow range of
forest types and elevations within our study area. Further,
obsidian is known to exhibit few observed fire effects at
low temperatures but very dramatic alterations at higher
temperatures (Loyd et al. 2002; Steffen 2005), a finding that
would have biased our models for other, more fire-sensitive
artifact and site types.

Samples for the analysis included 858 individual
archaeological sites exposed to one or more wildfires
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that burned on the Santa Fe National Forest (US For-
est Service), in Bandelier National Monument (Na-
tional Park Service), or in the Valles Caldera
National Preserve (National Park Service), New
Mexico, USA, between 2000 and 2011 (Fig. 1). Five
fires were included: Cerro Grande (2000), Lakes
(2002), Virgin (2003), Virgin Canyon (2010), and Las
Conchas (2011). We extracted archaeological fire ef-
fects and site severity data from assessment forms
filled out by archaeologists during post-fire recon-
naissance of archaeological sites. These assessments,
conducted immediately after wildfires, provide field-
measured information on site condition, burn sever-
ity, fire effects to features and artifacts, potential
erosion issues, and other fire effects information,
and are conducted to determine need for follow-up
action to reduce potential negative after-effects of
fire (e.g, hazards associated with standing dead trees,
flooding, or erosion) (Clark and McKinley 2011; Til-
lery et al. 2011). All known (i.e., previously recorded)
sites within four of the five fires were assessed. For
the Cerro Grande Fire, only a portion of known sites
were targeted for assessment, based on assumed
burn severity and likelihood of fire impacts to sites.
As has been reported elsewhere, fire can reveal new
archaeological sites or expose artifacts at known sites
(Nisengard et al. 2002; Johnson 2004; Davis 2018).
During travel to known sites for assessments after
the Las Conchas Fire, new archaeological sites were
discovered. These new sites, when encountered, were
briefly documented and post-fire assessments were
completed.

We used observations from the 858 assessments to
train and test our predictive models of archaeological
fire effects and observed burn severity as a function of
environmental and climatic factors. We consolidated
data from the assessment forms to summarize two
measures of fire impact at each archaeological site: a
two-class variable representing fire effect on artifacts or
features within the site (“fire effect”) and a four-class
variable representing severity of fire at the site as a
whole (“site burn severity”). For fire effects models, we
created a binomial response variable that could be de-
rived from all archaeological assessment records: fire
effect present on artifacts or features within each arch-
aeological site; or fire effect absent. Fire effects ob-
served on artifacts and features included changes in
surface color and sheen, fine fracturing and cracking,
spalling or fracturing, and deposition of resins and soot
(Ryan et al. 2012). Assigning a binomial response
allowed us to standardize observations across post-fire
assessment forms that varied across different fires; for
instance, some forms recorded the presence of fire ef-
fects for a site as a whole, whereas other forms
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recorded fire effects for individual artifacts or features
within a site.

Archaeologists classified site burn severity using the
following criteria: unburned sites were locations that fire
did not cross (Fig. 2A); sites burned at low severity had
partially blackened to partially consumed litter, partially
burned or scorched woody debris, and partially to com-
pletely consumed foliage and smaller twigs but mainly
intact branches (Fig. 2B); sites burned at moderate sever-
ity had mostly to entirely consumed litter with residual
coarse light ash, deeply charred duff and unaltered
underlying soils, mainly consumed woody debris and
deeply charred logs, and completely consumed foliage
and smaller twigs but mainly intact branches (Fig. 2C);
and sites burned at high severity had entirely consumed
litter and duff with residual fine white ash, visibly altered
mineral soil, deeply charred logs, and total consumption
of all plants including most major stems and trunks
(Fig. 2D). Terminology varied slightly across different
post-fire assessments, so we standardized all observa-
tions to one of four site burn severity classes: (1) un-
burned, (2) low (scorched or lightly burned), (3)
moderate, or (4) high (severely burned).

Environmental predictors

We developed a suite of 25 continuous or categorical
variables related to topography, vegetation, fuels, or wea-
ther as potential predictors of observed site burn severity
and fire effects (Tables 1 and 2). To derive site-specific
measures, we created a 10 m buffer around each re-
corded site point location, which was considered to rep-
resent the average size of archaeological sites in the
Jemez Mountains, and assigned predictor values based
on mean (for continuous variables) or majority count
(for categorical variables) within that buffer zone. We in-
cluded topographic, climatic, and biotic predictors asso-
ciated with ecological fire severity in Southwestern
ecosystems (Holden et al. 2009; Dillon et al. 2011), pre-
dictors that influence fire impacts through their controls
on biomass production and fuel condition (Abatzoglou
and Kolden 2013; Holsinger et al. 2016), and predictors
that are commonly used by fire ecologists and managers
to model potential fire behavior and effects (Scott and
Burgan 2005; Lutes et al. 2009).

