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Abstract

Background: Humans have altered fire regimes across ecosystems due to climate change, land use change, and
increasing ignition. Unprecedented shifts in fire regimes affect animals and contribute to habitat displacement,
reduced movement, and increased mortality risk. Mitigating these effects require the identification of habitats that
are susceptible to wildfires. We designed an analytical framework that incorporates fire risk mapping with species
distribution modeling to identify key habitats of Ursus arctos with high probability of fire in Iran. We applied the
random forest algorithm for fire risk mapping. We also modeled brown bear habitats and predicted connectivity
between them using species distribution models and connectivity analysis, respectively. Finally, the fire risk map,
critical habitats, and corridors were overlaid to spatially identify habitats and corridors that are at high risk of fire.

Results: We identified 17 critical habitats with 5245 km2 of corridors connecting them, 40.06% and 11.34% of which
are covered by conservation areas, respectively. Our analysis showed that 35.65% of key habitats and 23.56% of
corridors are at high risk of fire.

Conclusions: Since bears habitat in this semi-arid landscape rely on forests at higher altitudes, it is likely that
shifting fire regimes due to changing climate and land use modifications reduce the extent of habitats in the
future. While it is not well known how fire affects bears, identifying its key habitat where wildfires are likely to occur
is the first step to manage potential impacts from increasing wildfires on this species.

Keywords: Biodiversity conservation, Conservation area, Disturbance ecology, Fire ecology, Fire risk mapping, Risk
assessment, Species distribution model, Ursus arctos
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Resumen

Antecedentes: Los seres humanos han alterado los regímenes de fuego a lo largo de los ecosistemas debido al
cambio climático, a cambios en el uso de la tierra y al incremento de las igniciones. Estas desviaciones sin
precedentes en los regímenes de fuego afectan a los animales y contribuyen al desplazamiento de sus hábitats,
reducen sus movimientos, e incrementan el riesgo de mortalidad. Mitigar esos efectos requiere la identificación de
hábitats que son susceptibles al fuego. Diseñamos un marco analítico que incorpora el mapeo del riesgo de
incendios con modelos de distribución de especies para identificar hábitats clave de Ursus arctos (oso pardo) con
alta probabilidad de fuego en Irán. Aplicamos el algoritmo al azar para bosques para el mapeo de riesgo de
incendio. También modelamos hábitats de oso pardo y predijimos la conectividad entre ellos usando modelos de
distribución y análisis de conectividad, respectivamente. Finalmente, el mapa de riesgo de incendio, hábitats críticos
y corredores fueron superpuestos para identificar espacialmente loa hábitats y corredores que estuviesen en riesgo
alto de incendios.
Resultados: Identificamos 17 hábitats críticos con 5.245 km2 de corredores conectándolos, 40,06% y 11,34% de ellos
estaban cubiertos por áreas de conservación, respectivamente. Nuestro análisis mostró que el 35,65% de los
hábitats clave y 23,56% de los corredores están en riesgo alto de incendios.
Conclusiones: Dado que los hábitats en este paisaje semiárido se encuentran en los bosques de altura, es probable
que el cambio en los regímenes de fuego debdo al cambio climático y modificaciones en el uso de la tierra
reduzca la extensión de estos hábitats en el futuro. Aunque no es bien conocido el efecto de los incendios sobre
los osos, identificar sus hábitats clave donde los fuegos probablemente ocurran, es el primer paso para manejar
posibles impactos del incremento de los incendios sobre esta especie.

Background
Natural fire regimes maintain the health of many ecosys-
tems (Pausas and Keeley 2019) but anthropogenic cli-
mate change and land use change has altered these
regimes worldwide in an accelerated rate, which poses a
threat on biodiversity (Dennis et al. 2001). Forest fires
can directly or indirectly impact wildlife species by in-
creasing mortality of individuals (Clark et al. 2011),
changing habitat extent and quality (Richardson et al.
2007; Wan et al. 2019b), decreasing population size
(Kramp et al. 1983), changing movement patterns
(Nimmo et al. 2019), causing outbreaks of diseases (Ecke
et al. 2019; Albery et al. 2021), and decreasing food and
shelter availability (Banks et al. 2011). The magnitude of
these impacts is, however, highly dependent on the
spatial and temporal scales of fires (Hobbs and Huen-
neke 1992; Pickett and White 2013; Wan et al. 2020), as
well as the biological and ecological characteristics of
species in adapting to fires (Chambers et al. 2019).
Large carnivores that depend on forest cover as their

primary habitat might be particularly vulnerable to al-
tered fire regimes. While the effect of fire on these spe-
cies and their habitat is generally perceived as negative,
the actual relationship is complex and ambiguous for
many species. For example, prior wildfire studies on
bears have produced mixed results. Wildfires can nega-
tively impact adult sex ratio, recruitment of cubs, and
population size (Cunningham and Ballard (2004).
Wildfires can also destabilize and degrade habitats
surrounding den sites by altering vegetation compos-
ition and increasing the depth of the active soil layer

