Rapp et al. Fire Ecology (2021) 17:35 H
https://doi.org/10.1186/5s42408-021-00119-y Flre ECOIOgy

‘0
)‘ ) Association .
N /7 Fire

Ecology

o

ORIGINAL RESEARCH Open Access

Check for
updates

Assessing the role of short-term weather
forecasts in fire manager tactical decision-
making: a choice experiment
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Abstract

Background: Weather plays an integral role in fire management due to the direct and indirect effects it has on fire
behavior. However, fire managers may not use all information available to them during the decision-making
process, instead utilizing mental shortcuts that can bias decision-making. Thus, it is important to evaluate if (and
how) fire managers use information like weather forecasts when making tactical decisions. We explore USDA Forest
Service fire manager confidence in relative humidity, precipitation, and wind models. We then use a choice
experiment where key weather attributes were varied to explore how sensitive fire managers were to changes in
specific weather variables when choosing to directly or indirectly attack a fire that is transitioning to extended
attack.

Results: Respondents were less confident in the accuracy of wind and precipitation forecasts than relative humidity
or weather forecasts more generally. The influence of weather information on the decision depended on the
framing used in the choice experiment; specifically, whether respondents were told the initial strategy had been to
directly or indirectly attack the fire. Across conditions, fire managers generally preferred to indirectly attack the fire.
Decisions about the tactics to apply going forward were more sensitive to time in season when the fire was
occurring and wind and precipitation forecasts than to other attributes.

Conclusions: The results have implications for the design of decision support tools developed to support fire
management. Results suggest how fire managers’ use of fire weather information to evaluate forecast conditions
and adjust future management decisions may vary depending on the management decision already in place. If fire
weather-based decision support tools are to support the use of the best available information to make fire
management decisions, careful attention may be needed to debias any effect of prior decisions. For example,
decision support tools may encourage users to “consider the opposite,” i.e, consider if they would react differently
if different initial decision with similar conditions were in place. The results also highlight the potential importance
of either improving wind and precipitation forecast models or improving confidence in existing models.
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Resumen

Antecedentes: EI tiempo meteoroldgico juega un rol integral en el manejo del fuego debido a los efectos directos
e indirectos que tiene en el comportamiento del fuego. Desde luego, los responsables del combate y manejo del
fuego pueden no usar toda la informacion de que disponen durante el proceso de toma de decisiones operativas,
utilizando en cambio atajos mentales que pueden sesgar los procesos de decision. Por lo tanto, es importante
evaluar si (y como), los responsables del manejo del fuego usan la informacién, como por ejemplo los prondsticos
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otros atributos.

meteoroldgicos, cuando toman decisiones tacticas. Exploramos la confianza de los responsables de manejo del
fuego del Servicio Forestal de Departamento de Agricultura de los Estados Unidos (USDA) sobre los datos de
humedad, precipitacién y modelos de viento. Usamos luego una alternativa de experimento donde los atributos
clave fueron variando para explorar cuan sensibles se mostraban los responsables del combate o manejo del fuego
ante cambios en variables meteoroldgicas especificas al momento de elegir atacar directa o indirectamente un
incendio, cuando este estaba en un estado transicional hacia un ataque extendido.

Resultados: Los que respondieron estaban menos confiados en la exactitud de los pronésticos de viento y
precipitacion que en la humedad o en los prondsticos de manera general. La influencia de la informacion
meteoroldgica en la decision dependié del encuadre usado en el experimento; de manera especifica, si los que
respondieron habifan sido alertados sobre si la estrategia inicial habfa sido atacar el incendio de manera directa o
indirecta. En todas las condiciones, los responsables del manejo del fuego generalmente prefirieron atacar
indirectamente el fuego. Las decisiones sobre las tacticas a aplicar hacia adelante fueron mas sensibles al periodo
de la estacion en la cual el fuego estaba ocurriendo y también al prondstico del viento y precipitacion mas que en

Conclusiones: Los resultados tienen implicancias para el diseio de herramientas desarrolladas para sustentar la
toma de decisiones en el manejo del fuego. Los resultados sugieren como los responsables del manejo del fuego
usan la informacién meteoroldgica para evaluar las condiciones pronosticadas y ajustar las futuras decisiones de
manejo que pueden depender de decisiones ya tomadas. Si las herramientas de decisién basadas en prondsticos
meteoroldgicos indican apoyar el uso de la mejor informacion disponible para decidir acciones de manejo del
fuego, una cuidadosa atencion debe ser necesaria para corregir cualquier efecto de decisiones anteriores. Por
ejemplo, las herramientas de decisién podrian recomendar a los usuarios “considerar lo opuesto” (i.e. considerar si
ellos podrian reaccionar de manera diferente si las decisiones iniciales con las mismas condiciones prevalecieran.
Los resultados también subrayan la importancia potencial de, o mejorar los modelos de prondsticos de viento y
precipitacion, o mejorar la confianza en los modelos existentes.

Abbreviations
ERC: Energy release component
FMO: Fire management officer
HRRR: High Resolution Rapid Refresh
IMET: Incident meteorologist
IMT: Incident management team
NDEFD: National Digital Forecast Database
POD: Potential operational delineation
USDA: United States Department of Agriculture
WEDSS: Wildland Fire Decision Support System

Background

Purpose

Reintroducing fire to the landscape and transforming
the fire management paradigm away from aggressive and
costly suppression towards thoughtful risk management
requires shifts in practice at both tactical and strategic
levels of fire management from initial attack in the earli-
est stages of a fire to mop-up activities as fires end. As

fires progress, each decision will shape and constrain op-
portunities for future decisions. For example, nearly 88%
of all fires in the USA from 1992 to 2018 were contained
during initial attack and kept small (<10 acres) (Short
2021), but defaulting to containment and suppression
goals during initial attack shapes the decision space of
future fire managers by contributing to landscape condi-
tions that increase the long-term risk of catastrophic,
uncontrollable wildfires (Calkin et al. 2015).

Fostering risk management also requires consideration
of how decisions are made under risk and uncertainty.
Decision-making with risk involves choices where the
exact outcome is unknown, but the possible outcomes
that could occur, and their probability of occurring, are
known. In comparison, decision-making under uncer-
tainty involves making decisions when possible out-
comes are not known or their probability of occurring is
not known. Fire managers work in uncertain and time-
pressured environments and may not have the time or
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ability to deliberatively consider all information available
to them. When people have insufficient time or re-
sources to process information, they often rely on heu-
ristics. Heuristics are simple rules and guidelines, or
mental shortcuts meant to simplify and speed up
decision-making by emphasizing some information while
ignoring other information (Gigerenzer and Gaissmaier
2011; Simon 1956). Heuristics can be adaptive as they
can enable decision-makers to make acceptably accurate
decisions more quickly in some cases (Kahneman and
Klein 2009; Gigerenzer 2008). However, heuristics can
also systematically lead people astray from relevant in-
formation that could support more effective decision-
making. Thus, heuristics can bias decision-making.
There are a number of known biases that are regularly
evident in decision-making. Among these, some com-
mon biases relevant for fire management include the
availability bias, where one over-estimates the probability
of events they have recently experienced occurring again
in the future, and the phenomenon of anchoring-and-
adjustment, where decision-makers anchor to initial in-
formation they receive and insufficiently adjust their be-
liefs in response to new information (Tversky and
Kahneman 1974; Maguire and Albright 2005).