We acquired monthly, seasonal, and annual weather
predictors (PRISM Climate Group 2014; http://www.
prism.oregonstate.edu, 800 m resolution) for each fire
year and for the baseline period 1981 to 2010 (30-year
normal) (Table 1). For temperature minima and maxima,
we calculated the departure from the 30-year normal for
the May to September fire season (TMINfs and
TMAXTfs, respectively) and the fire year (TMINan and
TMAXan, respectively). For precipitation, we calculated
the percent of the 30-year normal for the winter months
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Fig. 2 Archaeological sites in the Jemez Mountains, New Mexico, USA, exhibiting (A) unburned, (B) low, (C) moderate, and (D) high burn severity
as determined by field-recorded, post-fire archaeological assessments. Sites are representative of those included in this study’s assessment of
environmental predictors of fire effects and burn severity, 2000 to 2011. Photo credits: USDA Forest Service (A) 2014, (B) 2012, and (C and D) 2011

preceding the fire (December through February,
PRCPwin), the fire month (PRCPmo), and the fire year
(PRCPan). We obtained a regional drought measure, the
Palmer drought severity index (PDSI; Palmer 1965;
http://www.cpc.ncep.noaa.gov/products/monitoring_
and_data/drought.shtml), as a proxy for fuel and soil
moisture conditions during the fire month (PDSImo)
and May through September wildfire season (PDSIfs).
The PDSI is useful as a predictor of wildfire activity be-
cause it integrates precipitation and temperature anom-
alies over several months to several seasons (Westerling
and Swetnam 2003). We included two fire danger indi-
ces, Energy Release Component (ERC) and Burning
Index (BI), calculated as the average for the fire month
(ERCmo and Blmo, respectively) or the May to Septem-
ber fire season (ERCfs and BIfs, respectively), for fuel
model G (Abatzoglou 2013). The ERC is a multi-day
composite index that reflects the contribution of all live
and dead fuels to potential fire intensity and is consid-
ered a proxy for fuel dryness or heat per unit area avail-
able to the flaming front (Riley and Loehman 2016). The
BI uses ERC and a fire spread component to provide a
seasonal profile of fire danger and fire behavior for vege-
tation types with significant dead fuel loadings (Preisler
et al. 2004).

Topographic predictors were computed from a 10-
meter digital elevation model (DEM) acquired from the
US Geological Survey (https://gisdata.nd.gov/Metadata/
ISO/html/metadata_ DEM_NED_10m.html) using the
ArcGIS toolbox for surface gradient and geomorpho-
metric modeling (Evans et al. 2014; Table 1). We calcu-
lated a compound topographic index (CTI), a steady-
state soil wetness index that models water flow accumu-
lation as a function of upstream contributing area and
slope and is commonly used to quantify topographic

control on hydrological processes (Gessler et al. 1995).
Lower CTI values represent drier areas with steep slopes
and low catchment capacity, and higher values represent
areas of greater soil moisture accumulation, typically
with large catchments and flatter slopes. The heat load
index (HLI) is a topographically corrected measure of in-
cident solar radiation that integrates slope and aspect,
with lower values representing cooler, northeast slopes
(McCune and Keon 2002). We calculated two aspect
measures: a transformation from circular to linear aspect
values (Aspect_Lin), and a Slope-Cosine-Aspect Index
(Aspect_Cos) that incorporates topographic effects on
solar irradiance and surface moisture, based on Stage’s
(1976) method (slope percentage times the cosine of as-
pect). The Slope-Cosine-Aspect Index ranges from -1 to
1 for areas with slopes up to 100%, for which the cosine
of aspect is -1 at 180° (south) and 1 at 0° (north), flat
areas are assigned a value of -1, and areas with slopes
greater than 100% are assigned a value of 1. We also ex-
tracted slope (percent) and elevation (meters above sea
level) from the DEM.

Predictors representing pre-fire vegetation and fuels
were acquired from the Landscape Fire and Resource
Management Planning Tools (LANDFIRE) program as
30-meter raster grids (Rollins 2009; Table 2). We associ-
ated fires with the LANDFIRE data layers that most
closely pre-dated them, including those from the years
2001 (LF1.0.5), 2008 (LF1.1.0), and 2010 (1.2.0) (http://
landfire.cr.usgs.gov/viewer/, accessed July 2015). We
included two fuels data layers commonly used in fire
behavior prediction: Fuel Loading Model (FLM), a sur-
face fuel classification with representative loadings for
woody and non-woody fuel components; and the 40
Scott and Burgan Fire Behavior Fuel Models (F40),
descriptive of distributions of surface fuel loadings for
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Table 1 Continuous variables used to predict observed, artifact- and feature-level fire effects (fire effect) and burn severity class for
archaeological sites in the Jemez Mountains, New Mexico, USA, from 2000 to 2011. Ranges were calculated as mean values for 10 m
buffers around 858 recorded point locations of archaeological sites. Climate variables were summarized for the month of fire, fire
season (here considered May through September), winter preceding the fire year (December through February), or year of fire, as
indicated. Variable definitions are provided in italics. Variable units are specified where present; otherwise, values are indices or