(Richardson et al. 2007). However, wildfires can
sometimes lead to increased abundance and availabil-
ity of and easier access to food sources (Blanchard
and Knight 1990; Hamer 1999).
Because wildfires are more likely to have direct im-

pacts on habitat than on animals, forest and species
management plans can benefit from having information
that identifies critical habitat susceptible to fire (e.g.,
Meng et al. 2016) as well as post-fire habitat change
(Wan et al. 2020). Species distribution models have been
increasingly used to provide some of this information,
including the usage in predicting critical habitats, con-
nectivity, and susceptibility of landscape to disturbance
events (Cushman et al. 2017; Kaszta et al. 2020). How-
ever, one important, but rare, application is to stream-
line these models into a systematic spatial analytical
framework for assessing fire risks on species critical
habitat and corridors. Such an analytical framework
would provide tremendous values in managing wildfire
risks on species habitat experiencing changing fire
regimes.
The brown bear (Ursus arctos; Linnaeus 1758) is the

largest carnivore species of Iran, inhabiting forest and
mountainous ecosystems along the Alborz and Zagros
mountain ranges (Gutleb and Ziaie 1999). The Zagros
Mountains forest steppe is the largest forest region in
Iran, representing one of the most important habitats for
the brown bears in the country. About 15.36% of this
forest is located in the Fars province. The forest has
been increasingly impacted by wildfires due to humans
and changing climate. For example, the record for the
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highest number of annual forest fire incidence were
broken in 2015, which burned 937 ha of forest lands
(The Center for Strategic Studies, 2017). In 2020, over
1700 ha of rangeland and forests were burned by wild-
fires, representing one of the biggest records in burned
area in this province. Recently, in 2021, 150 forest fire
incidences have been reported during the hot months.
Such a trend in fire activity raises concerns for natural
habitats management.
While it is not well known how forest fires affect

brown bears in Iran, increasing forest fires due to cli-
mate and land use changes in this region may reduce
the extent of brown bear habitat and its range in the fu-
ture. Therefore, identifying key habitats where forest
fires are likely to occur is the first steps to mitigate the
negative effects or increase the positive impacts of such
events. Although there are critiques of umbrella and
single-species conservation approaches (Simberloff 1998;
Andelman and Fagan 2000), brown bears may serve as
an “umbrella species” for structuring site-based conser-
vation of forest habitats (Khosravi et al. 2019) because of
their large area requirements, charismatic appearance,
and low densities.
Using the brown bear in Iran as an example, we dem-

onstrate a spatially explicit analytical framework that
adopts a series of models for assessing wildfire risks for
wildlife species. This framework contains four key com-
ponents: (1) identifying critical habitats, (2) evaluating
connectivity between critical habitats, (3) produce fire
risk map, and (4) identifying habitats and corridors asso-
ciated with high risk of wildfire.

Methods
The methodological framework
Our case study area is located in the southwestern Iran,
Fars province, with an extent of 125,857 km2. It is char-
acterized by semi-arid climate conditions. The mean
temperature and annual rainfall are 16.8 °C and 315 mm,
respectively. This area contains several conservation
areas (a total of 23,819 km2) in four main categories in-
cluding national parks (NPs), wildlife refuges (WRs), pro-
tected areas (PAs), and no-hunting areas (NHAs). A
number of large species of conservation importance such
as brown bear, Persian leopard (Panthera pardus), cara-
cal (caracal caracal), gray wolf (Canis lupus), mouflon
(Ovis gmelini), goitered gazelle (Gazella subgutturosa),
and wild goat (Capra aegagrus) are found in the region.
Forests (12.49%), rangelands (55.21%), and farmlands
(23.02%) cover 90.72% of the study area (Fig. 1). The
status of brown bears in this part of Iran is of great
concern. This is the southernmost extent of brown
bear’s range in the world. The bear population here is
genetically distinct from other populations in Iran
(Ashrafzadeh et al. 2016). They mostly rely on water

sources in densely forested areas at higher altitudes
where human access is limited (Ansari and Ghoddousi
2018). The forests of the Zagros Mountains are threat-
ened by droughts, extensive land-use changes, and wild-
fires (Sagheb-Talebi et al. 2014). Therefore, conserving
this population is a pressing priority.
We carried out a spatially explicit analytical framework

that consists of four key steps, including (1) predicting
the critical habitats of the species, (2) evaluating con-
nectivity between the predicted critical habitats, (3) pro-
ducing a fire risk map across the study area, and (4)
synthesizing the results from those three steps to map
and identify critical habitats and corridors associated
with high wildfire risks (Fig. 2). The steps undertaken in
the study are explained in detail below:

Species potential distribution and critical habitats
In 2015–2019, we collected opportunistic observations
of brown bear signs (i.e., scats and tracks; N = 58) and
direct observations of brown bears by the game guards
and wildlife experts or human-caused mortality due to
conflict with people (N = 113). To reduce spatial auto-
correlation and sampling bias in presence points, we
used a spatial filter such that each locality was at least
400-m from others (Falcucci et al. 2009). After the
spatial filtering, 112 presence points remained for the
modeling.
We divided the study area into two regions based on

the field surveys and expert opinion: the core area cover-
ing the main current range of brown bears, with the
highest population densities, and peripheral areas with
occasional observations (Fig. 1). Although the peripheral
regions include only sporadic occurrence of bears and
might not cover the current distribution range of the
species, these regions may provide suitable habitats for
bears to expand their range. The model was calibrated
across the core area and then projected over the periph-
eral region. To calibrate the species distribution model,
we used seven land use/land cover types, five topo-
graphic features, two anthropogenic factors, two climatic
variables, and normalized difference vegetation index
(NDVI) based on literature review (Ansari and
Ghoddousi 2018; Farashi 2018; Almasieh et al. 2019;
Maiorano et al. 2019). All variables were calculated in a
50-m × 50-m cell size. A detailed description on the
preparation of the predictor layers is given in Table S1
in Online Resource 1.
Dispersing and settled individuals may be affected by

different fine- and broad-scale patterns (Mateo Sanchez
et al. 2014). Therefore, we fit models for predicting crit-
ical habitats and connectivity separately. We used
coarse-scale models to provide a second-order (Johnson
1980) prediction of the species’ potential distribution.
For this aim, we used a moving window with a radius of
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Fig. 2 The spatially explicit analytical framework to assess wildfire risks on brown bear habitat and corridors

Fig. 1 Location of the study area. Black and blue polygons display the border of core and peripheral areas, respectively
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450-m around each original pixel (i.e., 50-m) across the
study area (Falcucci et al. 2009; Maiorano et al. 2019).
For each categorical variable (e.g., land cover classes), we
calculated the percentage of cover within a moving win-
dow of 450-m using FRAGSTATS (McGarigal et al.
2012). For each continuous variable (e.g., topographic
measures), the mean value inside a given radius was cal-
culated using neighborhood statistics in ArcGIS 10.2.2
(ESRI, 2015).
We applied three filtering steps to reduce the number

of variables for the final species distribution model. First,
we removed predictors that occurred at < 10% of pres-
ence localities because of lack of representation (Mac-
donald et al. 2018). Second, predictors with variance
inflation factor (VIF) ≥ 2 were removed (Maiorano et al.
2019). Finally, we assessed multicollinearity between
each pair of variables and for correlated pairs (R> 0.7)
only the variable with the lower VIF was retained (Was-
serman et al. 2012; Dormann et al. 2013). Following the
reduction process, we used fourteen variables in the final
model (Table S1 in Online Resource 1).
To predict critical habitats, we implemented the

MaxEnt model using the “dismo” R package (Hijmans
et al. 2017). The model was calibrated according to the
presence localities within the core area. We ran MaxEnt
using a 10-fold cross-validation and calibrated models
using 75% of occurrence points as training data, and the
remaining 25% of data for evaluation model predictions.
To account for sampling bias of absence localities, we
randomly selected a set of 1000 background localities
within the boundaries of the core area (Maiorano et al.
2019; Dondina et al. 2020). We kept other default pa-
rameters of the MaxEnt. The overall model’s perform-
ance was evaluated by calculating the area under the
receiver operating characteristic curve (AUC), true skill
statistic (TSS; Allouche et al. 2006), and Kappa statistic
(Landis and Koch 1977). Then, we projected the cali-
brated model in the core area over the entire landscape
area (i.e., both core and peripheral area).
The final distribution map was converted into a binary

layer (i.e., suitable vs. unsuitable habitats) to identify crit-
ical habitats (areas with high suitability values predicted
by the model) using Maximum Training Sensitivity plus
Specificity occupancy threshold (Liu et al. 2013; Poor
et al. 2020). We evaluated the reliability of the projection
of the model to the peripheral area using the analysis of
Multivariate Environmental Similarity Surfaces (MESS;
Elith et al. 2010). Finally, we used Morphological Spatial
Pattern Analysis in the software GUIDOS v. 2.1 (Soille
and Vogt 2009) to remove predicted critical habitats
with very small extents (< 70 km2) that were unlikely to
serve as core habitat. This threshold corresponds to the
minimum threshold to ensure the stable occurrence of
at least an adult female bear (Maiorano et al. 2019).