Even experts with years of training and experience in a
particular decision context are prone to cognitive biases.
A growing body of research has specifically examined
the decisions of fire managers. These studies find that
fire managers are subject to many of the same biases as
others. In particular, research has found that fire man-
agers appear risk-seeking (i.e., more willing to accept
risky alternatives than alternatives with a fixed outcome)
when choices are framed as the opportunity to minimize
losses, but risk averse when the same outcomes are
framed as maximizing gains (Wilson et al. 2011); this ap-
parent contradiction in decisions based on how they are
described was first recognized by Kahneman and
Tversky and Kahneman (1974). Fire managers are also
influenced by framing with regard to personnel safety;
when information is framed in an affectively rich way,
fire managers are more sensitive to personnel exposure
than when information is presented analytically (Hand
et al. 2015). Moreover, fire managers work in conditions
of risk and uncertainty that may lead them to exhibit
myopia, or excessive discounting of future outcomes in
favor of short-term gains (Maguire and Albright 2005).
Finally, fire managers display non-linear probability
weighting; managers are more sensitive to changes in
the probability of success over moderate probabilities
than low or high probabilities (Wibbenmeyer et al.
2012). While several decision support tools have been
developed to support thoughtful and deliberative
decision-making (e.g., Calkin et al. 2011), the mere pres-
ence of additional information may not lead to more
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defensible or risk-informed decisions (Drews et al. 2015;
Rapp et al. 2020; Noble and Paveglio 2020). The purpose
of this paper is to contribute to this growing body of lit-
erature by exploring how fire managers use weather in-
formation in tactical decision-making. We focus on a
key decision point for large fire management, the transi-
tion from initial to extended attack. Specifically, we
examine how fire managers use weather forecasts when
deciding whether to directly or indirectly attack a fire 48
h into an event. We chose this decision context because
the transition from initial to extended attack marks an
increase in complexity and is frequently accompanied by
new personnel arriving on the incident.

Literature review: tactical decision-making and fire
weather

On large fires that escape initial attack, the Incident
Command System provides the framework for who has
strategic and tactical decision-making authority. Under
this system, line officers (e.g., local agency personnel
with decision-making authority) work with incident
commanders to establish the strategic objectives for the
fire. Strategic objectives pertain to the overarching strat-
egy of the fire, such as whether it will be managed for
suppression, resource benefit, or both and where (Taber
et al. 2013). In comparison, tactical decisions are made
by the incident management team (IMT) and pertain to
on-the-ground decisions about how the fire will be man-
aged to achieve the strategic objectives. For example, the
line officer might identify protecting a high-value water-
shed as a strategic objective, leaving the IMT to make
the specific tactical decisions about what resources to
deploy where to protect the watershed. While strategic
objectives fundamentally inform the decision space of
the IMT, the tactical decisions of the IMT will also
shape the final fire outcomes. For example, on fires stra-
tegically managed for either suppression or fire use, the
IMT may decide to attack the fire directly (constructing
a fire line along the active fire perimeter) or indirectly
(constructing the line away from the perimeter and pos-
sibly conducting burnout operations).

Tactical decisions about how a fire is managed are not
well understood in terms of both how they are made
and how they influence fire outcomes. Specifically, while
fire size, weather, and landscape characteristics are re-
lated to the ultimate financial cost of a wildfire, it is un-
clear how they influence tactical decisions like resource
ordering and deployment (Hand et al. 2017). Further-
more, it is difficult to quantify and evaluate how effective
certain resources are at containing and controlling fires
(Thompson et al. 2017b). Without understanding re-
source effectiveness, it is difficult to evaluate, for ex-
ample, whether dozers or hand crews would be more
efficient for a given area (Plucinski 2019). Given these
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conditions, it is difficult to calculate efficient tactical al-
ternatives or provide tools to aid managers as they select
between alternative tactical actions (Dunn et al. 2017).
Several decision support tools have been developed to
aid strategic decision-making (Calkin et al. 2011;
Thompson et al. 2017a; Thompson and Calkin 2011), in-
cluding the Wildland Fire Decision Support System
(WEDSS) (NIFC 2019) and more recently potential wild-
land fire operational delineations (PODs) (Thompson
et al. 2016). These tools can provide tactically relevant
information, but have some limitations. For example,
PODs do not provide dynamic information over the
course of large fire events (O’Connor, Thompson, and
Rodriguez y Silva 2016). Similarly, WFDSS cannot help
fire managers evaluate and compare the outcomes of dif-
ferent alternative tactical actions. However, the fire be-
havior and weather information it provides can inform
the feasibility and likelihood of operational tactic success
(Rapp et al. 2020).

Indeed, weather information is critical to the likely
success of wildland fire operations because weather,
along with fuels and terrain, is one of the primary
drivers of fire behavior (Countryman 1972). Weather in-
formation is so important to wildland fire fighting opera-
tions, and it is listed as the first of 10 Standard Fire
Orders (systematically organized rules applied to all
fires) that are taught to every firefighter on their first
day of training: “Keep informed on fire weather condi-
tions and forecasts.” Fire behavior characteristics, such
as flame length, fire intensity, and spread rates, deter-
mine how safely firefighters can directly engage a wild-
fire and these factors may be used heuristically to guide
choices of fire suppression tactics such as direct or indir-
ect attack (Andrews et al. 2011). Weather conditions
that promote rapid spread and high intensity can pre-
vent initial firefighting resources from containing a new
fire (Arienti et al. 2006), leading to a fire that spreads
out of control for extended periods of time. Low relative
humidity, strong near-surface winds, an unstable atmos-
phere, and severe drought can promote extreme fire be-
havior and make wildfires difficult to control (Werth
et al. 2011; Tedim et al. 2018). These extreme fires often
burn more area or cost more to suppress than fires that
do not occur during extreme fire weather (Fernandes
et al. 2016; Finney et al. 2009; Hand et al. 2017).

Firefighters and fire managers are accustomed to as-
similating fire weather information in a range of forms
and from a variety of sources. This information can im-
pact decisions made at a variety of temporal scales and
across a range of administrative levels. For example,
weather information, often transformed into fire danger
indices such as the Energy Release Component (Jolly
et al. 2019), can be used to support pre-incident plan-
ning such as seasonal staffing, open burning restrictions,
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and public awareness activities aimed at preventing
human-caused wildfires. This weather-derived informa-
tion is also used to inform “run cards” that determine
the numbers and types of firefighting resources dis-
patched during initial attack when fires do occur (Schlo-
bohm and Brain 2002). During initial attack, fire
managers monitor local weather conditions and request
spot weather forecasts specific to their location (e.g.,
Wall et al. 2017) to assess the potential for rapid changes
in fire behavior that could affect their safety or that
could impact local communities or valued resources. If
fires are not contained through local management efforts
and IMTs are assigned, local weather forecasts are often
produced on-site by an Incident Meteorologist (IMET)
and forecast information is provided daily as part of the
Incident Action Plan. For large fires that escape initial
attack, fire managers are required to create a Published
Decision through the Wildland Fire Decision Support
System, which uses weather forecasts to inform fire
spread and behavior projections produced by the Wild-
land Fire Decision Support System (Noonan-Wright
et al. 2011). A Relative Risk Assessment (RRA) is a com-
ponent of these published decisions, and these are devel-
oped collaboratively using observations, models, and
data and are intended to capture the risk/reward basis of
each decision and they are updated throughout the dur-
ation of the event as conditions change (Noonan-Wright
and Seielstad 2021). The resulting information is used to
minimize firefighter risk, maximize likelihood of con-
tainment success, and protect communities and infra-
structure. As these examples illustrate, the use of
weather information is ingrained into the wildland fire
system. In fact, evidence suggests IMTs order resources
less based on previous fire activity and more based on
weather forecasts and their projected impact on fire be-
havior (Bayham et al. 2020). Given the importance of
weather information to fire management decisions, it is
critical to understand how weather data are used to en-
sure the best possible information is available for time-
sensitive, tactical decision-making across a range of ad-
ministrative levels and temporal scales.