dimensionless

Variable name

Range

Canopy bulk density (CBD)
Measure of density of canopy fuel; higher values = denser fuel
Palmer Drought Severity Index, Fire Season (PDSIfs)
Regional drought measure; more negative values = drier conditions
Palmer Drought Severity Index, Fire Month (PDSImo)
Regional drought measure; more negative values = drier conditions
Energy Release Component, Fire Season (ERCfs)
Composite fuel moisture index; higher values = drier fuels
Energy Release Component, Fire Month (ERCmo)
Composite fuel moisture index; higher values = drier fuels
Burning Index, Fire Season (BIfs)
Seasonal profile of fire danger and fire behavior; higher values = more extreme fire danger
Burning Index, Fire Month (BImo)
Seasonal profile of fire danger and fire behavior; higher values = more extreme fire danger
Departure from 30-year normal mean minimum temperature, Fire Season (TMINfs)
Degrees cooler or warmer than 30-year normal
Departure from 30-year normal mean minimum temperature, Annual (TMINan)
Degrees cooler or warmer than 30-year normal
Departure from 30-year normal maximum temperature, Fire Season (TMAXfs)
Degrees cooler or warmer than 30-year normal
Departure from 30-year normal mean maximum temperature, Annual (TMAXan)
Degrees cooler or warmer than 30-year normal
Percent of 30-year normal total precipitation, Annual (PRCPan)
Values above 100% = wetter than 30-year normal
Percent of 30-year normal total precipitation, Winter (DJF) (PRCPwin)
Values above 100% = wetter than 30-year normal
Percent of 30-year normal total precipitation, Fire Month (PRCPmo)
Values above 100% = wetter than 30-year normal
Compound Topographic Index (CTI)
Soil wetness index; higher values = greater soil moisture accumulation
Heat Load Index (HLI)
Measure of incident surface radiation; higher values = warmer, southwest facing slopes
Linear Aspect (Aspect_Lin)
Circular to linear transformation

Slope-Cosine-Aspect Index (Aspect_Cos)

Solar irradiance effects on fuel moisture and fire behavior; more negative values are warmer (southern aspect) or flat areas and

positive values are cooler (northern aspect) or steep slopes
Elevation

Slope

0o 45 kg m=>*1%°

—551t0 -06

—-53to -1

505 to 77.7

449 t0 1033

347 to 59

27 to 103.7

0.99 to 145 °C

0.29 to 2.86 °C

0.97 to 1.19 °C

-1.29 t0 262 °C

3210 135%

63 to 98%

0 to 103%

38910 16.21

034 to 1.11

1.0 to 358.0

-0.9 to 1.00

1705 to 2838 m
045 to 158.5%
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Table 2 Categorical variables used to predict observed artifact- and feature-level fire effects (fire effect) and burn severity class for
archaeological sites in the Jemez Mountains, New Mexico, USA, from 2000 to 2011. See Additional file 1 for variable descriptions

associated with LANDFIRE codes

Analysis groupings

LANDFIRE classification codes

Observations (n)

Existing Vegetation Cover (EVC)
Vertically projected percent cover of the live canopy layer
Tree cover 10 to 30%
Tree cover 30 to 50%%
Tree cover >50%"
Shrub cover <50%
Shrub cover >50%
Herb cover <50%
Herb cover >50%
Existing Vegetation Type (EVT)
Current distribution of plant community types
Piflon—juniper woodland
Shrub
Dry mixed conifer
Mesic mixed conifer
Ponderosa pine woodlands
Aspen-riparian
Grass

Scott and Burgan Fuel Model (F40)

Distributions of fuel loading found among surface fuel components, size classes, and fuel types

Grass—shrub, fuel bed <1 ft (30.5 cm) depth
Grass—shrub, fuel bed >1 ft (30.5 cm)depth
Timber, fuel bed <1 ft (30.5 cm)depth
Timber, fuel bed >1 ft (30.5 cm)depth

Fuel Loading Model (FLM)*

Surface fuel classification with representative loadings for woody and non-woody fuel components

Light, no logs
Low load shrub
Light logs, duff
Herb—grass
Vegetation Condition Class (VCC)

Level of departure of current vegetation from historical vegetation reference conditions

Very low, departure 0 to 16%
Low to moderate, departure 17 to 33%

Moderate to low, departure 34 to 50%

EVC classes: 101, 102 202
EVC classes: 103, 104 385
EVC classes: 105, 106 104
EVC classes: 112, 113 9
EVC classes: 114, 115, 116 62
EVC classes: 123, 124 59
EVC classes: 125, 126, 127,128, 129 37
EVT classes: 2016, 2059 326
EVT classes: 2023, 2080, 2101, 2104, 2107, 3086 64
EVT class: 10 6
EVT classes: 2052, 2057 11
EVT classes: 2054 322
EVT classes: 2061, 2159, 3011 22
EVT classes: 2076, 2121, 2127, 2133, 2146, 2181, 3182 107
F40 classes: 101, 121, 141, 142 13
F40 classes: 102, 122, 145, 147 418
F40 classes: 161, 181, 183 17
F40 classes: 165, 188 210
FLM class: 11 642
FLM classes: 14, 15 20
FLM classes: 21, 31,72 169
FLM classes: 511, 521 27
VCC: 1A 127
VCC: B 130
VCC: LA 601