Connectivity between critical habitats
Species distribution models trained with predictors at
fine spatial resolutions can be used as a useful alterna-
tive, although weaker than models based directly on
movement, to movement data to parameterize resistance
surfaces in connectivity analysis (Zeller et al. 2018).
Ziółkowska et al. (2016) suggested that resistance maps
derived from the species distribution models with pre-
dictors at broad and medium spatial resolutions may
underestimate connectivity. Therefore, we included all
covariates at a fine spatial scale (50-m) into the MaxEnt
model to predict the distribution map of the species for
further connectivity analysis. Then, the obtained distri-
bution map was converted to a resistance surface using
an exponential decay function (Wan et al. 2019a):

R ¼ 1000−1�HS ð1Þ

where R is the cost resistance value assigned to each
pixel and HS shows the predicted habitat suitability
value. The calculated resistance surface was rescaled to a
range between 1 and 10 by linear interpolation.
We followed the method developed by Macdonald

et al. (2018) and Kaszta et al. (2020) to create a set of
random points for habitat connectivity. This method
was implemented in the following steps: first, the pre-
dicted distribution map at fine spatial scale was rescaled
between 0 and 1. In the second step, we created a raster
layer in the extent same as distribution map and distrib-
uted values of pixels from 0 to 1 randomly and uni-
formly. Then, we subtracted the created random raster
layer described above from the rescaled distribution map
to determine pixels with positive values. Finally, we
selected 200 points randomly from these pixels. This
creates a stochastic draw of simulated occurrence points
and habitat suitability weighted connectivity modeling
(Cushman et al. 2016) which may be parallel to the idea
of using density-weighted connectivity modeling (Morin
et al. 2017). Potential source locations were created in
such a way as we assumed that higher predicted habitat
suitability means more dispersing individuals (Macdonald
et al. 2019; Kaszta et al. 2020). The selected source loca-
tions were spatially rarefied to simulate the presence of
the species across the study area. The selected source lo-
cations were used as starting locations on individuals for
subsequent connectivity analysis.
We calculated factorial least-cost paths (Cushman

et al. 2009) using the UNICOR software (Landguth et al.
2012) to predict connectivity among critical habitats
based on the selected source points and predicted resist-
ance surface described above. The selected source points
define starting and ending nodes of the least-cost link-
ages in the connectivity analysis. The factorial least-cost
path method relies on Dijkstra’s algorithm to predict
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optimal least-cost linkages from each source point to
every other destination locality. The predicted least-cost
paths are buffered based on kernel density estimations
and Gaussian function. The buffered least-cost linkages
were then combined through summation (Cushman
et al. 2009) to produce maps of connectivity among all
pairs of source points. We calculated the factorial least-
cost paths without a dispersal threshold to provide a
broad-scale assessment of the spatial pattern of potential
corridors (Cushman et al. 2013).

Fire risk mapping
Based on extensive field surveys, Google Earth images,
and various national reports collected by Iranian’s orga-
nizations, we identified 358 fires locations in the study
area from 2010 to 2018 (Fig. 1). We divided this dataset
into training and validation subsets in a portion of 70/
30, respectively. We selected the following variables for
fire risk mapping based on our knowledge about the
area: altitude, slope, aspect, topographic wetness index
(TWI), distance from rivers, roads, urban, drainage dens-
ity, annual mean rainfall, and temperature. We collected
raster layers representing the above variables, and then
extracted the value of each variable at each fire locations
(see Text S1 in Online Resource 1). We used random
forest to model the relationship between those variables
and fire likelihood and then created a fire risk map by
projecting that random forest model with the raster
layers (Pourghasemi et al. 2020). Random forest has
been shown to be one of the most powerful methods for
predicting the disturbance and landscape change (e.g.,
Cushman et al. 2017; Abdullah et al. 2019; Murphy
2019; Milanović et al. 2021). We used mean decrease
Gini and mean decrease accuracy to assess variable im-
portance (Rahmati et al. 2019) and used OOB (Out-Of-
Bag) error to assess model performance (Evans and
Cushman 2009; Genuer et al. 2010). For the classifica-
tion of the fire risk map, we used the natural break
method (Yan et al. 2019) to divide it into four classes, in-
cluding low (0–0.17), moderate (0.17–0.45), high (0.45–
0.71), and very high (0.71–1.00) fire risk.

omposite map of predicted critical habitats and fire risk
map
We overlaid the layers of predicted critical habitats, cor-
ridors, and conservation areas with the fire risk map to
create a composite map and determine which critical
habitats, corridors, and conservation areas are suscep-
tible to fires.

