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Abstract 

Background  In the last two decades, Nepal has experienced an increase in both forest fire frequency and area, but 
very little is known about its spatiotemporal dimension. A limited number of studies have researched the extent, tim-
ing, causative parameters, and vulnerability factors regarding forest fire in Nepal. Our study analyzed forest fire trends 
and patterns in Nepal for the last two decades and analyzed forest fire-vulnerability risk based on historical incidents 
across the country.

Results  We analyzed the spatial and temporal patterns of forest fires and the extent of burned area using the Mann-
Kendall trend test and two machine-learning approaches maximum entropy (MaxEnt), and deep neural network 
(DNN). More than 78% of the forest fire burned area was recorded between March and May. The total burned area has 
increased over the years since 2001 by 0.6% annually. The forest fire-vulnerability risk obtained from both approaches 
was categorized into four classes—very high, high, low, and very low.

Conclusions  Although burned area obtained from both models was comparable, the DNN slightly outperformed 
the MaxEnt model. DNN uses a complex structure of algorithms modeled on the human brain that enables the pro-
cessing of the complex relationship between input and output dataset, making DNN-based models recommended 
over MaxEnt. These findings can be very useful for initiating and implementing the most suitable forest management 
intervention.
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Resumen 

Antecedentes  En las últimas dos décadas, Nepal ha experimentado un incremento tanto en la frecuencia como 
en área afectada por incendios forestales, aunque se conoce muy poco sobre su dimensión espacio-temporal. Un 
número limitado de estudios ha investigado sobre la extensión, el tiempo de ocurrencia, los parámetros causales, y 
los factores de vulnerabilidad en relación a los incendios forestales en Nepal. Nuestro trabajo analizó las tendencias 
en los incendios forestales y los patrones en Nepal de las últimas dos décadas y analizó la vulnerabilidad al riesgo de 
incendios forestales basados en incidentes históricos a través de todo el país.

Resultados  Analizamos el patrón espacial y temporal de los incendios, y la extensión del área afectada usando la 
tendencia de Mann-Kendall y dos aproximaciones de aprendizaje automático (machine learning) de máxima entropía 
(MaxEnt), y la red neural profunda (DNN). Más de 78% del área de bosques quemada fue registrada entre marzo y 
mayo. El área total quemada se incrementó desde 2001 a una tasa del 0,6% anual. El riesgo de vulnerabilidad de 
incendios forestales obtenido mediante las dos aproximaciones fue categorizado en cuatro clases – muy alta, alta, 
baja, y muy baja.

Conclusiones  Aunque el área quemada obtenida mediante los dos modelos es comparable, el DNN superó ligera-
mente al modelo MaxEnt. El DNN usa una compleja estructura de algoritmos modelados en el cerebro humano que 
permite el procesamiento las complejas relaciones entre los ingresos y egresos del conjunto de datos, haciendo a los 
modelos basados en DNN más recomendables sobre el MaxEnt. Estos hallazgos pueden ser útiles para iniciar e imple-
mentar las intervenciones forestales más adecuadas.

Introduction
Forest fire not only significantly contributes to anthro-
pogenic greenhouse gas emissions, but also adversely 
affects wildlife, ecosystem, and watershed management. 
It is a disaster with major environmental and ecological 
impacts that threaten human lives and livelihoods. About 
7.2 billion ha of land (i.e., forests, other wooded lands, 
and other lands) was burned in 2001–2018 globally at an 
average of about 400 million ha per year (Robinne 2021). 
The annual burned area from 2013 to 2018 was less 
than the long-term average (FAO 2020). Another study 
showed that the global burned area has declined by 24.3 
± 8.8% over the past 18 years (Andela et al. 2017), but a 
re-analysis of the ensembles with climate models showed 
that forest fire risk increased by about 1.1 times in cur-
rent climate conditions in comparison to pre-industrial 
climate conditions, and for future climate conditions (2 
°C global temperature increment), it could increase by 
two times (Aponte et al. 2016). Every year, many people 
are killed due to forest fire, and this number has been 
increasing over the years (Doerr and Santín 2016).

Apart from the impact of fire on emissions, forest fire 
is a major driver of deforestation and land degradation. 
Increased runoff, floods, and landslides are consequences 
of forest fire (American Forest Foundation 2015). It also 
causes significant economic loss. As estimated by the 
Economy and Environment Program for Southeast Asia, 
the cost of damages from Southeast Asian fires is more 
than $4.5 billion (Cotton 2014).

According to the historical dataset in Nepal, about 
40,000 ha of forest area is burned in Nepal every year. 
The majority of forest fire incidents and affected areas 
are recorded between March and May (Matin et al. 2017). 
The dry season (February through May) is very suscep-
tible to forest fire due to low rainfall and high tempera-
ture; consequently, tackling a forest fire in this season is 
challenging in Nepal. The year 2009 had the worst record 
of forest fire, causing 41 casualties and severe damage in 
human settlements and forests in Nepal (GON 2014).

Anthropogenic activities are identified as major sources 
of ignition of forest fires (Bahadur et  al. 2017); how-
ever, prolonged dry winters and increasing frequency 
of droughts in the spring are major causes of forest fire 
spread in Nepal. The forest fires could be deliberate, due 
to negligence or accidental (Kunwar and Khaling 2006). 
Many land managers deliberately ignite forests to pro-
mote new shoots of grass, to clear vegetation for better 
sight of prey, or to expand agricultural lands. Uninten-
tional or accidental forest fire often occurs from careless 
handling of burning match sticks or cigarette buts, chil-
dren set fires unknowingly, leaving extinguished fire by 
charcoal makers, and fire remained after campfire or pic-
nic (Gentle 1997; Kunwar and Khaling 2006).

With the advancement of technology, the availability of 
remotely sensed data on forest cover and bioclimatic and 
anthropogenic variables has increased since the beginning 
of this century. Remotely sensed data have been very help-
ful for quantitative studies on the impact of bioclimatic 
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variables in forest fires. These data have been widely used 
for the study of different aspects of forest fires such as 
active fire monitoring, risk monitoring, and understanding 
causes and effects, among others (Bowman and Murphy 
2010; Nelson and Chomitz 2011; Matin et al. 2017).

Forest fire modeling tools are crucial to the identifica-
tion and visualization of forest fire distribution based on 
scientific methods. Some popular tools include Multidi-
mensional Scaling (MDS) visualization tool, hexagonal 
cellular automata, maximum entropy (MaxEnt), ran-
dom forest, a regression tree analysis, and deep learn-
ing methods (Hernández Encinas et al. 2007; Lopes and 
Machado 2014; Miquelajauregui et al. 2016; Leuenberger 
et al. 2018; Kim et al. 2019; Zhang et al. 2019). The Max-
Ent model needs only presence points for modeling pur-
poses (Phillips et  al. 2006); therefore, this has been the 
most frequently used model (Biswas et al. 2015; Fonseca 
et  al. 2017). The MaxEnt model uses a general-purpose 
machine-learning method with a simple and precise 
mathematical formulation (Phillips et al. 2006). Although 
the MaxEnt model was introduced as a species distri-
bution tool, it is successfully used to model forest fire-
vulnerability risk in a diverse environment (Renard et al. 
2012; De Angelis et  al. 2015; Fonseca et  al. 2017; Kim 
et al. 2019; Martín et al. 2019; Makhaya et al. 2022). In a 
comparative study on forests in South Korea and Spain, 
MaxEnt outperformed random forest and generalized 
linear models (GLM) (Vilar et al. 2016; Kim et al. 2019).

On the other hand, deep-learning-based approaches 
such as deep neural network (DNN) and convolution 
neural networks (CNN), among others, are outperform-
ing many other machine-learning methods for diverse 
applications in recent years (Mishra et  al. 2022; Zhang 
et  al. 2021). However, their applicability has not been 
fully explored in the case of forest fire modeling. Moreo-
ver, DNN could be more effective in extracting the infor-
mation (pattern) from the large datasets of bioclimatic, 
topographic, and anthropogenic variables required to 
cover an entire country (Jain et al. 2020).