grass, shrub timber, and slash fuel types (Scott and
Burgan 2005). Additional data layers representing type,
amount, arrangement, and continuity of vegetation
(fuels) were canopy bulk density (CBD), the available
canopy fuel within a forested stand; vegetation condition
class (VCC), a discrete measure that quantifies the de-
gree to which current vegetation has departed from

simulated historical vegetation reference conditions;
existing vegetation type (EVT), the current distribution
of plant community types; and existing vegetation cover
(EVC), which represents the vertically projected percent
cover of live canopy. All LANDFIRE data except CBD
were included as categorical predictors in our models. We
consolidated several of these datasets (Table 2) to reduce
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bias and other issues associated with unequal and sparsely
distributed classes, particularly given the large number of
potential class combinations within these data.

Analysis

Predicting likelihood of fire effects and site burn severity as
a function of environment

We used a Random Forest (RF) classification algorithm
(Breiman 2001), implemented in the randomForest
(Liaw and Wiener 2002) and caret (Kuhn 2008) pack-
ages in the R statistical computing program (R 3.3.3, R
Development Core Team 2021), to identify predictors
associated with (1) the likelihood of observed fire effects
on prehistoric artifacts (fire effect present or absent),
and (2) site burn severity classification. Random Forest
is a variant of the Classification and Regression Tree al-
gorithm (CART; Breiman et al. 1984) that is able to pro-
duce accurate predictions without over-fitting (Breiman
2001) even when data are non-normal (Kane et al.
2015), spatially autocorrelated (Cutler et al. 2007), or ex-
hibit non-linear relationships. During modeling, Random
Forest permutes a large number of “trees” based on sub-
sets of observations and predictors. These trees are com-
piled into a “forest” and classification probabilities are
made based on the number of trees. RF implements a
bootstrapping procedure using approximately two thirds
of the data for training and the remaining one third for
validation and to assess predictor importance. Individual
predictor importance measures are calculated by compar-
ing out-of-bag (OOB) classification errors between runs
with and without each predictor.

We tuned each model by adjusting the number of pre-
dictors permuted for each tree (mtry) and the number of
bootstrap replicates, and assessed best models based on
Kappa (binomial dataset) or ROC (multinomial dataset)
statistics (Kuhn 2008). The final RF models for site burn
severity and fire effects present or absent used mtry = 2
and 2000 replicates. Next, we ran several RF iterations
to determine the best method for accounting for class
imbalances (Additional file 1), which might affect inter-
pretation and assessment of model performance. We
compared models over several resampling schemes:
upsampled, downsampled, Synthetic Minority Oversam-
pling Technique (SMOTE), and Random Over-Sampling
Examples (ROSE, binomial responses only) by implement-
ing R packages SMOTE (Chawla et al. 2002), DMwR (Torgo
2010), caret, pROC (Xavier et al. 2011), and ROSE
(Lunardon et al. 2014). Models were trained on a subset
of resampled data (75%) and tested against the remaining
25% of observations. Models to determine site burn sever-
ity class performed best on upsampled data, a method that
randomly resamples smaller classes until they have an
equal number of observations as compared to the highest
class, that has proven robust for decision tree analyses
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(Crone and Finlay 2012). Model performance for fire
effects present or absent was most improved using the
SMOTE algorithm, which simultaneously upsamples the
less common class and downsamples the most common
class (Chawla et al. 2002).

We optimized predictor sets as described in Dillon
et al. (2011). Briefly, for each model, we ran ten repli-
cates (2000 trees per run) using resampled datasets and
all predictors (Tables 1 and 2) and calculated the mean
importance rank for each predictor (produced under the
caret “rf” method) to create a final rank value. We
then performed a k-cluster analysis (Hartigan and Wong
1979) to form five groups based on mean importance
values. We identified an optimal model by running a
series of models, each with ten replicates and 5-fold
cross validation, on datasets with progressively reduced
predictor sets based on the k-cluster ranking. Multi-class
(site  burn severity) analysis was run using the
multiClassSummary function to produce mnlogLoss
(negative Logarithmic Loss) metrics of model perform-
ance. Logarithmic loss measures the performance of a
classification model in which predictions are probabil-
ities between 0 and 1. As predicted probabilities ap-
proach 1, LogLoss approaches 0; perfect models will
have a LogLoss value of 0. Binomial (fire effects) analysis
was run using the twoClassSummary function to pro-
duce ROC (receiver operating characteristic) curves and
accuracy and Kappa metrics of model performance. The
ROC metrics are appropriate for binary classification
problems and are calculated by plotting the true positive
rate (sensitivity) as a function of the false positive rate
(100-specificity). Accuracy is the percentage of correctly
classified classes. Kappa is the normalized baseline clas-
sification accuracy that can be useful when using data
with imbalance among classes. We used two measures
of prediction accuracy to gauge model performance and
identify optimal models: (1) mean decrease in accuracy,
measured as the changes in tree accuracy when each
predictor is permutated (more important predictors result
in greater decreases when removed); and (2) mean Gini, a
measure of node impurity in which predictors that split
data into nodes with higher purity result in a greater
decrease in the Gini coefficient (a higher mean de-
crease in Gini indicates higher variable importance).
For each analysis, we determined the optimal model to
be the one with the fewest predictors while also having
performance metrics within one standard error of the best
performing model. Finally, we implemented the optimal
model using all observations in randomForest, Ran-
domForestExplainer (Paluszynska et al. 2020), and
PDP (Greenwell 2018) packages to develop partial depend-
ence plots for model interpretation. Partial dependence
plots graphically characterize relationships between indi-
vidual predictor variables and predicted probabilities of
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observed fire effect or site burn severity class (Cutler et al.
2007).