Results
Species’ distribution and critical habitats
The MaxEnt model showed high performance in pre-
dicting suitable habitats for brown bear across the study

area (AUC = 0.805; TSS =0.738; Kappa = 0.428). Topo-
graphic roughness (Reily et al. 1999; Evans et al. 2014),
annual mean temperature, annual rainfall, and forest
cover were the most important variables in predicting
species’ occurrence. With increasing topographic rough-
ness and forest cover, habitat suitability increased to its
maximum and then stabilized at high values of these
variables. Mean annual temperature was negatively cor-
related with the species’ occurrence and probability of
brown bear occurrence was predicted to decrease with
an increase in annual mean temperature. Also, with in-
creasing rainfall habitat suitability increased to its max-
imum and then leveled off above 680 mm.
Using the Maximum Training Sensitivity plus Specifi-

city occupancy threshold, 8.96% of the study area
(11,276 km2) was recognized as highly suitable habitat.
Highly suitable habitats were more widely distributed
across the northern, northeastern, and northwestern
parts of the study area (Fig. 3a). According to the MSPA,
we identified 17 critical habitats (larger than 70 km2)
with 9135 km2 in extent across the area, 40.06% of which
are covered by existing conservation areas (3,660 km2).
The extent and percentage of protected critical habitats
differed among types of conservation areas. The max-
imum overlap was provided by no-hunting areas (2780
km2), while no areas with critical habitats were identified
inside the national park (Fig. 3b). We found some un-
protected critical habitats especially north of the core
areas of brown bear habitat and also northern parts of
the study area (Fig. 3b). The results of Morphological
Spatial Pattern Analysis showed that 18% of peripheral
area were outside the range of environmental values
measured in the main core region.

Connectivity between critical habitats
Our UNICOR analysis identified a total of 5245 km2

migration corridors among critical habitats, of which
11.34% are within the boundaries of the existing conser-
vation areas (595 km2; Fig. 3b). The most density of the
predicted corridors among critical habitats concentrated
in the habitat core area (40.42%; 2,120 km2) and north-
ern parts of the peripheral region. Connectivity in other
parts of the peripheral area was predicted to be weak.
Considering the whole study area, nearly 90% of the pre-
dicted corridors are not covered by any type of conserva-
tion areas (Fig. 3b).

Fire risk map
The result of fire risk mapping is shown in Fig. 4. The
percentages of the natural breaks of the four risk classes
in fire map was 74.67% (low), 8.58% (moderate), 7.86%
(high), and 8.89% (very high), respectively.
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Composite map of predicted critical habitats, corridors,
and the fire risk map
According to the intersection maps of the predicted crit-
ical habitats, migration corridors, and conservation areas
with risk map of fire, a total of 35.65% of critical habitats
of brown bear (3,257 km2) and 23.56% of its corridors
(1,236 km2) were identified as areas with high and very
high risk of fires respectively. Predicted critical habitats
with high risk of fire were high especially in the northern
and southwestern parts of core area. According to the
fire risk map, 23.69% of the existing conservation areas
with 5641 km2 in extent overlap with areas where the
modeled disturbance is likely to occur. No-hunting areas
(4175 km2) and national parks (4.33 km2) showed the
maximum and minimum overlap, respectively. We also
identified currently unprotected areas that showed high
risk of the occurrence of fire (Fig. 4).

Discussion
Despite numerous studies mapping landscape suscepti-
bility to forest fire, few studies have investigated the
sensitivity of key habitats to these events. Such studies
require an accurate identification of key habitats and
connectivity between them. This study is the first to
compare fire risk with key habitats, corridors, and exist-
ing conservation areas to provide a spatially explicit
depiction of the brown bear’s critical habitats and corri-
dors at high risk of fire.
A systematic framework to quantitatively analyze wild-

fire effects on brown bears, such as the one demon-
strated here (Fig. 2), is much needed in Iran. For species

highly associated with mature forest, there is a strong
negative relationship between large and severe fires and
habitat quality (e.g., Ganey et al. 2017; Wan et al. 2018;
Jones et al. 2020). However, for species that are associ-
ated with broad habitat gradients across successional
stages, and especially those that forage on vegetation
that is associated with early seral conditions, as is brown
bear, the relationship is not expected to be usually nega-
tive. Therefore, it is necessary to systematically assess
the ecological responses of brown bear to differing kinds,
extents, and severity of disturbance to guide conserva-
tion and management scenarios that are effective (e.g.,
Chambers et al. 2019).

The effect of environmental variables on brown bear’s
distribution range
Our model showed that the range of brown bear was
constrained mainly by topographic roughness,
temperature, rainfall, and forest cover in Iran. Despite
differences in environmental conditions such as rainfall
and vegetation in different regions where brown bears
occur, the importance of forest cover to brown bear’s
habitat selection has been documented across the globe,
such as in Iran (Mohammadi et al. 2021), North
America (Proctor et al. 2015), and Europe (Mateo
Sanchez et al. 2014; Recio et al. 2021). Forest cover in
southwestern Iran provides crucial food and shelter for
the brown bear (Ansari and Ghoddousi 2018).
Considering the importance of forests in providing

suitable habitats for bears, protecting forest land is the
utmost priority for management. Habitat fragmentation