While the provision of weather information is critical,
the presence or availability of information does not guar-
antee its use by the IMT (Rapp et al. 2020; Drews et al.
2015; McLennan et al. 2006; Noble and Paveglio 2020).
Existing decision support tools are intended to help fire
managers engage in deliberative, stepwise decision-
making (Zimmerman 2012); however, in practice, fire
managers may still use the information provided by
these tools, including weather forecasts, in a heuristic
way. Specifically, fire managers may use weather infor-
mation to recognize patterns and assess the extent to
which a situation is similar to their previous experience
(Drews et al. 2015; Lipshitz et al. 2002; Klein 2008).
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Furthermore, fire managers are susceptible to cognitive
biases like framing effects, where the presentation of in-
formation influences preferences (Wilson et al. 2011;
Hand et al. 2015). IMT personnel may feel pressure
from the line officer, agency, or the public in general to
manage fires in ways they may not believe is ideal. For
example, spending more money and using tactics they
believe are ineffective but the public wants to see, such
as the ineffective use of aviation resources during pe-
riods of extreme weather (Canton-Thompson et al.
2008; Calkin et al. 2012). These challenges with using
weather information are not unexpected or an inherently
negative evaluation of fire managers, who operate in an
environment categorized by considerable uncertainty,
high risk, and multiple constraints (Kahneman and Klein
2009; Thompson et al. 2017b). However, it does ultim-
ately suggest weather information may not be inter-
preted consistently across decision-makers or contexts.

Because weather is an important source of dynamic in-
formation available to IMTs during fire events, this
study focuses on how fire weather informs fire manager
tactical decision-making. Questions consider which
pieces of weather information are used by fire managers
and how they are used. We ask these questions specific-
ally as they relate to the tactical decision to attack a fire
directly or indirectly in the transition from initial to ex-
tended attack.

Methods

Subjects

The data presented here come from a web-based survey
sent to federal fire managers working for the United
States Department of Agriculture (USDA) Forest Service.
For this survey, we specifically targeted fire management
officers (FMOs) (i.e., assistant fire management officers,
forest fire management officers, etc.). To be an FMO, in-
dividuals need several years of operational firefighting
experience and hold qualifications to serve as division
supervisors, operations section chiefs, or incident com-
manders on IMTs. We developed our initial list of
FMOs from internal email lists (z = 239) and augmented
and corrected this list by contacting individual Forest
Supervisors to check that our list was up to date for
their forests (n = 708). After removing invalid emails, we
had a final list of 669 potential respondents. Surveys
were conducted over Sawtooth, a web-based survey and
choice experiment platform. Two hundred forty-three
respondents or 36% responded. After removing respon-
dents who did not complete the choice experiment, the
final sample included 182 respondents for an adjusted
response rate of 27%. This response rate is in line with
previous online surveys of federal fire managers, with re-
sponse rates varying from 25 to 50% (e.g., Hand et al.
2015; Wibbenmeyer et al. 2012; Wilson et al. 2011).
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Descriptive measures

The survey included questions about how long partici-
pants had worked in fire and in their current job as well
as their gender, education, and what role they served as
most frequently on IMTs. Additionally, to control for
other potential influences on decision-making beyond
fire weather information, we asked respondents whether
they perceive direct or indirect attack as riskier for fire-
fighter safety using a bipolar 5-point scale ranging from
“direct attack is much riskier” to “indirect attack is much
riskier” where the middle point equals indifference. Add-
itionally, we measured respondent confidence in weather
models, specifically how frequently they believe wind,
precipitation, relative humidity (RH), and general wea-
ther forecasts are accurate on a 4-point ordinal scale. To
compare confidence across weather models, we con-
ducted post hoc pairwise ¢-tests with Bonferroni adjust-
ments for multiple comparisons.

Choice experiment rationale and description

The survey also included an embedded choice experi-
ment. Choice experiments, or conjoint analyses, are fre-
quently used to elicit consumer preferences. In natural
resource management literature, these tools are often
used to measure the willingness to pay for ecosystem
services. Discrete choice experiments assume that people
choosing between alternatives maximize their personal
utility. In the context of fire management, maximizing
personal utility is considered to align with maximizing
optimal fire management outcomes (Calkin et al. 2012).
Choice experiments highlight which attributes are the
most important factors influencing decision-maker
choices. Thus, choice experiments allow us to examine
how different levels of a given attribute, such as the
varying probability of wetting rain, influence which tac-
tics fire managers believe are best for a fire. Choice ex-
periments also allow comparisons of the relative
importance of different attributes, for example, whether
fire managers are more sensitive to changes in precipita-
tion or changes in wind speed when making tactical
decisions.

Before beginning the choice experiment, we provided
all respondents with the same description of an ongoing
wildfire event (see Fig. 1 for a full description). We de-
signed this introduction to be ambiguous such that it
was not immediately clear whether direct or indirect at-
tack was safer or more likely to succeed, and both direct
and indirect attacks were politically feasible and accept-
able based on existing policy. There are substantial chal-
lenges in designing a wildfire scenario that is realistic in
light of the real-world complexity associated with such
decisions. Some simplification is required given the limi-
tations posed by experimental research; however, we
sought to develop a context for their later decision that
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Imagine the following event:

A lightning-ignited fire is burning in mixed conifer and has escaped initial attack and
overwhelmed initial resources. The fire is currently 150 acres and is being managed as a Type
3 event and you are the most qualified individual (for example, ICT3 or DIVS) arriving on
the incident. It is an average fire season in the area where the fire is occuring, and you
may or may not get more resources if you request them. Pictures of the general area have
been provided below. You have requested short-term fire behavior analysis and a spot weather
forecast. You are 48 hours into the event, it is early morning, the nearest primary care
center is less than an hour away, and there have been no “incidents within the incident”.

Your local planning documents allow you to manage fire. The public has mixed feelings;
while some dislike fire and favor suppression, others understand the ecological role of
fire and are more tolerant of non-suppression tactics. The nearest community is ten miles
away from where the fire started.

The fire is burning in moderate terrain with snag potential. While there are areas to
directly engage with an anchor point, weak trees may be present. The area of indirect attack
features roads about a mile away and ridges between 0.5 - 1.5 miles away from the fire
perimeter.