We considered three additional measures of
importance related to the forest structure to interpret
RandomForest outputs and variable interactions: mean
minimal depth, number of nodes, and P-values. Mean
minimal depth assesses how well a predictor is able to
split observations into classes. Variables with high im-
pact on the prediction lead to larger splits between ob-
servations, tend to occur earlier in tree formation, and
have lower minimal depth. Mean minimal depth can also
highlight potentially important predictor interactions by
identifying the conditional (comparative) mean minimal
depth of variable pairs used to make first and second
splits in individual trees; for example, in some instances,
predictor importance is more apparent when it co-
occurs with another variable than when it is considered
individually. Number of nodes indicates how often a
variable was used to split observations; higher values in-
dicate greater importance. Finally, P-values were calcu-
lated based on a one-sided binomial test; P-values < 0.01
occur when the number of nodes using a given predictor
exceeds the theoretical number of times that predictor
would be used for a split, if predictors were selected
randomly.
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Results
Archaeological fire effects as a function of environment
Of the 858 sites surveyed, 503 (59%) recorded the pres-
ence of at least one type of fire effect and 355 (41%) re-
corded no fire effect. The SMOTE resampling resulted
in an analysis dataset of 2485 observations, 1420 with
observed fire effects and 1065 without. We compared
three sets of models: (1) using all 25 predictors (full
model), (2) removing the least important cluster, and (3)
removing the two least important clusters. The best per-
forming model for predicting archaeological fire effects
(present or absent) retained all 25 predictors (Additional
file 1; sensitivity = 0.82, specificity = 0.93). The OOB of
the final model based on all observations was 10.98%,
with individual class errors of 17% and 6% for predic-
tions of effect absent and effect present, respectively.
Overall, topographic predictors best improved model
accuracy, and elevation and weather predictors resulted
in the greatest mean decrease in Gini coefficient (higher
node purity) (Fig. 3). The EVT and EVC variables were
also important predictors of observed fire effects. Partial
dependence plots of top predictors show non-linear
(complex bimodal and quadratic) relationships between
predictors and fire effects (Fig. 4; Additional file 1:
Figure Al.1). Fire effects on sites were more likely when
minimum temperatures for the fire season (TMINfs)

70 o TMINfs
604 ©
— _Aspect_Lin ®
= PRCPmo ERCfs
] °
& 50 @ . Predictor
12} ® O Top
©
g PRCPan
I 40 %e PY P-value
C
@© ® ® ® <0.01
§ ° ® 201
([
304
®
20
[ ]
0.02 0.04 0.06 0.08
Mean decrease, accuracy
Fig. 3 Multiway importance plot of 25 variables (top ten predictors are labeled) used to predict probability of fire effects on prehistoric artifacts
and features after five fires that occurred between 2000 and 2011 in the Jemez Mountains, New Mexico, USA (n = 858). See Table 2 and
Additional file 1 for full names and descriptions of predictors. For mean decrease in accuracy (x-axis), more important predictors result in greater
decreases when removed. The Gini coefficient represents node impurity. Variables that lead to more homogenous nodes give greater decreases
in mean Gini. Therefore, a higher mean decrease in Gini (y-axis) indicates higher variable importance in the model. P-values <0.01 indicate
predictors that were selected more frequently as tree nodes than would be expected if predictors were selected randomly
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predictors are presented in Additional file 1: Figures A1.1 and A1.2