Fig. 3 Predicted habitat suitability of brown bear A and intersection map of critical habitats and corridors with existing conservation areas B
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here is often associated with the conversion of forests to
agricultural land, which leads to higher presence of live-
stock and crops and thus greater likelihood of human-
bear conflict. These fragmented forests typically contain
smaller core habitats with reduced natural food and
water availability and access, lower overall connectivity,
and greater human presences, which may alter carnivore
behaviors such as increasing their aggressiveness. There-
fore, the prevention of further land-use changes and for-
est fragmentation is urgently needed to maintain the
suitability of forest habitats for bears. We encourage out-
reach programs to local communities to promote sus-
tainable land use and control timber harvest and
livestock grazing. We also recommend reforestation in
targeted areas that can provide core areas and facilitate
connectivity of brown bears.
Consistent with previous studies, we also found that

rugged terrain, especially with forest cover, is a critical
component of brown bear habitat (Mateo Sanchez et al.
2014; Peters et al. 2015). In general, elevation and
rugged landscapes are positively related to bear habitat

suitability because they provide optimal climatic and
vegetation conditions and limit human presence
(Almasieh et al. 2019; Zarzo-Arias et al. 2019; Mohammadi
et al. 2021). However, brown bears in Spain generally
avoid high-elevation meadows because the food re-
sources are scarce compared to forests at lower eleva-
tions (Mateo-Sanchez et al. 2016), and they prefer
forests with relatively dense cover further away from
settlements at higher elevations (Zarzo-Arias et al.
2019). These differences were likely due to inherent
differences in climate, vegetation patterns, and human
density and behavior between the two study areas.
Rainfall and perennial surface water is important for

providing habitat and can act as limiting factors in range
expansion of the bear (Mertzanis et al. 2008; Ansari and
Ghoddousi 2018). Because of the aridity in Iran, collab-
orative management of shared water, especially during
the drought years, will be the most crucial action for
habitat improvement. Examples of these actions include
the installation of water troughs, as well as the restor-
ation of depreciated local surface water resources such

Fig. 4 Intersection map for critical habitats/corridors and risk map of fire
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as springs, at strategic locations where wildlife and live-
stock both have access to (Ansari and Ghoddousi 2018).

Brown bear critical habitats and connectivity between
them
We found that some of the predicted suitable habitat
patches may be too small to sustain a population despite
their high suitability. In a similar study, Maiorano et al.
(2019) predicted critical areas for brown bear and found
only 15 out of 461 predicted suitable patches met the
minimum threshold to be considered as critical areas. In
our study, we found 17 of 1640 patches that met our
minimum size threshold, suggesting severe fragmenta-
tion of critical habitat.
Also, although the predicted critical habitats in the

core region are well connected, some of the peripheral
habitat patches, especially those in the western and
northwestern parts of the study area, are not well con-
nected with the core region. Other research showed that
habitat connectivity in simulations strictly depends on
the dispersal ability of species (Cushman and Landguth
2012). Consistent with our findings, Ashrafzadeh et al.
(2018) reported strong connectivity among core brown
bear habitats in Iran, and that the connectivity may be
constrained by several pinch points due to bottlenecks
in habitat quality, or high concentrations of human ac-
tivities. Our connectivity projection provides key infor-
mation to assist managers in identifying and prioritizing
efforts in managing key corridors for brown bear
dispersal.

Overlap of key habitats and corridors by conservation
areas
Conservation areas are essential to provide extensive and
contiguous habitats for carnivores in Iran because they
support a high density of prey species and are exposed
to lower human disturbance (Ashrafzadeh et al. 2020).
In contrast to conservation areas, unprotected areas in
Iran are believed to exhibit high resistance to species
movement because of unsuitable habitats and high dens-
ity of human settlements (Moqanaki and Cushman
2017). Despite their important role in carnivore conser-
vation, critical habitats and corridors received relatively
poor protection under the current design of conserva-
tion areas. This problem has been discussed for other
carnivores as well (Moqanaki and Cushman 2017; Ash-
rafzadeh et al. 2018; Kaszta et al. 2020). Location bias
(designing new conservation areas mainly in topograph-
ically remote landscapes), conservation bias (i.e., varying
conservation effort in different types of the conservation
areas), and spatial bias (i.e., designing new conservation
areas regardless of their spatial configuration within the
compositional structure of the current conservation
areas) in designing new conservation areas in Iran may

lessen conservation effectiveness of the conservation net-
work for some species, as for the brown bear. Therefore,
conservation areas do not necessarily have more perme-
ability to individuals’ movement.
The highest overlap between conservation areas, crit-

ical habitats, and corridors was observed in the north-
west of the core area and north, northeast, and
southwest of the peripheral area, with nine conservation
areas (Tang-e-Bostanak, Margoon, Male-Gale, Barm
Firoz, Arjan & Parishan PAs, Basiran, Kooh-Khersi,
Dare-Bagh, and Kooh-e-Khom NHAs) covering the most
important identified critical habitats. Because the cover-
age of conservation areas is not sufficient to protect key
habitats and migration corridors for brown bears, the
proportion of conservation areas with highly suitable
habitats should be increased to maximize the protection
of habitat extent and maintain connectivity. Establishing
new conservation areas in unprotected critical habitats is
highly encouraged, especially in the northern parts of
the study area where most of the key habitats are
located.