Very limited studies have been done on forest fires in 
Nepal, and many of them focused on a small geographical 
extent (Khanal 2015; Matin et al. 2017; Parajuli et al. 2020). 
The relationship between forest fire and potential causa-
tive parameters is not well explored in the complex moun-
tainous topography of Nepal. Identifying the relationship 
of bioclimate, anthropogenic causes, topography, and 
vegetation indices to forest fire is important to map forest 
fire-vulnerability risk. It helps to define relative risk at spe-
cific locations that can aid in developing better forest fire 
management plans to minimize threats to life, property, 
and natural resources (Poudel et al. 2020). To fill the gap, 
this study leveraged remote-sensing data and technologies 
to analyze forest fire regime over time (monthly) and space 

(physiographic regions of Nepal) between the years 2001 
and 2019 and developed a fire-vulnerability map based on 
the historical forest fire dataset.

The main objective of this study was to model the for-
est fire-vulnerability risk of Nepal using historical for-
est fire incidents based on MODIS data. To obtain this 
objective, the following sub-objectives were to (1) analyze 
the forest fire trend in different physiographic regions of 
Nepal and (2) model forest fire-vulnerability risk across 
Nepal with DNN using historical data and comparing 
the results with those from the widely accepted MaxEnt 
modeling tool.

Materials and methods
Study area
The study was conducted throughout Nepal’s forested 
area. Nepal is situated in the central part of the Himala-
yas, between 26° 22′ and 30° 27′ N latitudes and 80° 04′ 
and 88° 12′ E longitudes, covering an area of 147,516 
km2 with elevation varying between 70 and 8848 m. It 
is divided into five physiographic zones: High Moun-
tains, Middle Mountains, Hills, Chure (known locally 
as Siwalik), and Terai. Politically, it is divided into seven 
provinces and 753 local administrative units that include 
municipalities, rural-municipalities, sub-metropolitan, 
and metropolitan cities.

Nepal has tremendous geographic diversity that ranges 
from tropical alluvial plains in the south to the very rug-
ged and permanently snow- and ice-covered Himalayan 
Mountains in the north. The climate varies from alpine 
cold, semi-desert type in the trans-Himalayan zone to a 
humid tropical type in the tropical lowlands in the south 
(GON 2014). It has been observed that the temperature 
varies greatly from south to north, as it does along eleva-
tion zones. The High Mountains are the coldest region, 
with below 0 °C throughout the year, whereas the Terai 
region has the highest temperatures that can reach up 
to 46 °C. Eighty percent of the precipitation that falls in 
Nepal comes in the form of summer monsoon rain, from 
June to September (Bhuju et al. 2007; Mishra et al. 2014; 
Poudel et al. 2017).

The country receives an average annual rainfall of 
around 1600 mm (Bhuju et al. 2007; GON 2014; Mishra 
et al. 2014). The mean annual precipitation of the country 
varies spatially; specifically, less precipitation falls in the 
northern regions than in the southern plain. Similarly, 
during monsoon season, precipitation in the western part 
is less than that in the eastern part.

For this study, the High Mountains zone was not con-
sidered because the occurrence of forest is very rare at 
very high elevations. Hence, the study and analysis were 
conducted in four physiographic regions: Middle Moun-
tains, Hills, Chure, and Terai.
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•	 The Terai is the lower part of Nepal, which extends 
south of Chure to the northern part of the Indo-
Gangetic plain. Its average elevation is less than 750 
m. It has a tropical climate and is mostly very densely 
populated or covered by tropical forest.

•	 The Chure, sandwiched between Terai and Hills, 
extends east to west at about the 700- to 1500-m ele-
vation. It has a subtropical climate and is covered by 
a large forest.

•	 Hills, locally known as the Mahabharat Range, runs 
through the center of the country with green moun-
tains, river duns, and valleys. Sandwiched between 
Chure and the Middle Mountains zone, Hills has a 
warm temperate climate, and the elevation varies 
between 1500 and 2700 m.

•	 The Middle Mountains zone consists of the season-
ally snow-covered mountainous area with sparse for-
ests and bushes, ranges from 2200 to 4000 m, and has 
a subalpine climate.

The area above 4000 m and up to 8848 m is the Hima-
laya, with an alpine climate and no or only seasonal veg-
etation. All physiographic zones run continuously from 
east to west, with a few breaks only in Terai, as shown in 
Fig. 1.

Broad-leaved forests are dominated by Shorea robusta 
Roth (sal) and Terminalia elliptica Willd. (saaj) in the 
Terai. Chure’s broad-leaved forest is dominated by Sho-
rea robusta and Pinus roxburghii Sarg.(chir pine). Sub-
tropical and temperate, subalpine and alpine, and Nival 
vegetation are found in Hills, Middle Mountains, and 
High Mountains zones, respectively (Dobremez 1976). 
The government of Nepal has also developed the forest 
inventory according to the five designated physiographic 
zones. Twenty protected areas of Nepal cover 23.39% of 
the total land of the country, and that is mostly forest and 
extends into all physiographic zones (FRA/DFRS 2015).

Data used
Forest fire data
MODIS monthly fire product (MCD45A1), a global 
product of 500-m spatial resolution that includes qual-
ity index (Boschetti et  al. 2008), was used in this study. 
This is the product of the daily TERRA and AQUA satel-
lites used all over the world. It has already been used and 
validated in the study of forest fire in several places in the 
world, including Nepal (De Araújo and Ferreira 2015; 
Fornacca et al. 2017; Matin et al. 2017). Only the burned 
areas with the highest confidence rating (quality index 
flag 1) were considered in this study (Fig. 2a). In addition 

Fig. 1  Land cover map (2000) of Nepal that we used to model forest fire-vulnerability risk of the country using historical forest fire data
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to that, the event of fire occurrence data were obtained 
from the Forest Fire Detection and Monitoring System 
of Nepal, developed and maintained by the Ministry of 
Forest and Environment, Department of Forest and Soil 
Conservation from 2017 to 2019 (DoF 2022).

Forest cover area and vegetation dataset
International Centre for Integrated Mountain Devel-
opment (ICIMOD) land use and cover map (ICIMOD 
2018) was used as the baseline map for forest and vegeta-
tion cover in 2000; all forest fire incidents were examined 
with regard to this mapped forested area. The time series 
global MODIS 250-m vegetation products (MOD13Q1/
MYD13Q1) were used for computing the mean annual 
Normalized Difference Vegetation Index (NDVI) value. 
This product has been used in a large number of applica-
tions for forest and agricultural land monitoring in several 
parts of the world, including Nepal (Boschetti et al. 2008; 
Ghimire et al. 2017; Luintel et al. 2021). Based on the for-
est phenology, the low NDVI value indicates that water-
stressed vegetation is more fire prone than vegetation that 
has a higher NDVI (Kasischke et al. 1993; Illera et al. 1996).

Bioclimatic variables
We considered 19 bioclimatic variables that were iden-
tified as the contributing factors for forest fire in this 
study. These variables have been identified as the gov-
erning factors for the spread of forest fire in several parts 
of the world (Furlaud et  al. 2021; Singh and Zhu 2021; 
Makhaya et  al. 2022). These bioclimatic datasets were 
acquired from WorldClim’s Global Climate Data website 
(http://​world​clim.​org/​versi​on2), which are well-accepted 
datasets used for forest fire application (Fick and Hij-
mans 2017). The bioclimatic data are 30 arc seconds (~1 
km) spatial resolution. The details of these datasets are 
presented in Table 1.