Fig. 4 Partial dependence between observed site fire effects on artifacts and features and important predictors for archaeological sites within
perimeters of fires that occurred from 2000 to 2011 in the Jemez Mountains, New Mexico, USA (n = 858). (A) Two-way partial dependence (y-axis)
for Existing Vegetation Cover (EVC; each box) x Slope-Cosine_Aspect Index (x-axis). (B) Two-way partial dependence values for mean fire season
ERC (Energy Release Component, a composite fuel moisture index) and percent of normal, mean annual precipitation. Larger (more positive)
partial dependence values, shown as lighter green and yellow colors, indicate a greater likelihood that a fire effect will be observed at the
corresponding predictor value. Smaller (more negative) partial dependence values, shown as darker green and blue colors, indicate that a fire
effect is less likely at the corresponding predictor value. See Table 2 for full description of EVC classes and other variables. Plots for other
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were 1 to 1.3 degrees warmer than the 30-year normal,
and when average fire month ERC (ERCmo) values were
greater than 95 or average fire season ERC (ERCfs)
exceeded 70 (Fig. 4B; Additional file 1: Figure Al.1). Fire
effects were also more likely on sites with tree cover
versus sites with shrub or mainly herbaceous vegetation,
and this effect was amplified for sites with neutral or
slightly  positive ~ Aspect_Cos  values (Fig. 4A;
Additional file 1: Figure Al.1). Among EVT forest
classes, sites with ponderosa pine or piflon—juniper vege-
tation were most likely to have fire effects
(Additional file 1: Figures Al.1, Al.2). Among other
important weather predictors, probability of fire effects
appeared greatest when PRCPmo was <100% of normal,
at PRCPwin values ranging between 65 and 75% of
normal, or when PRCPan was 260% of normal
(Additional file 1: Figures Al.1, A1.2). The probability of
fire effects increased for sites with intermediate CTI
values (~8 to 10), on sites with less than 50% slope, and
on sites with more western aspects (HLI and Linear
Aspect; Additional file 1: Figures Al.1, A1.2).

Vegetation type (EVT) and vegetation cover (EVC)
were important for distinguishing between presence or
absence of fire effects, as indicated by comparisons of

predictor importance based on their usefulness for split-
ting data into classes (e.g, mean minimal depth and
number of nodes; Additional file 1: Figure A1.3, A1.7).
Analysis of the most frequent variable interactions
showed that the lowest mean minimal depth was
achieved when EVT and EVC occurred as the root (primary
split) with secondary splits by Elevation, Aspect_Cos, HLI,
and CTI (Additional file 1: Figure A1.3).

Site burn severity as a function of environment

Among post-fire site assessments, 20% (171) of sites
were identified as unburned, 60% (513) recorded low
burn severity, 13% (111) recorded moderate burn sever-
ity, and 7% (63) recorded high burn severity. Upsampling
created a new dataset in which data for under-
represented classes were upsampled until each severity
class had 513 observations. Models using all predictors
(full model), models without the least important cluster,
and models without the two least important clusters all
performed well (Additional file 1: Figure A1.4). The opti-
mal site burn severity model (accuracy = —0.92, Kappa =
0.91; see Additional file 1: Figure A1.4) retained 19 pre-
dictors after dropping the lowest ranking (FLM, CBD,
EVC, EVT, F40, and VCC). The final model using all
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observations gave an OOB of 6.49% with class errors of
5%, 2%, 3%, and 0.5% for unburned, low-, moderate-,
and high-severity classifications, respectively. Balanced
accuracy values are reported in Additional file 1.
Averaged across all categories, topographic predictors
were most important for individual tree accuracy and
were best able to partition the sites into the correct site
burn severity classes (Additional file 1: Figure Al.7).
Averaged across all classes, analysis of the most frequent
interactions showed that the lowest mean minimal depth
occurred when the Elevation variable formed a root and
various topographic variables formed secondary splits
(Additional file 1: Figure A1.6). The ERCmo and Elevation
pairs, although slightly less frequent, also gave low mean
minimal depth. These results correspond with importance
rankings for Elevation, topographic predictors, and
ERCmo derived from mean decrease Gini and accuracy
measures.

Archaeological sites designated as unburned or burned
at low or moderate severity exhibited a high degree of
overlap and were relatively clustered in multidimensional
space (Fig. 5), indicating similarity in predictor values
among and within these classes. Environmental character-
istics of sites with a recorded high burn severity were
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distributed across a much greater range of values, varied
more within their class, and were less likely to overlap
with other burn severity classes (Fig. 5). Within each
burn-severity class, predictor importance varied although
variable importance was generally similar for unburned,
moderate, and high burn-severity classes (Fig. 6).
Topographic predictors were highly important for distin-
guishing unburned, moderate, and high site burn severity
classifications (Fig. 6). As indicated by partial dependence
plots, high archaeological site burn severity was more
likely in settings with more southerly orientation (with
peak probabilities occurring at Aspect_Lin values of
around 130 to180 degrees, where 180 degrees = south), on
southwestern slopes (HLI values >0.8), and on southern
aspects or flatter slopes (more negative Aspect_Cos
values) (Fig. 7, Additional file 1: Figures Al.4, A1.5). High
burn severity was also more likely on steeper slopes, with
probabilities increasing when CTI < 6 and Slope > 100%,
and at elevations >2200 m. Moderate and low burn sever-
ity were more likely present on sites in settings where the
Slope-Cosine-Aspect Index neared 0 and at higher HLI
(Fig. 7). The likelihood of an unburned site classification
increased with increasing Aspect_Cos values and where
CTI > 5 and decreased as elevation and HLI increased
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Fig. 5 Multidimensional scatter (MDS) plot for observed site burn severity classifications for 858 archeological sites sampled after five fires (2000
to 2011) in the Jemez Mountains of New Mexico, USA. Four designations of site burn severity (unburned, low, moderate, high) were obtained
from post-fire assessments of archaeological sites and used to identify environmental predictors of burn severity using Random Forest. MDS
projects the proximity matrix produced by Random Forest to a 2-dimensional space (Dim 1 and Dim 2), in which more similar observations