Pictures of the general area:

Fig. 1 Choice experiment scenario introduction
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Table 1 Description of each experimental condition
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Condition
Condition 1 (n = 103) Condition 2 (n = 79)
Initial team Indirect Direct
strategy
Choice Willingness to switch to direct attack Willingness to switch to indirect attack
experiment
measured

Interpretation of  Attribute level is more amenable to direct attack

positive utility

“NONE”
alternative
interpretation

Utility of a given alternative must exceed the utility of NONE for
switching to direct attack to be preferable to the status quo

Attribute level is more amenable to indirect attack

Utility of a given alternative must exceed the utility of
NONE for switching to indirect attack to be preferable
to the status quo

included or controlled for the primary variables that in-
fluence decisions about direct versus indirect attack so
we could assess the unique effect of weather informa-
tion. To develop the background context or introduction
as well as the critical attributes and levels to include, we
sought feedback from several USDA Forest Service sci-
entists with extensive experience working on these is-
sues. We also conducted a focus group with FMOs from
one USDA Forest Service region where scenarios were
reviewed, discussed, and subsequently adjusted.

After reading the introduction, respondents were
asked on a scale of 1 (strongly prefer direct attack) to
5 (strongly prefer indirect attack) to what extent they
believed direct or indirect attack was preferable given
the information provided. Respondents were then ran-
domly assigned to one of two conditions (Table 1); in
the first condition (# = 103), respondents were told
the initial attack team had decided to indirectly attack
the fire in the first 48 h. Now that the respondent
was arriving on the scene, they would choose whether
to stick with the indirect attack or switch from indir-
ect to direct attack. In the second condition (n = 79),
respondents were told the initial team had decided to
directly attack the fire in the first 48 h, and now that
the respondent was arriving on the scene, they would
choose whether to stick with the direct attack or
switch to the indirect attack. In both conditions, we
asked respondents to what extent they agreed with
the initial attack team’s decision on a scale of 1
(strongly disagree) to 5 (strongly disagree).

Table 2 Summary of attributes and levels in the choice experiment

Respondents were then presented with nine choice
sets or nine opportunities to select a scenario where
they would switch the strategy or indicate a prefer-
ence for remaining with the current strategy. Each
choice set contained three scenarios that varied
across five attributes: energy release component
(ERC), time in season, forecasted precipitation, fore-
casted relative humidity, and forecasted wind. The
three weather attributes (precipitation, RH, and wind)
were used to generate a map of potential fire spread
for each scenario and this map was also provided to
respondents. In each of the choice sets, respondents
were instructed to examine the three scenarios and
select the one for which they would most support
switching the strategy, or to indicate they would con-
tinue with the initial team’s strategy (labeled as
“NONE” as they would not switch the strategy in any
of the scenarios). All attributes and possible levels
are summarized in Table 2. An example of a choice
set respondents could see is provided in Fig. 2. After
the choice set, respondents were provided an open-
ended box where they could describe what factors
were the most important in influencing their deci-
sion. We coded open-ended responses and calculated
how frequently each factor was mentioned across the
two conditions.

Choice experiment analysis
We used Sawtooth Software SSI Web to conduct our
online discrete choice experiment and determine both

Attribute Attribute levels
Forecasted wind Slightly windy
Forecasted relative humidity Humid

Forecasted precipitation No rain forecasted

Time in fire season Early

Energy release component Trending downwards toward 60%

Windy Very windy
Moderate Dry

High probability of wetting rain
Middle Late

Stable around 80% Trending upwards toward 90%
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Forecasted Wind

Forecasted
Humidity

Forecasted
Precipitation

Time in fire
season

Energy release

image in a new window

Click here for larger
image in a new window

Click here for larger
image in a new window

Very windy

Humid

High probability of wetting
rain

Early

Trending downwards toward

Slightly windy

Dry

No rain forecasted

Early

Stable around 80%

Slightly windy

Moderate

No rain forecasted

Late

Trending upwards toward

component 60%
(ERC)

Select

Fig. 2 Example choice set

NONE: | would only directly attack ALL OF these fires

90%

Select Select

Select

the necessary number of choice sets given the number
of attributes and levels, as well as how the attribute
levels would be assigned to each scenario within the
choice set. Many choice experiments use a fixed orthog-
onal design to limit the total number of choice sets re-
spondents must see to calculate unbiased coefficients.
We used Sawtooth’s balanced overlap method of ran-
domized design. This method allows some pairs of attri-
butes to co-occur, reducing the number of choice sets a
respondent must complete without significant loss in re-
liability (Sawtooth Software 2017). In balanced overlap
designs, respondents see each level of any given attribute
an approximately equal number of times. Each level of
each attribute may not appear an equal number of times,
especially if attributes vary by how many levels they have
(e.g., our precipitation attribute has two levels and our
relative humidity attribute has three levels).

Choice experiments use probabilistic modeling to separ-
ate the overall utility of an alternative lJ; into the observ-
able factors V; of a given alternative A and the
unobservable factors ¢;. Here, we are calculating the utility
of each specific scenario in the choice set as the

alternative. This random utility model is represented by
the following equation.

Uj=VjA)+e

We estimated our random utility model using hierarch-
ical Bayesian (HB) analysis. HB analysis has two levels.
The upper level assumes individual vectors of part-worths
are described by a multivariate normal distribution. The
lower level assumes that the probability that an individual
selects a given scenario can be described by a logit model,
where the utility of each scenario is the sum of the part-
worths of its attribute levels (Johnson 2000). HB iteratively
calculates individual part-worths and average utilities for
the sample to examine how respondents differ from sam-
ple averages. After thousands of calculations, the solution
converges. Calculations after convergence are averaged to
get part-worth utility coefficients. We report on two mea-
sures, the average part-worth utilities for each level of
each attribute and the overall importance of each attri-
bute. For each attribute, the sum of the part-worths of
each level is zero. Consequently, negative part-worths do
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Table 3 Descriptive statistics of agency pressure, risk perception, and forecast reliability

Variable Mean Median Range
Perceived risk of direct and indirect attacks 294 3 1-5
General forecast reliability 2.90 3" 1-4
Wind forecast reliability 265 3" 1-4
Precipitation forecast reliability 259 3" 1-4
Relative humidity forecast reliability 284 3" 1-4

“Corresponds to “direct attack and indirect attack are equally risky”
“Corresponds to “they are accurate 51-75% of the time”

not necessarily reflect negative utility, but rather a smaller
utility than positive part-worths. Overall importance is a
study-specific measure of how important a given attribute
is compared to other attributes in the choice experiment.
It is influenced by the range of the part-worth utilities of
the attribute; the larger the range of part-worths for a
given attribute, the more important it is. To calculate im-
portance, the relative range of part-worth utility for each
attribute for each respondent is calculated as a percent of
the total range across attributes and then averaged across
respondents (Orme 2010). Thus, the importance measures
of all attributes sum to 100%, and measures of importance
are ratio-scaled, which is to say an attribute with an im-
portance of 50% is twice as important as an attribute with
an importance of 25%. Therefore, in interpreting the re-
sults, the higher the utility score of a particular scenario,
the more likely respondents are to switch from the default
or initial attack decision.