Topographical variables
Similar to bioclimatic variables, a number of topographic 
variables are identified as contributing factors for forest fire 
in several parts of the world (Makhaya et al. 2022). A digital 
elevation model (DEM) of 30-m resolution was downloaded 
from EarthExplorer (https://​earth​explo​rer.​usgs.​gov/). 
Aspect and slope were calculated from the DEM using Arc-
GIS software (ESRI 2017; ESRI, Redlands, California, USA). 

Fig. 2  Maps illustrating a fire incident frequency and area burned, b enhanced vegetation index (EVI), c average annual precipitation (mm), and d 
average annual land surface temperature (°C) of Nepal

http://worldclim.org/version2
https://earthexplorer.usgs.gov/
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Shapefiles of water resources, especially streams, were 
obtained from OpenStreetMap (https://​www.​opens​treet​
map.​org/#​map=5/​51.​509/-0.​110). That was then subjected 
to analysis to compute the distance raster file using ArcGIS 
software.

Anthropogenic variables
A number of anthropogenic variables such as population 
density, road networks, and livestock density were identified 
as governing factors for forest fire (Singh and Zhu 2021). We 
acquired anthropogenic variables from the Socioeconomic 
Data and Application Center (SEDAC; CIESIN 2016); the 
data has 1-km spatial resolution. Furthermore, livestock 
density having the same resolution was obtained from Live-
stock Geo-Wiki (https://​www.​geo-​wiki.​org/; Robinson et al. 

2014). Road and path networks were obtained from Open-
StreetMap. The settlement points throughout Nepal were 
obtained from the Department of Survey, Nepal (https://​
www.​dos.​gov.​np/). These datasets were subject to analysis to 
develop distance raster files of roads, paths, and settlements 
using ArcGIS.

Field‑based dataset
In addition to remote-sensing-based data and secondary 
datasets from different sources, a key informant inter-
view (KII) about historical fire incidents, their timing, 
aims of setting up fires, and impact at the local level was 
held with the representatives of local people and local 
officers from the Department of Forest, Government of 
Nepal, users communities’ groups. Such KII were held in 

Table 1  Environmental variables used for modeling forest fire-vulnerability risk of Nepal. Abbreviations used in text and variable units 
are also given

Category Data source Variables Abbreviation Units

Bioclimatic WorldClim Annual mean temperature Bio1 °C

Mean diurnal range Bio2 °C

Isothermality Bio3 Dimensionless

Temperature seasonality (standard deviation) Bio4 °C

Maximum temperature of warmest month Bio5 °C

Minimum temperature of coldest month Bio6 °C

Annual temperature range Bio7 °C

Mean temperature of wettest quarter Bio8 °C

Mean temperature of driest quarter Bio9 °C

Mean temperature of warmest quarter Bio10 °C

Mean temperature of coldest quarter Bio11 °C

Annual precipitation Bio12 mm

Precipitation of wettest month Bio13 mm

Precipitation of driest month Bio14 mm

Precipitation seasonality (coefficient of variation) Bio15 Dimensionless

Precipitation of wettest quarter Bio16 mm

Precipitation of driest quarter Bio17 mm

Precipitation of warmest quarter Bio18 mm

Precipitation of coldest quarter Bio19 mm

Topographic USGS GTOPO30 Elevation elevation m

Aspect aspect Degree

Slope slope Degree

GEOFABRIK Distance to water dist_water km

Vegetation-related MODIS
13Q1

Mean Normalized Difference Vegetation Index ndvi_mean Dimensionless

ICIMOD
Land cover

Forest cover forest Dimensionless

Anthropogenic SEDAC Population density pop_density People km−2

GEOFABRIK Distance to path dist_path km

Survey Department Nepal Distance to settlement dist_settle km

Livestock
Geo-Wiki

Livestock density livestock_den Livestock km−2

https://www.openstreetmap.org/#map=5/51.509/-0.110
https://www.openstreetmap.org/#map=5/51.509/-0.110
https://www.geo-wiki.org/
https://www.dos.gov.np/
https://www.dos.gov.np/
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Kaski, Kailali, Baglung, Lamjung, Makawanpur, and Ilam 
in December 2020 and January 2021.

Data preparation
All non-forested areas were masked out of the land use and 
land cover map of Nepal, 2000 (ICIMOD 2018), so that we 
could work solely with the forested area time-series data-
sets for the country. All relevant remotely sensed data were 
downloaded for the study area, and we applied three differ-
ent filters for the study area, data quality, and cloud cover-
age. A series of pre-processing steps were taken to get the 
stacked products clipped to the four physiographic regions 
of Nepal. This included the acquisition of forested area, 
acquisition of the fire-affected forested area, development 
of the fire-affected forest map, acquisition of the NDVI 
map, acquisition of the bioclimatic variable map, acquisi-
tion of the anthropogenic activity map, resampling all lay-
ers to match the resolution of the forest-fire map, and if 
necessary, co-registration and layer stacking that is ready 
for fitting the model. We used burned-area data from 
March through May of all years from 2000 through 2016. 
The overall methodological flow is provided in Fig. 3.

Statistical analysis
The burned-area data, the total surface area burned 
according to year and month in each physiographic 

region, were analyzed with descriptive statistics using 
R programming. The data were analyzed to reveal the 
trend and patterns in forest fires across physiographic 
zones. To explore the seasonal and temporal pat-
terns, we performed a trend analysis of the forest-fire 
area based on yearly and monthly (average of all years, 
monthly) forest-fire area. Peak fire-affected months per 
physiographic zones were also computed.

We used the Mann-Kendall (MK) trend test method 
(Mishra et al. 2014) for the trend analysis of the fire-affected 
areas for the designated 16 years. In the hypothesis testing 
for trends, the null hypothesis is that there is no trend in 
the population from which the data set is drawn. The alter-
native hypothesis is that there is a trend in the population. 
The MK method is a non-parametric rank-based proce-
dure, sensitive to the influence of extremes, and suitable for 
application with skewed variables. More particularly, this 
technique can be adopted in cases with no normally dis-
tributed time-series data, (i.e., data containing outliers and 
non-linear trends) (Karpouzos et al. 2010; Poudel and Shaw 
2016). The statistical significance of the trend was deter-
mined based on the corresponding P-value.

Fire‑vulnerability modeling
Fire-vulnerability modeling was performed using two 
approaches: MaxEnt, one of the most commonly used 
fire distribution modeling tools, and DNN, an emerging 

Fig. 3  Flow diagram for processing data used to model forest fire-vulnerability risk of Nepal
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machine-learning approach that is reported to outperform 
many traditional machine-learning approaches in many 
thematic applications (Mishra et  al. 2022). The follow-
ing subsections describe the selection of input variables, 
data division for training and testing, and model fitting 
processes.

Selection of input variables
All of the 29 variables considered may not have been equally 
important for forest fire incidence and growth, and many of 
them may be interdependent on each other. Therefore, min-
imization of such redundant information is important, and 
one of the most common methods to do so is through the 
variance inflation factor (VIF), as shown in Eq. 1:

where Ri
2 is the squared multiple correlations of the ith 

independent variable regressed on the other independ-
ent variables. VIF is computed iteratively and it removes 
the variable with the highest VIF value one at a time until 
all the variables have a VIF below the specific threshold 
value (<10, the most widely accepted value) (Kuo and 
Chang 2010; Campo-Bescós et al. 2013). We applied VIF 
to remove correlated metrics.

Furthermore, we used the 10-fold cross-validation 
approach while fitting the model, in which datasets from 
2000 to 2016 were randomly split into 70% and 30%. Once 
fitted, the model’s performance was evaluated and com-
pared with the fire incident points from 2017 to 2019.