The risk of occurrence of fire within the conservation
areas, critical habitats, and corridors
This study highlights the high wildfire risks that threaten
some of the existing conservation areas. For example,
Tang-e-Bostanak, Male-Gale, Arjan & Parishan PAs,
Kooh-Khersi, Padena, and Mel-Boland NHAs had high
risk of fire. No-hunting areas had the largest coverage of
the predicted critical habitats than other types of conser-
vation areas. These types of conservation areas have
recently been established to increase the species popula-
tions in areas with illegal hunting. Despite the import-
ance of no-hunting areas in the protection of key
habitats, these areas are more likely to be exposed to fire
due to less strict conservation, and less legal protection
against anthropogenic impacts. This finding has import-
ant message for practitioners, that no-hunting areas are
more in danger and therefore need further consideration
in the conservation programs. An important suggestion
can be to upgrade the existing no-hunting areas in the
region to official protected areas (e.g., protected areas,
wildlife refuge, or national parks) and to expand them to
incorporate also neighboring lands where species may
occur. Also, the results of species distribution modeling
and habitat connectivity showed that most of the critical
habitats and corridors are located outside conservation
areas. For example, there is a high risk of fires in isolated
and unprotected critical habitats in western and north-
ern parts of the peripheral area. Brown bears in these re-
gions may experience increased exposure to wildfires in
the future.
Fires is an important regulator that helps maintain

ecosystem health. However, fires have increasingly
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become a threat to many forests and the biodiversity
due to altered fire regimes (Cushman et al. 2011). The
results of composite maps showed that the highest fire
risk in the predicted critical habitats is in the central
parts of the core zone and the western parts of the per-
ipheral areas. These areas contain the study area’s largest
extent of forests in the Zagros Mountains. In addition,
the migration corridors between critical habitats in the
central parts of the core zone and western parts of the
peripheral area showed the greatest potential for fire.
While fires may have short-term positive effects on

some fire-adapted species, wildfires have contributed
to the reduction in populations of some large carni-
vores such gray wolf (Canis lupus) in Minnesota be-
cause of its fire-dependent preys (Kramp et al. 1983).
Cunningham and Ballard (2004) studied short-term
impacts of wildfire on black bear demographics in
central Arizona. They found that wildfire had signifi-
cant negative impacts on adult sex ratio, recruitment
of cubs, and superpopulation size. Richardson et al.
(2007) showed that forest fires decrease the stability
of polar bear den sites (Ursus maritimus) in western
Hudson Bay and lead to the degradation of the sur-
rounding habitats by significantly altering vegetation
composition and increasing the depth of the active
layer. According to the results of Richardson et al.
(2007), bears do not use burned areas for denning.
The accelerated rate in forest fires as a result of
changing climate may reduce the amount of suitable
denning habitats in the future. Therefore, managers
should be aware of possible negative short-term con-
sequences of wildfire on cub survival. In addition, the
removal of forests by increasing fires may increase
forest fragmentation. As a result, bear activities that
typically occur in forests will be affected. They either
will have to adapt to the altered landscape, or will
have to move to remnant patches of intact forests. In
either case, their energy expenditure will increase and
thus may lead to reduced fitness. So, improving con-
nectivity between forest remnant patches will be use-
ful. Additionally, regulations that limit human
induced wildfires will be helpful.
Knowledge on the brown bear’s key habitats with high

risk of fire is necessary for wildlife managers to under-
stand the short-term and long-term impacts of fires on
bears. Our model can assist with planning the locations
of future prescribed fires or early reconstruction and re-
covery actions following fires.

Scope and limitations
Although our framework performed well in identifying
key habitats with high risk of forest fire, we recognize
shortcomings of the framework. First, as we did not in-
clude GPS data to validate the predicted critical habitats

and corridors, our models may not accurately predict dis-
tribution range and movement patterns of the studied spe-
cies especially in the peripheral area (e.g., Zeller et al.
2018). However, we found high performance of the model
to predict suitable habitats outside the calibration area,
and some prior work on brown bear found that habitat
suitability modeling can be an adequate surrogate for con-
nectivity (Mateo-Sánchez et al. 2015a; Mateo-Sánchez
et al. 2015b). Second, we did not include more proximate
environmental variables into the models. For example,
while the predicted suitable habitats are located in forest
regions, we did not consider the effects of composition
and configuration of different forest types in the models.
Mateo Sanchez et al. (2014) showed that brown bears re-
spond differentially to different kinds of forest and differ-
ent spatial metrics measuring forest configuration in the
landscape. Another factor that may pose additional limita-
tions on the species presence in the predicted suitable
habitats is human-wildlife conflict (e.g., Rostro-García
et al. 2016). If the predicted critical habitats are located in
close proximity to human settlements, the persecution of
brown bear due to human-wildlife conflict may continue
to increase and pose additional limitations on the occupa-
tion of the predicted critical habitats (e.g., Cushman et al.
2018). So, we strongly recommend incorporating human
attitudes toward bears and human-wildlife conflict into
models (e.g., Broekhuis et al. 2017).
Radiotelemetry or satellite tracking as a basis for test-