Friggens et al. Fire Ecology (2021) 17:18

Page 13 of 19

Site burn severity class
Predictor variable Unburned Low Moderate High
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Fig. 6 Rank of importance (mean decrease Gini) of each variable for predicting each site burn severity class (unburned, low, moderate, high) as
determined by post-fire archaeological assessments. The Gini coefficient represents node impurity. Variables that lead to more homogenous
nodes give greater decreases in mean Gini. Variable importance was tested as part of an analysis to determine the best environmental predictors
of burn severity for 858 sites burned during five wildfires in the Jemez Mountains, New Mexico, USA, from 2000 to 2011. Numbers represent
variable importance rank, with 1 being most important. Predictors are presented in order of importance (greatest to least) for predicting sites
with a high severity designation. See Tables 1 and 2 for predictor definitions. Additional file 1 reports overall importance ranks for variables as
measured by accuracy and mean decrease in Gini

(Fig. 7). Some weather variables were important for pre-
dicting low burn-severity sites (Fig. 6) and partial depend-
ence plots show that low site burn severity was more
likely when ERCmo was >95, PRCPfs was >80%, PRCPan
was 260% of normal, TMINan was between 1.5 and 2.4
degrees above normal, and PDSImo was less than -4
(Additional file 1: Figures A1.4, A1.5).

Discussion

We found that the likelihood of observing fire effects on
archaeological sites, artifacts, or features was best esti-
mated with a combination of variables related to topog-
raphy, pre-fire weather, and fuel condition (Fig. 3).
Models indicated environmental thresholds above which
fire effects were more likely to be present, including fire
season minimum temperature at least 1.0 °C warmer
than the 30-year normal, high ERC during the fire sea-
son and fire month, and low winter precipitation. Fire

effects were more likely for sites located above 2300 m
in elevation, on sloped terrain, and under tree cover
(Fig. 4; Additional file 1: Figures Al.1, A1.2). When con-
sidering predictor interactions, the influence of topog-
raphy and fire-weather varied according to vegetation
type and cover (Fig. 4; Additional file 1: Figure A1.3). In
particular, fire effects were more likely to occur on for-
ested sites with more dense vegetation cover versus
those with shrub or herbaceous cover. The influence of
topographic predictors remained relatively consistent
across vegetation type and cover classes.

Our models for predicting fire severity at archaeo-
logical sites contrast somewhat with previous analyses
that identified topography and vegetation type or
structure as predictors of ecological burn severity, as
assessed by spectral (satellite derived) measures
(Dillon et al. 2011; Birch et al. 2015). Archaeological
site burn severity was best predicted by topographic
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Fig. 7 Partial dependence between site burn severity and environmental predictors for archaeological sites in the Jemez Mountains, New Mexico,
USA. Shown are six predictors determined to be important for predicting site burn severity in our study of 858 sites assessed after five wildfires
that occurred between 2000 and 2011: (A) Elevation, (B) Heat Load Index, (C) Slope-Cosine-Aspect Index, (D) Percent Slope, (E) Compound
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represented as follows: high burn severity is a short dashed line, moderate severity is a dotted line, low severity is a long dashed line, and
unburned is a solid black line. The y-axis represents the probability of observing a particular burn severity class for each predictor value, holding
all other predictors constant at their average value. Larger (more positive) partial dependence values correspond to a greater likelihood that a
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variables and pre-fire weather, whereas vegetation and
fuel cover, type, and amount were less important pre-
dictors (Fig. 6; Additional file 1: Figure Al.8). In
addition, our models indicated the importance of fuel
condition—as measured indirectly by variables that re-
flect fuel aridity (e.g., southern aspect, incident solar
radiation, surface heating, and soil moisture accumu-
lation)—for predicting potential site burn severity. In
general, increased probability of high site burn sever-
ity was associated with topographic settings indicative
of drier fuel conditions (e.g, trends for HLI and
Aspect_Cos, and CTI; Fig. 7; Additional file 1: Figures
Al.4, Al.5). Partial dependence plots indicated a large
distinction between high burn severity versus all other
severity classifications (Fig. 7; Additional file 1: Figures
Al4, Al.5). This result may indicate a threshold below
which fire effects are more difficult to identify or classify,
resulting in less specific predicted intervals for burn-
severity classes other than high severity.