Maximum entropy
The MaxEnt model was implemented for forest fire-
vulnerability risk modeling. We used 16 variables 
that incorporated bioclimatic, anthropogenic, topo-
graphic, and vegetation-related variables, and fire pres-
ence points to model forest fire-vulnerability risk area 
throughout the country (Table 2). For the best result, an 
ensemble of 10 results was considered as the outcome, 
as Barbet-Massin et  al. (2012) recommended consider-
ing the aggregated results from 10 simulations for stable 
results.

Model evaluation was performed by two methods: 
threshold independent and threshold dependent. The 
area under the receiver-operator curve (AUC) is an 
independent method (Phillips et  al. 2006). An AUC 
of <0.7 indicates poor model performance, 0.7 to 
0.9 indicates moderate usefulness, and >0.9 denotes 
excellent model performance (Pearce and Ferrier 
2000). Besides the AUC, threshold-dependent accu-
racy assessments (True Skill Statistic) were also per-
formed to evaluate model performance (Allouche 
et al. 2006; Merow et al. 2013).

(1)VIFi =
1

1− Ri2
,

Deep neural network
A deep neural network (DNN), also called a stacked neu-
ral network, is a powerful set of techniques for learning in 
neural networks having more than one layer. During the 
learning process, it finds an appropriate function or man-
ner of transferring from input to output. In predictive 
estimation, DNN can provide a multi-variate non-linear 
and non-parametric regression model for automatic esti-
mation from the set of input parameters.

The layers are made up of nodes in which the actual 
computation happens. A node combines the input with 
a set of weights. These input-weight products (wixi) are 
summed and passed through a node’s activation function 
to predict the output. The weighted combination of input 
signals is aggregated and transmitted into an output sig-
nal, γ, as seen in Eq. (2):

where xi is the input parameter, wi is the corresponding 
weight, and c is the bias.

Activation is a mapping of input to the output through 
a non-linear transfer at each node in the network. The 
combination of weight and bias serves as input data from 
the previous layer to determine whether the signal sur-
passes a given threshold and is deemed significant. Those 
weights and biases are gradually updated only if the error is 
decreased. In this model, a widely accepted activation func-
tion, tanh, is used and shown in Eq. (3). The output values 
(g) can range from –1 to 1 in this activation function.

(2)γ =
n

i=1
wixi + c,

Table 2  Environmental variables selected for modeling 
forest fire-vulnerability risk of Nepal. Only those variables with 
a variance inflation factor of less than 10 were selected for 
modeling purposes. See Table 1 for corresponding variable units

Variable VIF

Precipitation seasonality 9.40

Precipitation of the driest month 8.57

Annual precipitation 7.04

Precipitation of the driest quarter 5.56

Mean temperature of driest quarter 4.70

Livestock density 4.50

Annual temperature range 3.68

Normalized Difference Vegetation Index mean 2.82

Distance to path 2.43

Forest cover 2.33

Distance to settlement 2.27

Population density 2.25

Slope 2.23

Isothermality 1.99

Distance to water 1.35

Aspect 1.24
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The model uses the Adam method for optimization. 
The Adam method computes individual adaptive learn-
ing rates for different parameters from estimates of the 
first and second moments of the gradients (Kingma and 
Ba 2015). The hyper-parameterization of the model was 
done with grid search; the hyper-parameters are shown 
in Table 3.

The continuous probability value map that ranges from 
0 to 1 obtained from both MaxEnt and DNN was classi-
fied into four levels of risk: 0 to 0.25 = very low risk, 0.25 
to 0.5 = low risk, 0.5 to 0.75 = high risk, and 0.75 to 1.0 
= very high risk (Chen et al. 2015).

Accuracy assessment
The forested area across the country is classified into 
four categories of forest fire-vulnerability risk: very high, 
high, low, and very low. The forest fire events obtained 

(3)gtanh =
ex − e−x

ex − e−x
.

from the Ministry of Forest and Environment, Depart-
ment of Forest and Soil Conservation from 2017 to 2019 
(DoF 2022), were used to access the accuracy of the out-
come from both models. Fire events that fall in the high 
and very high vulnerability risk classes are considered 
to be truly detected fires; fire events that fall in the low 
and very low vulnerability risk classes are considered to 
be incorrectly detected. Using these two categories, true 
positive and true negative, we computed the probability 
of detection.

Results
Modern fire regime across Nepal
It has been observed that the majority of the burned area 
in Nepal is in the Chure zone, and the most concentra-
tion of burned area is in the western part of the country 
(Fig. 4a). Hills have relatively low fire occurrence, and the 
forest burn concentration decreased from west to east. 
About 78% of fire-affected areas burned more than once 
(i.e., same pixel) during the last 20 years, with the high-
est repeating frequency of two and then monotonically 
decreasing. In some places, the repetition was observed 
even in the same year (around 2% of the burned area), 
which might not be a forest fire incident in reality. These 
areas were excluded from the analysis.

On average, about 39,900 ha of forest, with about 
25% of standard deviation, is burned every year. Years 
2016, 2012, and 2001 were the biggest forest fire years, 
while the least fire incidence was observed in the years 
2002 and 2014 (Fig. 4a). The statistics show that more 
than 78% of forest fires occurred from March to May 
(Fig.  4b), which drops to almost zero as soon as the 
rainy season starts in June, and no or very few fires are 
detected from then through September.

April incidents accounted for more than 43% of the 
fire-affected area. Referring to the historical dataset in 

Table 3  Optimum configuration parameter for the DNN model

Parameters Values

Number of nodes in the input layer Number 
of input 
features

Number of epochs 106

Distribution Gaussian

Hidden layer 150,150,150

Activation function adam

Input dropout ratio 0.1

L1 1e−5

L2 0

Rho 0.9

Fig. 4  Graphs of a yearly and b monthly forest fire incidents across Nepal from 2000 to 2019, generated from the MODIS data
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Nepal, the majority of forest fire incidents and affected 
areas were recorded between March and May, 3 months 
of the year (Khanal 2015; Matin et al. 2017). Hence, it is 
worthwhile to focus the analysis on these 3 months.

We observed a general trend towards increasing 
forest fire in all 3 months in all four physiographi-
cal regions by as much as 33 ha per year over the 20 
years of study data (see details in Table 4). The trend of 
increasing forest fire was highest in Chure and lowest in 
High Mountain. The trend of increasing forest fire area 
was decreasing in March. A significant trend of burned 
area (confidence interval = 95%) was observed only in 
Chure during April and May. For other regions, a statis-
tically significant trend was not identified according to 
the MK test. Relatively greater burned area was found 
at lower elevations. More than 50% of the recorded fire 
area was at less than 1000-m elevation, which is mostly 
in the Terai and part of the Chure region. About 21% 
and 24% of the recorded forest fire area was between 
1000 and 2000 m and 2000 and 3000 m in elevation, 
respectively, while the 3000- to 4000-m elevation range 
accounts for less than 5% of the recorded forest fire 
area. Hardly any forest fire area was recorded above 
4000-m elevation.

Fire‑vulnerability modeling
Figure  5 illustrates the forest fire-vulnerability risk 
obtained from DNN and MaxEnt across Nepal. The prob-
ability of detection using DNN was 0.71 while it was 0.64 
using MaxEnt when accessing the results of forest fire 
events from 2017 to 2019 (DoF 2022). The summary of 
the accuracy assessment is presented in Table 5. The for-
est fire-vulnerability risk from both the DNN and Max-
Ent models was comparable in terms of their distribution 
patterns (Fig. 5a, b) while using the same input dataset. 
The DNN model showed a much greater very-high-risk 
area than did the MaxEnt model (2.64% versus 0.27%). 
The high-risk area was comparable (i.e., 1.55% from DNN 
and 1.2% from the MaxEnt model). The MaxEnt model 
showed about 90% of the area under very low risk, while 
it was 83.78% from DNN. Thus, the MaxEnt model iden-
tified less area of high fire vulnerability than did the DNN 
model.