Results

Respondent demographics

Respondents were very experienced in fire management,
on average serving 8 years in their current position and
24 years in fire management overall. Respondents’ roles
varied: 32% indicated they most frequently served as div-
ision supervisors, 26% as incident commanders (types 1—
3), 18% as operations section chiefs, and 24% in other
roles, e.g., technical specialists, safety officers, and task
force leaders. Most of our respondents (88%) identified
as male and a majority (69%) had at least a bachelor’s
degree.

Risk perception and forecast reliability

The majority of respondents (56%) believed direct and
indirect attacks were equally risky for firefighter safety
(Table 3). Respondents tended to have moderate to high
confidence in all weather forecasts, indicating that fore-
casts were reliable 51-75% of the time (Table 3). How-
ever, we did find that average confidence differed
significantly across models (df = 3, F = 16.003, p < .001).
Pairwise t-tests indicate that respondents have lower
confidence in precipitation and wind forecasts than rela-
tive humidity or weather forecasts in general (p < .05)
(Table 4).

Choice experiment introduction and initial attack decision
While we intended the initial choice experiment
introduction to be ambiguous such that respondents
would not automatically prefer direct or indirect at-
tack, two-thirds (68%) of respondents believed the in-
direct attack was at least somewhat more preferable
than direct attack after reading the introduction (¥ =
3.73). Later, when judging how much they agreed
with the initial team’s decision to either directly or
indirectly attack the fire, respondents were more sup-
portive of the initial team’s decision to indirectly at-
tack (t = 4.8, p < .001). Specifically, respondents who
were told the initial team indirectly attacked the fire
tended to agree with the initial team’s decision (¥ =
4.03), while respondents who were told the initial
team directly attacked the fire neither agreed nor dis-
agreed with the initial team’s decision (£ = 3.20).

Table 4 Pairwise comparisons of average reliability of weather forecasts with Bonferroni correction

Model (/) Model (J) Mean difference (/ —J)  Std. error  Bonferroni adj. p-value  95% confidence interval for difference
General Wind 0.256 0.0523 <.001 0.116, 0.396
Precipitation 031 0.0523 <.001 0.171, 0451
Relative humidity ~ 0.067 0.0513 1.00 -0.07, 0.204
Wind Precipitation 0.055 0.0643 1.00 -0.117,0.227
Relative humidity ~ —0.189 0.0558 0.005 —0.338, —0.040
Precipitation Relative humidity ~ —0.244 0.0618 <001 -0409, -0.079




Rapp et al. Fire Ecology (2021) 17:35

Table 5 Importance of each attribute across choice experiments
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Condition 1: Indirect to direct attack

Condition 2: Direct to indirect attack

Attribute Average importances Standard deviation Average importances Standard deviation
Precipitation 18.74 1246 3146 14.23
Relative humidity 841 342 10.97 497
Wind 19.31 7.71 1244 542
Seasonality 3740 12.85 23.15 16.35
Energy release component 16.15 7.50 2197 8.69

Choice experiment outcomes

Condition 1: Switching from indirect to direct attack

In this first condition, respondents chose whether to
switch from indirect to direct attack. Seasonality was the
most important attribute influencing this decision (aver-
age importance score = 37.40; see Table 5), indicated by
the large range in the utility scores with being early in the
season having the highest part-worth utility and being late
in the season having the lowest part-worth utility of all at-
tributes and levels. The highest part-worth utility for early
in the season indicates that respondents have a stronger
preference to switch to direct attack when it is early versus
middle or late in the season (Table 6). Wind was the sec-
ond most important attribute (average importance score =
19.31 indicating it is approximately half as important as
seasonality), with respondents preferring to switch to dir-
ect attack when the forecasted wind was low (described as
slightly windy) compared to when the forecasted wind was
high (described as very windy). Precipitation was the third
most important attribute (average importance = 18.74).

Table 6 Utility of each attribute across choice experiments

Respondents have a stronger preference for switching to
direct attack when wetting rain is forecasted compared to
no rain in the forecast. ERC was the fourth most import-
ant attribute (average importance = 16.15). Interestingly,
respondents did not have clear linear preferences with re-
gard to ERC. Specifically, the highest value ERC, ERC
trending upwards toward 90%, had the highest part-worth
utility, but the medium value for ERC, ERC stable around
80%, had the lowest part-worth utility. Relative humidity
was the least important attribute (average importance =
8.41), with respondents preferring to switch to direct at-
tack when RH was high (described as humid) compared
to when forecasted RH was low (described as dry).

These results indicate that the ideal conditions for
switching to direct attack would be a fire with wet-
ting rain, where conditions were humid and slightly
windy and early in the season and with ERC trending
towards 90% (sum of all part-worth utilities for that
scenario = 180.04). This combination of weather fac-
tors suggests moderate fire behavior early in the fire

Condition 1: Indirect to direct attack

Condition 2: Direct to indirect attack

Average utilities of attribute levels (zero-centered Average part-worth Standard Average part-worth Standard
diffs) utilities deviation utilities deviation
Forecasted High probability of wetting rain 26.94 49.53 —63.83 5840
precipitation No rain forecasted ~2694 4953 6383 5840
Forecasted relative Humid 1448 19.50 =214 24.567
humidity Moderate ~1184 1378 795 1901
Dry —2.64 14.28 1347 19.10
Forecasted wind Slightly windy 4490 1557 —4.55 2867
Windy —7.55 30.99 -15.18 18.29
Very windy —37.35 3299 19.73 26.70
Time in fire season Early season 7550 38.00 —3498 59.82
Middle season 23.68 2948 269 25.66
Late season -99.18 55.19 3229 63.97
Energy release ERC trending downwards 5.19 3837 -20.83 51.62
component toward 60%
ERC stable around 80% —2341 21.06 263 29.15
ERC trending upwards toward 18.22 39.36 18.20 58.04
90%
NONE 154.96 216.88 —-68.69 15991
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Table 7 Example choice sets
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Combination of attributes Condition 1 Condition 2
utility utility
Highest utility High probability wetting rain, humid, slightly windy, early season, ERC trending upwards 180.04 -106.57
condition 1* toward 90%
Lowest utility High probability wetting rain, humid, windy, early season, ERC trending downwards 114.57 -156.23
condition 2** toward 60%
Highest utility No rain forecasted, dry, very windy, late season, ERC trending upwards toward 90% —147.89 14751
condition 2**
Lowest utility No rain forecasted, moderate humidity, very windy, late season, ERC stable around 80% —198.71 12643
condition 1*
Status quo preferred  High probability of wetting rain, humid, slightly windy, middle season, ERC trending 115.19 -107.93
downwards toward 60%
NONE alternative - 154.96 —68.69

*Condition 1 refers to the decision to switch from indirect to direct attack
**Conditions 2 refers to the decision to switch from direct to indirect attack

season. Additionally, respondents indicated that they
preferred to indirectly attack all three fires in 48% of
all choice sets. The NONE scenario (meaning respon-
dents would not switch to direct attack in any of the
described cases) had a relatively high utility score
(average part-worth utility = 154.9) and only some
combinations of attributes led to scenarios that were
viewed as preferable to indirect attack. For example,
the scenario with the ideal conditions described above
had a greater utility than the NONE scenario. How-
ever, if the same scenario occurred in the middle of
the season or late in the season, it would not be pref-
erable to the NONE scenario. Put another way, re-
spondents were only willing to switch to direct attack
for some combinations of attributes early in the sea-
son; otherwise, they preferred to continue with the
indirect attack.