ing the predicted linkages among habitats has just been
started for a few species in Iran. We hope that wildlife
tracking will become more feasible in the near future,
but until then, we have to rely on the habitat suitability-
based estimates of landscape resistance. Given the large
assumptions made by developing a resistance surface
from a habitat model based, it is important to empiric-
ally validate the predicted corridors through monitoring
movements of bears using camera-trapping or satellite
tacking (e.g., Proctor et al. 2015) and landscape genetic
analyses (e.g., Proctor et al. 2005; Kopatz et al. 2012).
For example, Proctor et al. (2015) combined resource se-
lection functions and human presence data to predict
core habitat and develop cost surfaces for connectivity
network of grizzly bears (Ursus arctos) in Canada–US
trans-border region, and evaluated their prediction
through GPS telemetry locations. Peck et al. (2017) used
step-selection functions and randomized shortest path
to generate conductance surfaces and estimated the
average number of net passages for grizzly bear popula-
tions in the Greater Yellowstone Ecosystem and the
Northern Continental Divide Ecosystem. Their finding
confirmed that randomized shortest path algorithm pro-
vides detailed, spatially explicit information for identify-
ing and prioritizing conservation measures aiming at
improving landscape connectivity.
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Conclusion and conservation implications
There are four major findings from this study that are
especially relevant to brown bear conservation and man-
agement. First, the spatial pattern of brown bear’s critical
habitats showed that most of the key habitats are located
in the northern parts of the study area and have moder-
ate to high connectivity. Second, we found that 40% of
the predicted critical habitats and 11% of corridors are
located within the boundaries of the existing conserva-
tion areas which may increase exposure to the effects of
anthropogenic disturbance due to lack of conservation
programs in unprotected areas. Third, the results of for-
est fire risk mapping showed that 35.65% of the species’
key habitats are located in regions with a high risk of
fire. Fourth, although the susceptibility of the existing
conservation areas (such as national parks) to fire was
low, some of the conservation areas are prone to the oc-
currence of fires. Our results can be used to inform bio-
diversity managers to design conservation efforts before
the occurrence of fires and early reconstruction and re-
covery actions following event (Chambers et al. 2019).
The accelerated rate of human-induced habitat destruc-

tion and changing climate has led to increases in the size,
frequency and severity of wildfires in many parts of the
world, including Iran. However, there is little evidence re-
garding the long-term effects of changing fire regimes on
most wildlife species. Mitigation efforts should neverthe-
less consider the minimization of direct or indirect effects
of wildfires on species when they are strongly negative
and can be mitigated by practical management means
(e.g., Ganey et al. 2017; Wan et al. 2018).
The habitat suitability and connectivity models we

produced clarify the distribution, habitat relationships,
and linkages across the brown bear population, whereas
the fire risk model provides information on which habi-
tat and corridors are most susceptible to fires. What re-
mains to be explored is what effects of fires are on bears
and if they are scale dependent in their effects (e.g., Wan
et al. 2018; Wan et al. 2020). Although wildlife habitats
are threatened by large and high-severity wildfires due
to the warming climate, there is few data on the effect of
spatial scale on the relationship between wildfires and
habitat modifications. For example, Wan et al. (2020) in-
vestigated potential relationships between burn severity
and changes in habitat suitability of Mexican spotted
owl (Strix occidentalis) at different spatial scales though
multi-scale habitat selection model. They found that fire
effects on habitat suitability of the species changed at
different scales and the strength and direction of rela-
tionships were scale-dependent.
Our analytical framework for predicting critical habi-

tats and their susceptibility to fire has many manage-
ment and conservation implications. First, the critical
habitats with high risk of fire with negative impacts

should receive research, management, and conservation
priority. We recommend constructing fire trucks in
areas with a high risk of fire and management according
to principles of fire ecology and land use planning-LUP
requirements. Also, the predicted migration corridors
with low risk of forest fire should be considered in main-
taining or improving connectivity between the critical
conservation areas (Wasserman et al. 2013). We recom-
mend increasing the connectivity among critical habitats
associated with high forest fire risks, especially in con-
servation areas to allow range expansion of the species
and facilitate its movement. For example, this can be ac-
complished through designating new conservation areas
with different degrees of protection through zoning—
higher restrictions in critical habitat associated with
higher fire risk. Also, the creation and maintenance of
intermediate stepping stone corridors might facilitate
gene flow and prevent the isolation of small populations
while acting as fire breaks in the event of a fire. Finally,
we propose that the systematic risk assessment frame-
work demonstrated here can be more broadly applied
for the conservation of other forest species that are fa-
cing similar threats.
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