Twenty-nine remote-sensing metrics were evalu-
ated for their dependency on forest-fire incidence. Out 
of 29, 17 variables had a VIF value of less than 10, and 
these were selected for the model development (Table 2). 
Among the selected 17 variables, bioclimatic variables 
were identified as more important and other variables 
(topographic, vegetation-related, and anthropogenic) 
as less important for fire-vulnerability modeling. Pre-
cipitation seasonality was the most important variable to 
modeling forest fire-vulnerability risk for MaxEnt. This 
variable has a permutation importance of 23.2 and 16.2% 
contribution. After precipitation seasonality, the mean 
temperature of the driest quarter, slope, and climate (iso-
thermality) were important variables to modeling forest 
fire-vulnerability risk. These variables have permutation 
importance of 17.5, 8.6, and 8, respectively, in MaxEnt 
(Table 6). A comparable ranking was obtained with DNN 
modeling where precipitation seasonality, annual precipi-
tation, mean temperature of driest quarter, and climate 
were the most important variables. The forest fire-vul-
nerability risk is low at lower land surface temperatures 
and high in areas having a high maximum and mean land 
surface temperature. Unlike the response to land surface 
temperature, forest fire-vulnerability risk is higher at a 
medium level of maximum and mean precipitation. For-
est fire-vulnerability risk is low in areas with very low and 
very high precipitation. Low-precipitation areas are likely 
to have sparse vegetation cover, so the vulnerability of 
forest to risk of fire is also low.

Discussion
Based on both models, Chure and Terai in the western 
part of the country are more prone to potential fire in the 
future. The region was historically also vulnerable. These 
regions receive low rainfall compared with the eastern 
and central parts of the country. The western Terai plain, 
followed by the Chure area, has a higher probability of 
forest fire events than the Middle and High Mountains, 
which have the lowest probability of forest fire. Although 
bioclimatic factors were most prominent for the forest 
fire, topography also had some effects. The southern face 
of mountains is also more susceptible to forest fire than 

Table 4  Trend of change (slope) in annual burned area in Nepal during the months of March, April, and May, for four physiographical 
regions (High Mountain, Hill, Chure, and Terai), obtained from MODIS forest fire product. P-values are also given

Month High Mountain Hill Chure Terai

Slope P-value Slope P-value Slope P-value Slope P-value

Mar −8.717 0.343 1.146 0.417 1.188 0.893 0.458 0.160

Apr 0.917 0.528 1.879 0.588 33.976 0.034 0.641 0.685

May 0.550 0.222 2.000 0.321 7.488 0.037 4.125 0.174
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Fig. 5  Maps created by modeling forest fire-vulnerability risk across Nepal using historical forest fire incidents based on MODIS data, using the a 
deep neural network (DNN) approach, and the b Maximum Entropy (MaxEnt) approach. This same data was used to develop the graph of spatial 
distribution of c burned area across different elevation zones and d burned area across four physiographic zones of Nepal
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any other face; south-facing areas had a higher fire fre-
quency during the study period. As the south-face area is 
exposed to more sunlight, it consequently becomes dry. 
Forest fire incidence and burn area could be higher in 
such mountain areas. The higher concentration of forest 
fire incidents on the southern face of the Chure region is 
evidence of this increase.

March, April, and May are the most forest fire-prone 
months, which compose the driest and hottest season 
in the year, falling immediately after a prolonged cold 
and dry winter, when foliage is most susceptible to burn. 

In addition, strong wind exacerbates fire events, adding 
more complexity to controlling fire. However, a significant 
portion of burned area at high elevations was recorded in 
November, December, and January.

In order to develop better forest management plans to 
protect the forest from fire damage, an up-to-date and 
accurate vulnerability assessment is needed to optimize 
the fuel management (Jain et  al. 2020). Such an assess-
ment would indicate the area most vulnerable to for-
est fire, so that fire management teams could prioritize 
fuel treatments and mitigation actions for better fuel 

Table 5  Summary of accuracy assessment of vulnerability-risk models MaxEnt and DNN, based on forest fire events in 2017, 2018, and 
2019. FALSE represents the number of incorrectly detected fire events. TRUE represents the number of truly detected forest fire events. 
The probability of detection was computed using the values in FALSE and TRUE

Method Fire year Forest fire-vulnerability risk class (n) FALSE (n) TRUE (n) Probability 
of 
detectionVery low Low High Very high

MaxEnt 2019 295 155 432 354 450 786 0.64

2018 251 156 432 357 407 789 0.66

2017 325 172 515 329 497 844 0.63

Overall 871 483 1379 1040 1354 2419 0.64
DNN 2019 206 138 538 354 344 892 0.72

2018 171 134 525 366 305 891 0.74

2017 252 175 551 363 427 914 0.68

Overall 629 447 1614 1083 1076 2697 0.71

Table 6  Percent contribution and relative importance of the variables used in DNN and MaxEnt modeling of forest fire-vulnerability 
risk of Nepal. See Table 1 for corresponding variable units

Variables MaxEnt DNN

Percent contribution Permutation 
importance

Relative importance Percent 
contribution

Precipitation seasonality 16.2 23.2 0.98 12.6

Mean temperature of driest quarter 1.5 17.5 0.14 7.7

Slope 5.9 8.6 0.2 2.9

Isothermality 3.3 8 0.11 10.6

Precipitation of the driest quarter 6.5 7.9 0.21 2.9

Annual precipitation 18.9 6.1 1 14.2

Population density 2.3 5.5 0.1 4.7

Temperature annual range 1.7 5.3 0.07 2.9

Distance to water 6.8 4.5 0.22 2.8

Precipitation of the driest month 2.7 2.8 0.13 6.9

Distance to path 8.6 1.8 0.25 7.1

Forest cover 11.6 1.7 0.31 9.4

Aspect 4.2 1.6 0.16 3.5

Livestock density 5 1.5 0.19 4.8

Distance to settlement 0.4 1.3 0.01 2.4

Normalized Difference Vegetation Index mean 4.3 1 0.14 5.5
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management in the forest. Additionally, in the event of 
forest fire, the authority concerned could better manage 
the resources necessary to control the fire.

Similar to many other studies, the deep learning-based 
model (DNN) outperformed the MaxEnt model (Bjånes 
et al. 2021; Jain et al. 2020), although the pattern is very 
similar in both models in this study. The DNN model is 
better than MaxEnt in mountainous environments as 
it has a better fitting and classification ability than the 
traditional MaxEnt-based model due to its capacity in 
extracting complex features from very large input data-
sets through the full uses of the spatial context informa-
tion (Bjånes et al. 2021; Jain et al. 2020; Mishra and Shahi 
2021). The MaxEnt model works only with the presence 
data while fitting the model. Since fires do not occur in all 
places where fire-prone conditions exist, and it is difficult 
to define a true absence while training the model, there is 
the change of classifying fire-prone areas as less vulner-
able that degrades the overall performance. In addition to 
that, the occurrence localities of training samples could 
have an impact in the outcome (Arnold et al. 2014). Addi-
tionally, the MaxEnt model often suffers from over-fitting 
that limits developing the generalized model with inde-
pendent data due to its weak regularization mechanisms, 
which is more challenging in heterogeneous topography, 
such as Nepal. Conversely, DNN allows the implementa-
tion of several regularization techniques such as dropout, 
batch normalization, early stopping, and L1 and L2 regu-
larization techniques which can better handle such issues 
and the network has the ability to capture complex rela-
tionships between input and output through a complex 
network.

Anthropogenic factors
Bioclimatic factors and topographic factors appeared 
more important than anthropogenic factors. This is due 
to the output dataset of the model, which is burned area, 
and the model accounts for the fire spreading conditions/
burned area rather than ignition conditions. Addition-
ally, fires in forested areas near small residential areas are 
often controlled by people and therefore may explain why 
anthropogenic factors are less important in the model. 
However, we discuss their potential influence in this 
study since they are known to influence ignition in other 
regions (Ganteaume et al. 2013).