Condition 2: Switching from direct to indirect attack

Unlike the first condition, precipitation was the most
important attribute (average importance = 31.46; see
Table 5) when deciding whether to switch from direct to
indirect attack. Specifically, a weather forecast with no
chance of wetting rain had the highest utility while a
forecast of wetting rain had the lowest utility, indicating

a preference to switch to indirect attack when there was
no rain in the forecast. Seasonality was the second most
important attribute (average importance = 23.15), where
consistent with responses in the other condition, respon-
dents preferred to switch to indirect attack later in the
season. ERC was the third most important attribute
(average importance = 21.97), primarily driven by the
relatively low utility of ERC trending towards 60% com-
pared to ERC stable at 80% or trending towards 90%.
Wind was the fourth most important attribute (average
importance = 12.45). For wind, respondents did not have
clear linear preferences. Specifically, the highest value
for forecasted wind (i.e., very windy) had the highest
part-worth utility, but the medium value for forecasted
wind (i.e., windy) had the lowest part-worth utility. This
does not indicate a clear trend for when respondents
preferred to switch to indirect attack. Relative humidity
was the least important attribute (average importance =
10.97). Respondents preferred to switch to indirect at-
tack when forecasted RH was low (i.e., dry) compared to
when forecasted RH was high (i.e., humid).

These results indicate that the ideal conditions to
switch to indirect attack would be a fire with no rain
forecasted, low humidity, and high wind, late in the sea-
son with ERC trending towards 90% (sum of all part-

Table 8 Summary of most frequently mentioned codes for respondents’ open-ended answers on the most important decision

factors in the choice experiment

Code Condition 1: indirect to direct attack (n = 95) Condition 2: direct to indirect attack (n = 69)
Seasonality 47% 54%
Wind 28% 26%
Energy release component 16% 19%
Relative humidity 8% 8%
Precipitation 15% 27%
Firefighter safety 21% 11%
Fire behavior and size 11% 20%
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worth utilities for that scenario = 147.52). This combin-
ation of weather and fuel factors suggests extreme fire be-
havior, with a higher chance of a season-ending event on
the horizon. In 92% of the choice sets, respondents chose
to switch to indirect attack for at least one of the de-
scribed scenarios. The NONE scenario had a low utility
(part-worth utility = —68.69); thus, respondents preferred
to stay with direct attack for only a few limited combina-
tions of attributes. For example, respondents preferred the
NONE option or preferred to stick with the direct attack
when there was forecasted rain and conditions were de-
scribed as humid and windy and early in the season with
the lowest ERC (sum of all part-worth utilities = —-156.24
or the lowest-utility scenario). However, if the same sce-
nario were presented but without rain forecasted, we
would predict respondents would prefer to switch to in-
direct attack. Put another way, respondents were only will-
ing to continue with direct attack for some scenarios
where wetting rain was forecasted; otherwise, they pre-
ferred to switch to indirect attack.

For some scenarios, respondents preferred the NONE
alternative in both conditions, whether the decision was
to switch to direct or indirect attack (Table 7). For ex-
ample, for some scenarios where wetting rain was fore-
casted and it was not early in the season, respondents in
both conditions preferred to continue with the initial
strategy. It is unclear why fire managers preferred the
default in these cases. For example, it may be that the
relative gain in utility was not believed to be worth the
cost of changing tactics, or it may be that the fire man-
agers did not have a preferred tactic in those circum-
stances and defaulted to the previous team’s tactics.

Open-ended comments

Ninety-five respondents who evaluated whether to
switch to direct attack and 69 respondents who evalu-
ated whether to switch to indirect attack provided open-
ended comments, ranging from a couple of words to
paragraphs on what factors were most important to
them in their decision. Regardless of condition, the most
frequently mentioned factor was seasonality. Respon-
dents then mentioned wind and ERC across conditions
at similar rates, but consistent with the choice experi-
ment, more respondents mentioned rain when switching
to indirect attack versus when switching to direct attack
(Table 8).

Discussion

Our results have several implications for how weather
information and forecast models can be communicated
more effectively to support tactical decision-making. We
consider two implications in greater detail. First, our re-
sults highlight the importance of considering how infor-
mation is used in light of the potentially heuristic
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decision strategies of fire managers. Tools will be more
effective when designed with the decision strategies of
fire managers in mind, either by supporting heuristic-
based decision-making or by debiasing and encouraging
more deliberative decision-making. Second, our results
point to possible areas of improvement for weather fore-
cast models that might improve confidence. Wind and
precipitation forecasts merit particular attention, either
by improving model accuracy directly, improving confi-
dence in existing models, or both.

Supporting heuristic versus deliberative decision-making
Weather information can be an important determinant
of tactical decision-making and success in wildfire man-
agement (Rapp et al. 2020; Countryman 1972). However,
our results highlight that weather information may not
be used or interpreted consistently across decision-
makers. Rather, what information fire managers use and
what they learn from it depends on the context; weather
information does not exist in a vacuum. This is consist-
ent with the concept of preference construction, i.e., the
phenomenon where decision-makers do not have pre-
defined, immutable preferences going into the decision-
making process. Instead, decision-makers form their
preferences “on the spot” in response to cues that are
available throughout the decision process. As a result,
preferences are not revealed but rather constructed (Slo-
vic 1995; Gregory et al. 2012). Specifically, our results
show that the relative importance of a given piece of
weather information may depend on prior decisions. For
example, wind was the most important piece of weather
information when switching to direct attack, but wind
was less important when switching to indirect attack.
The tactical decision made previously influenced how
weather informed future tactical preferences. Similarly,
we saw some situations where the tendency was to stick
with the status quo, regardless of what the status quo
decision was, which may suggest when the best decision
is ambiguous, fire managers lean on previous decisions
(Wilson et al. 2011). This is not necessarily a maladap-
tive or inefficient decision-making strategy if there are
non-negligible costs to switching tactics, but the benefits
of switching are unclear or uncertain.

While it is not clear from these results alone why the
initial attack tactics shaped fire manager preferences, there
are several theoretical explanations to consider. In the
context of this experiment and in decision-making in the
field, fire managers may be interpreting information holis-
tically or comparing it to previous experience rather than
integrating and weighing information through a delibera-
tive process (Drews et al. 2015; Klein 2008). In that case,
the initial team’s decision is a piece of information in and
of itself, as respondents compare the current scenario to
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previous experience where the initial attack team either
directly or indirectly engaged the fire.

Furthermore, individual pieces of information may not
be considered separately but rather in light of each
other. Indeed, in the context of weather, this is likely an
adaptive and appropriate strategy where weather factors
can be more than the sum of their parts and reach crit-
ical thresholds for extreme fire behavior (Young et al.
2019). Although examining interaction effects or non-
linear thresholds was outside the scope of our study, it is
worth exploring in the future to understand not only
how weather components physically interact to create
fire behavior, but how fire managers combine pieces of
weather information to infer expected fire behavior and
how this may influence their tactical decisions. For ex-
ample, while more extreme projected fire behavior is re-
lated to fire managers ordering more resources, certain
weather situations such as extremely high winds may
pose unique risks or challenges that factor into tactical
decision-making (Bayham et al. 2020).