Unburned sites were best predicted by topographic vari-
ables, and these predictors were also best able to distinguish
between unburned sites versus those with recorded low or
moderate burn severity (Figs. 6, 7), but low burn-severity
sites were best predicted by weather conditions (Fig. 6). We
interpret this to mean that, all else being equal, if a site were
not predisposed by its vegetation class and topographical
position to burn at high severity, then the likelihood of
the site burning at low versus moderate severity is
determined by local weather conditions and, specific-
ally, those that directly relate to lower fuel moisture.
The presence of archaeological fire effects was best
predicted by the same weather variables (ERCmo,
PRCPmo, and PRCPan) found important for predict-
ing low burn-severity sites (Figs. 3, 6). We interpret
this to mean that the likelihood of observing a fire ef-
fect is greater when local weather conditions create
drier fuelbeds.

Low burn-severity sites predominated among post-
fire archaeological assessments, yet were among the
most difficult to correctly classify using Random For-
est algorithms. We suggest two reasons for this: first,
given their larger representation, sites classified as
low burn severity likely occurred across a broader en-
vironmental range as compared to other classes. Sec-
ond, because sites classified as low burn severity were
the most common in our dataset, our resampling
scheme (upsampling less frequent categories) may not
have changed the proportional frequency of site char-
acteristics. However, for less common classes (e.g,
high site burn severity, 7% of the dataset before
upsampling), upsampling might emphasize a relatively
narrower range of characteristics, resulting in a more
specific range of predictor values. If true, the ability
of our models to identify ecological conditions
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associated with high burn severity may be less robust
than indicated by the performance metrics.

Random Forest is a powerful tool for classification
problems such as those presented in our study, but it
does not lend itself to easy interpretations of why
some variables are more important predictors than
others. Model optimization procedures favored models
with high numbers of predictors, and partial depend-
ence plots of those predictors indicate that the prob-
ability of observing fire effects or a certain site burn
severity class depended upon a suite of interactions
(Figs. 4, 7; Additional file 1: Figures Al.l1 through
A1.6). Partial dependence plots are one method for
visualizing relationships, and we considered individual
and additive relationships between variables and pre-
dicted values using these plots (e.g, Figs. 4 and 7;
Additional file 1: Figures Al.1 through Al.5). Partial
dependence plots displaying predicted trends across
the range of values for single variables indicate that
most predictors exhibited non-linear relationships
with observed fire effects. Some of these non-linear
patterns are likely driven by complex interactions
among predictors that influence probability of observ-
ing fire effects or high fire severity. By examining the
relative structure of individual trees through Ran-
domForestExplainer, we identified potential pairs
of variables driving each model’s ability to distinguish
among sites by fire effect and severity, important in-
teractions within these systems (Additional file 1:
Figures Al.3, Al.6). However, it remains outside the
scope of the current analysis to assess how this co-
variation influences likelihood of seeing fire effect or
severity.

Although models performed well against test data
(Additional file 1: Figure Al.2), caution may be war-
ranted when extrapolating these results to other sites
given the complexity of predictor interactions and the
nature of our study design. Our sample size was robust
and spanned a wide range of forest types and topo-
graphic settings, but known site location is objectively
constrained and biased within the archaeological record
to places where (1) past peoples chose to live, work, or
leave material signs of their presence; and (2) archaeolo-
gists have conducted surveys and assessments that led to
detection and recording of sites. These locations likely
do not include all possible, unique settings within the
Jemez Mountains or other similar southwestern US
landscapes. However, we posit that our large sample size
is representative within the settings where archaeological
sites are typical and where post-fire surveys and assess-
ments have been conducted (over the past five decades).
Our models’ ability to predict fire effects in other
areas—for example, those with very different environ-
mental settings or fuel types or those with archaeological
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sites and artifacts of different sensitivity to fire im-
pacts—may be limited.

Conclusions

In this study, we analyzed the relationships among envir-
onmental variables and observed fire effects on archaeo-
logical sites, artifacts, and features. Our study area, the
Jemez Mountains of New Mexico, is a region with a
dense and varied prehistoric record that is significant in
the context of land management and research on past
human-environment interactions and cultural history,
and is of great importance for contemporary descendant
communities (Liebmann et al. 2016). Our analysis identi-
fied the critical environmental settings and conditions
that are related to the presence and severity of archaeo-
logical fire effects in this region. Increased high-severity
wildfire—driven by climate changes and legacy land use
and management activities—increases the vulnerability
of archaeological sites to negative fire impacts that are
likely to compromise the integrity, interpretation, and
cultural significance of the prehistoric material record.
Archaeological site burn severity is largely linked to
topographic or weather variables related to drier, more
combustible fuels, conditions that occur with warming
and drying trends related to anthropogenic climate
change (Westerling and Swetnam 2003). As a result, cli-
mate changes are likely to increase the potential for
high-severity fire activity on cultural landscapes where
fuels are not limiting (Parks et al. 2015; Abatzoglou and
Williams 2016). As cultural resource considerations are
increasingly integrated into fire management planning
and operations (Lissoway and Propper 1988; Haines and
Schofer 2008), models for predicting where and when
fires may negatively affect the archaeological record can
be used to prioritize fuel treatments, inform fire man-
agement plans, and guide post-fire rehabilitation efforts.
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