During the KII in Bardiya, Ilam, Kaski, Lamjung, Mak-
wanpur, and Baglung, local people and local officers of 
the department of forest agreed on the fact that people 
are motivated to set fires for two reasons, but there are 
not any record-keeping systems for such fire incidents 
in Nepal. Firstly, fires are set for the illegal poaching of 
wild animals; and secondly, fires are set to encourage 
the growth of better grasses for grazing. Large burned 

areas in the Terai region occur mostly during the dry 
seasons, and the fires that cause them are likely to be 
intentionally set, although there is no evidence. The 
possible motivation for setting these fires could be for 
grazing, poaching, hunting, non-timber forest prod-
uct collecting, and deforestation for land acquisition 
(Kunwar and Khaling 2006). Therefore, forests that are 
closer to more human activity (access to road, higher 
population density, higher livestock density, etc.) have 
a higher fire-vulnerability risk than that of remote for-
ests. Similarly, remote, sparsely populated areas where 
governmental monitoring is not present could have an 
increased chance of forest fire caused by the intentional 
setting of fire by local people.

Conclusions
The forest fire-affected area in Nepal is highly sea-
sonal, and the concentration of forest fire incidence 
is more in the western than in the eastern part of the 
country. Bioclimatic, vegetation index, topographic, 
and anthropogenic variables together define forest fire 
area and its vulnerability risk level. The southwestern 
part of the country was found to be more vulnerable 
to forest fire; it is more vulnerable in the Chure area 
of central Nepal and the hilly part of western Nepal 
as well. The forest fire-vulnerability risk maps will be 
helpful in understanding the risk pattern across the 
country. As the outcome of the model is in a raster 
format, we can generate variations of vulnerability risk 
maps to meet the needs of each administrative unit. 
Such maps are very useful to forest managers for allo-
cating resources at the sub-national level based on rel-
ative risk and for developing strategies for forest-fire 
management. Similarly, these maps can help in the dis-
tribution of resources required to control forest fires. 
A further detailed study considering higher resolution 
forest fire and field data is recommended in the more 
vulnerable western region of the country where the 
frequency of fire is very high.

Acknowledgements
The authors acknowledge the local people from Lamjung, Ghalegau, Bardiya, 
Kaski, and Pancase; officers of the Department of Forest in Dhorpatan Hunting 
Reserve; and district forest officers of IIlam and Makwanpur for their active 
participation in the focus group discussion. The authors are extremely thankful 
to L. Burk for the English language editing of the manuscript and to the two 
anonymous reviewers and editor for their valuable suggestions.

Authors’ contributions
BM developed the analysis concept, interpreted statistics, and did the majority 
of manuscript writing; SP developed the analysis concept, compiled data, 
developed the MaxEnt model, created figures, and contributed to manuscript 
writing; SP performed the statistical analysis, analyzed data, and contributed 
to manuscript writing; BRG assisted in interpreting statistics and contributed 
to writing the manuscript. All authors read and approved the final manuscript.

Funding
This research did not receive any specific funding.



Page 14 of 15Mishra et al. Fire Ecology            (2023) 19:3 

Availability of data and materials
All the data are from secondary sources and details of the data achieve are 
mentioned in the manuscript.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 28 December 2021   Accepted: 12 December 2022

References
Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species 

distribution models: Prevalence, kappa and the true skill statistic (TSS). 
Journal of Applied Ecology 43: 1223–1232. https://​doi.​org/​10.​1111/j.​1365-​
2664.​2006.​01214.x.

American Forest Foundation, 2015. Western water threatened by wildfire.
Andela, N., D.C. Morton, L. Giglio, Y. Chen, G.R. Van Der Werf, P.S. Kasibhatla, 

R.S. DeFries, G.J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, 
G. Lasslop, F. Li, S. Mangeon, J.R. Melton, C. Yue, and J.T. Randerson. 
2017. A human-driven decline in global burned area. Science (80-. ) 356: 
1356–1362. https://​doi.​org/​10.​1126/​scien​ce.​aal41​08.

Aponte, C., W.J. De Groot, and B.M. Wotton. 2016. Forest fires and climate 
change: Causes, consequences and management options. International 
Journal of Wildland Fire 25: i–ii. https://​doi.​org/​10.​1071/​WFv25​n8_​FO.

Arnold, J.D., S.C. Brewer, and P.E. Dennison. 2014. Modeling climate-fire con-
nections within the great basin and upper Colorado River Basin, Western 
United States. Fire Ecology 10: 64–75. https://​doi.​org/​10.​4996/​firee​cology.​
10020​64.

Bahadur, K.C., B.P. Heyojoo, Y.K. Karna, S.P. Sharma, and S. Panthi. 2017. 
Incidences of wildfire hazard and its effects on forest cover change in 
Chitwan National Park, Nepal. Clarion: International Multidisciplinary 
Journal 3: 51–60.

Barbet-Massin, M., F. Jiguet, C.H. Albert, and W. Thuiller. 2012. Modelling spe-
cies distributions to map the road towards carnivore conservation in 
the tropics. Methods in Ecology and Evolution: 85–107. https://​doi.​org/​10.​
1111/j.​2041-​210X.​2011.​00172.x.

Bhuju, U.R., P.R. Shakya, T.B. Basnet, and S. Shrestha. 2007. Nepal biodiversity 
resource book protected areas, ramsar sites, and world heritage sites. 
Kathmandu: Ministry of Environment, Science and Technology (MOEST), 
Government of Nepal (GoN) Singha Durbar.

Biswas, S., K.P. Vadrevu, Z.M. Lwin, K. Lasko, and C.O. Justice. 2015. Factors 
controlling vegetation fires in protected and non-protected areas of 
Myanmar. PLoS One: 1–18. https://​doi.​org/​10.​1371/​journ​al.​pone.​01243​46.

Bjånes, A., R. De La Fuente, and P. Mena. 2021. A deep learning ensemble 
model for wildfire susceptibility mapping. Ecological Informatics 65: 
101397. https://​doi.​org/​10.​1016/j.​ecoinf.​2021.​101397.

Boschetti, L., D. Roy, A.A. Hofmann, and M. Humber. 2008. MODIS collection 5 
burned area product MCD45. User’s Guide 3.0.1: 1–12. https://​doi.​org/​10.​
1177/​19375​86718​779219.

Bowman, D.M.J.S., and B.P. Murphy. 2010. Fire and biodiversity. In Conservation 
biology for all, 163–180.

Campo-Bescós, M.A., R. Muñoz-Carpena, J. Southworth, L. Zhu, P.R. Waylen, and 
E. Bunting. 2013. Combined spatial and temporal effects of environmen-
tal controls on long-term monthly NDVI in the Southern Africa Savanna. 
Remote Sensing 5: 6513–6538. https://​doi.​org/​10.​3390/​rs512​6513.

Chen, F., Y. Du, S. Niu, and J. Zhao. 2015. Modeling forest lightning fire occur-
rence in the Daxinganling Mountains of Northeastern China with MAX-
ENT. Forests 6: 1422–1438. https://​doi.​org/​10.​3390/​f6051​422.

CIESIN. 2016. Gridded population of the world, version 4.11 (GPWv4): Population 
count, revision 11 [WWW Document]. Revis. 11. Palisades: NASA Socioecon. 
Data Appl. Cent. https://​doi.​org/​10.​7927/​H4JW8​BX5.

Cotton, James. 2014. The “haze” over Southeast Asia: Challenging the ASEAN 
Mode of Regional Engagement. Pacific Affairs 72: 331–351.

De Angelis, A., C. Ricotta, M. Conedera, and G.B. Pezzatti. 2015. Modelling the 
meteorological forest fire niche in heterogeneous pyrologic conditions, 1–17. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​01168​75.