The decision strategy that a fire manager chooses to
use can make decision support and the provision of crit-
ical information more or less difficult. For example,
decision-makers can use compensatory or non-
compensatory decision strategies. Non-compensatory
strategies do not deal directly with tradeoffs across attri-
butes of a decision, while compensatory strategies do. A
non-compensatory strategy would consider each attri-
bute separately (e.g., if rain is forecasted, directly attack
the fire; otherwise, consider the wind forecast), whereas
a compensatory strategy would consider each attribute
in combination (e.g., consider the precipitation and wind
forecast information in light of each other when decid-
ing on a preferred strategy). Non-compensatory strat-
egies may be more common and are challenging to
address through utility-maximizing decision support
tools (i.e., decision support tools that assume decision-
makers are utility-maximizers and, therefore, seek to cal-
culate the maximum utility of each possible alternative
with the assumption that the highest utility alternative is
the best or most preferred). For example, a fire manager
may use the Trade-off Analysis Exercise risk manage-
ment tool to clarify and consider tradeoffs between risks
to firefighters, the public, and identified values for sev-
eral potential courses of action (Schultz et al. 2021). A
compensatory decision-maker is willing to make trade-
offs between acceptable levels of risk across different
values while a non-compensatory decision-maker seeks
to minimize risk to one value, regardless of how much
that may put other values at risk. Because the non-
compensatory decision-maker is not seeking to
maximize utility, but rather maximize the value of one
attribute (e.g., minimize risk to a particular value, only
attack directly if it is raining, etc.), utility-maximizing
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decision support tools may be less useful (Retief et al.
2013; Payne et al. 1993). Indeed, utility-maximizing deci-
sion support tools may be the least trusted where they
are the most needed, for decisions that include painful
or undesirable tradeoffs in which decision-makers have
an incentive to ignore or deny the tradeoffs and make
non-compensatory decisions (Beattie and Barlas 2001).

Because fire managers must make time-constrained
decisions with considerable risk and uncertainty
(Thompson et al. 2017b), it may be important to con-
sider fire managers as adaptive decision-makers in the
context of tactical decision-making. Adaptive decision-
makers must make tradeoffs between accuracy and effort
when choosing decision strategies (Payne et al. 1993). In
other words, they might choose a more effortful strategy
(i.e., a compensatory and tradeoff-focused strategy) to
ensure a more accurate decision when the stakes are
high but may do the opposite when the stakes are low.
As their goals shift over the course of a fire, the same
piece of information may be used in more deliberative
or heuristic ways as the need for accuracy versus effort
shifts. For example, when a fire first ignites and the
probability of containment is high, precipitation fore-
casts may be used heuristically to quickly determine
what resources should be sent to respond to an ignition.
Later during an extended attack when it is clear the fire
will not be easily contained, precipitation may be just
one piece of information weighed against a host of other
factors (e.g., current wind conditions, resources available,
etc.). Furthermore, even in the context of one decision,
fire managers may shift between decision-making strat-
egies over time. This may occur when the decision con-
text is uncertain and a different strategy seems more
appropriate as information about possible alternatives is
uncovered (Mintz et al. 1997; Mintz 2004).

These results have important implications for the de-
sign and evaluation of decision support tools for oper-
ational personnel. Understanding the impact of decision
support tools on fire outcomes is difficult because the
information these tools provide is only one consideration
among many for fire managers (Canton-Thompson et al.
2008; Rapp et al. 2020). During pre-fire planning, deci-
sion support tools can help decision-makers make more
informed and defensible decisions as they consider infor-
mation in a collaborative and deliberative setting
(Thompson et al. 2020). Successful decision support
prior to a fire igniting may improve tactical decisions
and outcomes in two ways. First, it can clarify objectives
and goals for an area including what role fire may play
on that landscape should one ignite. Second, it can pro-
vide insight into the relative ease of containment of a
fire based on the climate, topography, and fuels (O’Con-
nor, Thompson, and Rodriguez y Silva 2016; Wei et al.
2018). However, during a wildfire event, tactical
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decisions made in response to changing conditions may
be more time-constrained and decision-makers may
have fewer resources to dedicate to systematic decision-
making or the type of compensatory decision-making
intended to be supported by most existing tools.

While previous researchers have highlighted the types of
information necessary for an operations-focused decision
support tool (Dunn et al. 2017), results here emphasize
that decision support tools should be designed and evalu-
ated with the decision strategies used by fire managers in
mind. For example, fire managers may consider some
weather information more deliberatively or heuristically
based on how it influences fire behavior. Weather condi-
tions have both a direct and indirect impact on wildfires.
For example, wind speed directly influences fire behavior
by providing additional oxygen to the combustion zone
and also by improving convective heat transfer to un-
burned fuel ahead of the flaming front; therefore, increases
in wind speed directly cause fires to spread faster and with
higher intensity (Werth et al. 2011). Thus, all else equal,
information on wind forecasts may be easier to analyze
deliberatively given its incremental and direct effect on fire
behavior. In comparison, other weather variations, such as
temperature, humidity, and rainfall, indirectly influence
fire behavior by their effects on fuel moisture content. Fire
spread is determined by a simple energy balance: heat is
used to either raise the temperature of adjacent fuels or it
is used to evaporate water within that fuel. Variations in
weather can either wet or dry fuels depending on the gra-
dient between the fuel and air in the boundary layer
around the fuel and these fuel moisture fluctuations can
slow or accelerate fire spread. Thus, humidity and
temperature have an indirect and incremental effect on
fire behavior and may be neglected as information when
making decisions rapidly. In comparison, rainfall has the
strongest and most direct impact on these fuel moisture
variations because it can quickly saturate fuels as well as
leave additional water on the surface of the fuels. The
strong influence of precipitation on fire behavior leads to
a discrete and relatively concrete reduction in fire behav-
ior, making it a useful indicator for heuristic-based
decision-making, while wind, temperature, and humidity
variations are more incremental and gradual.

With that in mind, decision support tools can be de-
signed to support compensatory or non-compensatory
decision-making depending on how they frame and pro-
vide weather information. Importantly, fire managers can-
not be neatly demarcated as either compensatory or non-
compensatory, but rather, fire managers likely change and
adapt their decision-making strategy depending on the
importance of the decision and the time constraints they
face. Thus, it is may be helpful to provide decision-makers
with a variety of tools or sources of information they can
choose from based on their capacity to make deliberative
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versus heuristic decisions. For example, tools for compen-
satory decision-makers should seek to simplify and
summarize information while tools for non-compensatory
decision-makers should seek to reduce the arbitrariness of
cutoff levels or decision thresholds (e.g., at what change of
precipitation do fire managers act as if it will rain, at what
ERC do fire managers switch to direct attack) (Cook
1993). In the case of previous decisions having undue in-
fluence on future planning, or the effects of anchoring to
previous strategies and insufficiently adapting to new wea-
ther information, decision support tools should incorpor-
ate things like “consider the opposite” (Hirt and Markman
1995). To consider the opposite, decision support tools
ask the decision-maker to consider if their decision would
change with a different status quo in place, and if so, why,
as a means of balancing out any effect of a particular pre-
existing strategy.