De Araújo, F.M., and L.G. Ferreira. 2015. Satellite-based automated burned area 
detection: A performance assessment of the MODIS MCD45A1 in the 
Brazilian savanna. International Journal of Applied Earth Observation and 
Geoinformation 36: 94–102. https://​doi.​org/​10.​1016/j.​jag.​2014.​10.​009.

Dobremez, J.F. 1976. Le Népal: Écologie et biogéographie. Paris: Éditions du 
Centre national de la recherche scientifique.

Doerr, S.H., and C. Santín. 2016. Global trends in wildfire and its impacts: Per-
ceptions versus realities in a changing world. Philosophical Transactions 
of the Royal Society B: Biological Sciences 371. https://​doi.​org/​10.​1098/​rstb.​
2015.​0345.

DoF, 2022. Forest fire detection and monitoring system in Nepal [WWW Docu-
ment]. http://​nepal.​spati​alapps.​net/​Nepal​Fores​tFire/​EN

ESRI. 2017. ArcGIS Desktop: Release 10.5. Redlands: Environmental Systems 
Research.

FAO. 2020. Global forest resources assessment 2020: Main report. Rome: Reform-
ing China’s Healthcare System. https://​doi.​org/​10.​4060/​ca982​5en.

Fick, S.E., and R.J. Hijmans. 2017. WorldClim 2: New 1-km spatial resolution 
climate surfaces for global land areas. International Journal of Climatology 
37: 4302–4315. https://​doi.​org/​10.​1002/​joc.​5086.

Fonseca, M., L. Alves, A.P. Aguiar, L. Anderson, and L. Aragão. 2017. Modelling 
future fire probability in the Brazilian Amazon under different land-use 
and climate change scenarios. In Geophys. Res. Abstr. EGU Gen. Assem 19, 
2017, 10335.

Fornacca, D., G. Ren, and W. Xiao. 2017. Performance of three MODIS fire prod-
ucts (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountain-
ous area of Northwest Yunnan, China, characterized by frequent small 
fires. Remote Sensing 9: 1–20. https://​doi.​org/​10.​3390/​rs911​1131.

FRA/DFRS. 2015. State of Nepal’s forests, 50. Kathmandu: For. Resour. Assess.
Furlaud, J.M., L.D. Prior, G.J. Williamson, and D.M.J.S. Bowman. 2021. Bioclimatic 

drivers of fire severity across the Australian geographical range of giant 
Eucalyptus forests. Journal of Ecology 109: 2514–2536. https://​doi.​org/​10.​
1111/​1365-​2745.​13663.

Ganteaume, A., A. Camia, M. Jappiot, J. San-Miguel-Ayanz, M. Long-Fournel, 
and C. Lampin. 2013. A review of the main driving factors of forest fire 
ignition over Europe. Environmental Management 51: 651–662. https://​
doi.​org/​10.​1007/​s00267-​012-​9961-z.

Gentle, P. 1997. A study on forest fire at Bara district of the Nepal’s Terai. Banko 
Janakari, vol 7, 39 - 42

Ghimire, B.R., M. Nagai, N.K. Tripathi, A. Witayangkurn, B. Mishara, and N. Sasaki. 
2017. Mapping of Shorea robusta forest using time series MODIS data. 
Forests 8. https://​doi.​org/​10.​3390/​f8100​384.

GON. 2014. Nepal fifth national report to convention on biological diversity. 
https://​doi.​org/​10.​3109/​03639​04850​90568​79.

Hernández Encinas, L., S. Hoya White, A. Martín del Rey, and G. Rodríguez 
Sánchez. 2007. Modelling forest fire spread using hexagonal cellular 
automata. Applied Mathematical Modelling 31: 1213–1227. https://​doi.​
org/​10.​1016/j.​apm.​2006.​04.​001.

ICIMOD. 2018. icimod_landcover_map_2000.pdf [WWW Document]. ICIMOD 
http://​geoap​ps.​icimod.​org/​landc​over/​nepal​landc​over/.

Illera, P., A. Fernández, and J.A. Delgado. 1996. Temporal evolution of the NDVI 
as an indicator of forest fire danger. International Journal of Remote Sens-
ing 17: 1093–1105. https://​doi.​org/​10.​1080/​01431​16960​89490​72.

Jain, P., S.C.P. Coogan, S.G. Subramanian, M. Crowley, S. Taylor, and M.D. Flan-
nigan. 2020. A review of machine learning applications in wildfire science 
and management. Environmental Reviews 28: 478–505. https://​doi.​org/​10.​
1139/​er-​2020-​0019.

Karpouzos, D.K., S. Kavalieratou, and C. Babajimopoulos. 2010. Trend analysis of 
precipitation data in Pieria Region ( Greece ). European Water 30: 31–40.

Kasischke, E.S., N.H.F. French, P. Harrell, N.L. Christensen, S.L. Ustin, and D. Barry. 
1993. Monitoring of wildfires in boreal forests using large area AVHRR 
NDVI composite image data. Remote Sensing of Environment 45: 61–71. 
https://​doi.​org/​10.​1016/​0034-​4257(93)​90082-9.

https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1126/science.aal4108
https://doi.org/10.1071/WFv25n8_FO
https://doi.org/10.4996/fireecology.1002064
https://doi.org/10.4996/fireecology.1002064
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1371/journal.pone.0124346
https://doi.org/10.1016/j.ecoinf.2021.101397
https://doi.org/10.1177/1937586718779219
https://doi.org/10.1177/1937586718779219
https://doi.org/10.3390/rs5126513
https://doi.org/10.3390/f6051422
https://doi.org/10.7927/H4JW8BX5
https://doi.org/10.1371/journal.pone.0116875
https://doi.org/10.1016/j.jag.2014.10.009
https://doi.org/10.1098/rstb.2015.0345
https://doi.org/10.1098/rstb.2015.0345
http://nepal.spatialapps.net/NepalForestFire/EN
https://doi.org/10.4060/ca9825en
https://doi.org/10.1002/joc.5086
https://doi.org/10.3390/rs9111131
https://doi.org/10.1111/1365-2745.13663
https://doi.org/10.1111/1365-2745.13663
https://doi.org/10.1007/s00267-012-9961-z
https://doi.org/10.1007/s00267-012-9961-z
https://doi.org/10.3390/f8100384
https://doi.org/10.3109/03639048509056879
https://doi.org/10.1016/j.apm.2006.04.001
https://doi.org/10.1016/j.apm.2006.04.001
http://geoapps.icimod.org/landcover/nepallandcover/
https://doi.org/10.1080/01431169608949072
https://doi.org/10.1139/er-2020-0019
https://doi.org/10.1139/er-2020-0019
https://doi.org/10.1016/0034-4257(93)90082-9


Page 15 of 15Mishra et al. Fire Ecology            (2023) 19:3 	

Khanal, S. 2015. Wildfire trends in Nepal based on MODIS burnt-area data. 
Banko Janakari 25: 76. https://​doi.​org/​10.​3126/​banko.​v25i1.​13477.

Kim, S.J., C. Lim, G.S. Kim, J. Lee, T. Geiger, O. Rahmati, Y. Son, and W. Lee. 2019. 
Multi-temporal analysis of forest fire probability using socio-economic 
and environmental variables. Remote Sensing 11: 1–19. https://​doi.​org/​10.​
3390/​rs110​10086.

Kingma, D.P., and J.L. Ba. 2015. ADAM: A method for stochastic optimization. In 
ICLR, 1–15.

Kunwar, R., and S. Khaling. 2006. Forest fire in the Terai, Nepal: Causes and com-
munity management interventions. International Forest Fire News 34: 46–54.

Kuo, Y.M., and F.J. Chang. 2010. Dynamic factor analysis for estimating ground 
water arsenic trends. Journal of Environmental Quality 39: 176–184. 
https://​doi.​org/​10.​2134/​Jeq20​09.​0098.