Improving confidence in and use of fire weather forecasts
Our results also provide insight into what conditions fire
managers find most appropriate for direct and indirect
attacks. Broadly speaking, fire managers preferred to dir-
ectly attack fires occurring early in the season with mild
fire behavior but preferred indirect attack on fires occur-
ring late in the season with extreme fire behavior. For
some fires occurring in the early or middle of the fire
season where it is not raining, fire managers prefer to
continue with the status quo, regardless of what it is.
Fire managers were more sensitive to wind when switch-
ing to direct attack and more sensitive to precipitation
when switching to indirect attack. Although the import-
ance of different pieces of weather information varied in
their influence on decision-making depending on the
prior decision, our results still point to several practical
needs when it comes to improving the weather informa-
tion available to support decisions.

First, wind and precipitation were the most important
pieces of weather information for decision-making yet
respondents expressed lower confidence in the reliability
of wind and precipitation forecasts. Thus, we suggest
prioritizing efforts to improve the forecast accuracy
where possible for these variables and increase confi-
dence in the resulting forecast as appropriate. Typical
fire weather forecasts are derived from the National
Digital Forecast Database (NDFD) which are produced
continuously across the USA by the US National Wea-
ther Service (Glahn and Ruth 2003). A recent study has
shown that the NDFD consistently underpredicts wind-
speeds when the winds are stronger than about 4 m/s
(~9 mi/h) (Page et al. 2018). Winds are particularly diffi-
cult to forecast due in part to local terrain influences,
and extensive work is ongoing to improve wind forecasts
in complex terrain. Models that downscale wind fore-
casts to correct for terrain influences, such as
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WindNinja (Wagenbrenner et al. 2016), show promise in
improving local-scale wind forecasts.

Quantitative precipitation forecasts provided to wild-
land fire decision-makers are commonly derived from
the NDED, and they are often modified by forecasters
prior to issuance. However, investigators are continually
exploring ways to improve precipitation forecast skill
and spatial resolution using models such as the High
Resolution Rapid Refresh (HRRR) (Benjamin et al. 2016).
Continual improvements to the HRRR model physics
and data assimilation show promise in improving pre-
cipitation forecasts over the next 18 h (Bytheway et al.
2017). This interval generally conforms to an operational
period for wildland fire operations. Other improvements
to precipitation forecasts, such as ensembling, can pro-
vide uncertainty estimates of forecasts that may also be
useful for decision-makers. Ultimately, given the import-
ance of precipitation forecasts on decision-making, any
efforts to improve skill or characterize uncertainty in
precipitation forecasting will likely influence wildfire
outcomes.

That said, improving model accuracy may not be suffi-
cient on its own. While a certain threshold of accuracy
and quality is necessary for model forecasts to have
value to decision-makers, model quality is multi-faceted
and not the same as the utility of a model to decision-
makers (Murphy 1993). While it would be reasonable to
expect some correlation between accuracy and confi-
dence in wind and precipitation forecasts, it is not a
given that improvements in forecast accuracy will auto-
matically lead to increased confidence. Thus, distinct ef-
forts may be necessary to improve confidence in the
models. These efforts could be informed by better un-
derstanding what aspects of the model lead stakeholders
to use or ignore the resulting forecast. For example, in
some cases, personnel may be resistant to using models
due to cultural ideas surrounding technology and
models (Rapp et al. 2020; Noble and Paveglio 2020). In
those cases, it may be more fruitful or even necessary to
focus on changing how users relate using models and
being competent at their jobs. In other cases, stake-
holders and users may be disconnected from the devel-
opment process for models, and communicating or
demonstrating improvements may be helpful. In other
cases still, the problem may not be with the models, but
the perceived competence of the modelers (Noble and
Paveglio 2020; Rapp et al. 2020). In these instances,
investing additional resources and attention towards
training modelers and establishing relationships between
modelers and end users may contribute to improving
confidence in the resulting forecasts.

Seasonality was the most important non-weather-
related attribute across conditions, with roughly half of
respondents explicitly highlighting it as an important
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decision criterion in the open-ended response. Across
both conditions, respondents preferred direct attack
early in the season and indirect attack later. Although
direct and indirect attacks can be used on all fires re-
gardless of the over-arching strategy, this preference ap-
pears borne out by the data which suggests that a
greater proportion of fires are managed for suppression
early in the season while the proportion being managed
for other reasons increases later in the season (Young
et al. 2020). In terms of tactics and strategy, the decision
space of fire managers is likely larger later in the season
as seasonal changes associated with the onset of autumn
are likely to aid containment and reduce the severity of
fire behavior. Additionally, fire managers may be able to
justify using more resources to manage or indirectly at-
tack a fire later in the season because these resources
are less likely to be needed on a later fire during the
same fire season. A key follow-up question is therefore
how does weather information interpretation change
over time? For example, while wind may be an import-
ant driver of fire manager decision-making regardless of
the time of year, the interpretation of precipitation may
depend on the time in season, where precipitation earlier
in the season may have less of an impact (or indeed may
make fires worse through lightning strikes) but late-
season precipitation may signal a season-ending event.
Similarly, weather information may vary in importance
over the course of a fire event. This work examines a
pivotal moment in fire management, when fires transi-
tion from initial to extended attack, but other key deci-
sion points are worth considering, such as the decision
to manage for resource benefit or suppression. Indeed,
as more forests utilize pre-identified operation control
points, it will be important to understand how weather
shapes which control points are selected and what tac-
tics are used. It is worth exploring in greater detail how
fire managers personally understand and estimate wind,
rainfall, humidity, and other fire behavior drivers and
thus how information on these drivers influences the
perception of fire behavior over the course of events and
seasons (ie., to what extent do fire managers’ mental
models of the effect of fire weather conditions on fire
behavior mimic actual fire behavior model predictions?).

Conclusion

Considerable effort has been made to support risk-based
strategic decision-making for fire managers. To that end,
many tools exist to provide information and structure
decision-making. While some of those tools can be used
at the tactical level, tactical decision-makers may rely on
and use different sources of information, especially wea-
ther. Weather plays a critical role in fire behavior and
subsequently an important role in tactical decision-
making and success. Understanding how fire managers
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use weather information to make tactical decisions is
key to providing effective decision support. While wea-
ther information does indeed influence decisions, this in-
formation is not consumed in a vacuum; fire managers
interpret it in light of previous tactics made by other ac-
tors. When designing operational decision support tools,
it will be important to consider not only what informa-
tion fire managers seek out and use, but how they use it,
as decision strategies, deliberative, heuristic, or other-
wise, will shape tactical decisions and their conse-
quences. Consequently, rather than simply providing
information, decision support tools should also actively
debias for things like insufficient adjustment to new in-
formation, for example by encouraging fire managers to
imagine how their decisions might be different under a
different status quo. Additionally, our results suggest op-
portunities for improvement and further study. Between
wind, precipitation, and humidity forecasts, wind and
precipitation were the biggest driver behind switching
operational tactics, yet fire managers were less confident
in wind and precipitation forecasts than weather fore-
casts in general. Improving or communicating forecast
reliability may facilitate more risk-informed outcomes
on fires by influencing what information fire managers
attend to and how much weight they give that
information.
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