Leuenberger, M., J. Parente, and M. Tonini. 2018. Environmental modelling & 
software wild fire susceptibility mapping: Deterministic vs. stochastic 
approaches. Environmental Modelling & Software 101: 194–203.

Lopes, M., and J.A.T. Machado. 2014. Dynamic analysis and pattern visualization 
of forest fires. PLoS One 9. https://​doi.​org/​10.​1371/​journ​al.​pone.​01054​65.

Luintel, N., W. Ma, Y. Ma, B. Wang, J. Xu, B. Dawadi, and B. Mishra. 2021. Tracking 
the dynamics of paddy rice cultivation practice through MODIS time 
series and PhenoRice algorithm. Agricultural and Forest Meteorology 307: 
108538. https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2021.​108538.

Makhaya, Z., J. Odindi, and O. Mutanga. 2022. The influence of bioclimatic and 
topographic variables on grassland fire occurrence within an urbanized 
landscape. Scientific African 15: e01127. https://​doi.​org/​10.​1016/j.​sciaf.​2022.​
e01127.

Martín, Y., M. Zúñiga-antón, M.R. Mimbrero, and Y. Mart. 2019. Modelling 
temporal variation of fire-occurrence towards the dynamic prediction 
of human wildfire ignition danger in northeast Spain in northeast Spain. 
Geomatics, Natural Hazards and Risk 10: 385–411. https://​doi.​org/​10.​1080/​
19475​705.​2018.​15262​19.

Matin, M.A., V.S. Chitale, M.S.R. Murthy, K. Uddin, B. Bajracharya, and S. Pradhan. 
2017. Understanding forest fire patterns and risk in Nepal using remote 
sensing, geographic information system and historical fire data. Interna-
tional Journal of Wildland Fire 26: 276–286.

Merow, C., M.J. Smith, and J.A. Silander. 2013. A practical guide to MaxEnt for 
modeling species’ distributions: What it does, and why inputs and set-
tings matter. Ecography (Cop.) 36: 1058–1069. https://​doi.​org/​10.​1111/j.​
1600-​0587.​2013.​07872.x.

Miquelajauregui, Y., S.G. Cumming, and S. Gauthier. 2016. Modelling variable 
fire severity in boreal forests: effects of fire intensity and stand structure. 
PLoS One 11. https://​doi.​org/​10.​1371/​journ​al.​pone.​01500​73.

Mishra, B., M.S. Babel, and N.K. Tripathi. 2014. Analysis of climatic variability and 
snow cover in the Kaligandaki River Basin, Himalaya, Nepal. Theoreti-
cal and Applied Climatology 116: 681–694. https://​doi.​org/​10.​1007/​
s00704-​013-​0966-1.

Mishra, B., A. Dahal, and N. Luintel. 2022. Methods in the spatial deep learn-
ing: Current status and future direction. Spatial Information Research 30. 
https://​doi.​org/​10.​1007/​s41324-​021-​00425-2.

Mishra, B., and T.B. Shahi. 2021. Deep learning-based framework for spatiotem-
poral data fusion: An instance of Landsat 8 and Sentinel 2 NDVI. Journal of 
Applied Remote Sensing 15: 1–13. https://​doi.​org/​10.​1117/1.​jrs.​15.​034520.

Nelson, A., and K.M. Chomitz. 2011. Effectiveness of strict vs. multiple use 
protected areas in reducing tropical forest fires: A global analysis using 
matching methods. PLoS One 6. https://​doi.​org/​10.​1371/​journ​al.​pone.​
00227​22.

Parajuli, A., A.P. Gautam, S.P. Sharma, K.B. Bhujel, G. Sharma, P.B. Thapa, B.S. Bist, 
and S. Poudel. 2020. Forest fire risk mapping using GIS and remote sensing 
in two major landscapes of Nepal. Geomatics, Natural Hazards and Risk 11: 
2569–2586. https://​doi.​org/​10.​1080/​19475​705.​2020.​18532​51.

Pearce, J., and S. Ferrier. 2000. Evaluating the predictive performance of habitat 
models developed using logistic regression. Ecological Modelling 133: 
225–245. https://​doi.​org/​10.​1016/​S0304-​3800(00)​00322-7.

Phillips, S.B., V.P. Aneja, D. Kang, and S.P. Arya. 2006. Modelling and analysis of 
the atmospheric nitrogen deposition in North Carolina. International Jour-
nal of Global Environmental Issues 6: 231–252. https://​doi.​org/​10.​1016/j.​
ecolm​odel.​2005.​03.​026.

Poudel, S., S. Funakawa, and H. Shinjo. 2017. Household perceptions about the 
impacts of climate change on food security in the mountainous region of 
Nepal. Sustainability 9: 641. https://​doi.​org/​10.​3390/​su904​0641.

Poudel, S., S. Funakawa, H. Shinjo, and B. Mishra. 2020. Understanding house-
holds’ livelihood vulnerability to climate change in the Lamjung district of 
Nepal. Environment, Development and Sustainability 22. https://​doi.​org/​10.​
1007/​s10668-​019-​00566-3.

Poudel, S., and R. Shaw. 2016. The relationships between climate variability 
and crop yield in a mountainous environment: A case study in Lamjung 
District, Nepal. Climate 4: 13. https://​doi.​org/​10.​3390/​cli40​10013.

Renard, Q., R. Ṕlissier, B.R. Ramesh, and N. Kodandapani. 2012. Environmental 
susceptibility model for predicting forest fire occurrence in the Western 
Ghats of India. International Journal of Wildland Fire 21: 368–379. https://​
doi.​org/​10.​1071/​WF101​09.

Robinne, F.N., 2021. Impacts of disasters on forests, in particular forest fires, 
UNFFS Background paper.

Robinson, T.P., G.R. William Wint, G. Conchedda, T.P. Van Boeckel, V. Ercoli, E. 
Palamara, G. Cinardi, L. D’Aietti, S.I. Hay, and M. Gilbert. 2014. Mapping the 
global distribution of livestock. PLoS One 9: e96084. https://​doi.​org/​10.​
1371/​journ​al.​pone.​00960​84.

Singh, M., and X. Zhu. 2021. Analysis of how the spatial and temporal patterns 
of fire and their bioclimatic and anthropogenic drivers vary across the 
Amazon rainforest in El Niño and non-El Niño years. PeerJ 9. https://​doi.​
org/​10.​7717/​peerj.​12029.

Vilar, L., I. Gómez, J. Martínez-vega, P. Echavarría, and D. Ria. 2016. Multitempo-
ral modelling of socio-economic wildfire drivers in central Spain between 
the 1980s and the 2000s: Comparing generalized linear models to 
machine learning algorithms. PLoS One 11: 1–17. https://​doi.​org/​10.​1371/​
journ​al.​pone.​01613​44.

Zhang, G., M. Wang, and K. Liu. 2019. Forest fire susceptibility modeling using a 
convolutional neural network for Yunnan province of China. International 
Journal of Disaster Risk Science 10: 386–403. https://​doi.​org/​10.​1007/​
s13753-​019-​00233-1.

Zhang, G., M. Wang, and K. Liu. 2021. Deep neural networks for global wildfire 
susceptibility modelling. Ecological Indicators 127: 107735. https://​doi.​
org/​10.​1016/j.​ecoli​nd.​2021.​107735.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3126/banko.v25i1.13477
https://doi.org/10.3390/rs11010086
https://doi.org/10.3390/rs11010086
https://doi.org/10.2134/Jeq2009.0098
https://doi.org/10.1371/journal.pone.0105465
https://doi.org/10.1016/j.agrformet.2021.108538
https://doi.org/10.1016/j.sciaf.2022.e01127
https://doi.org/10.1016/j.sciaf.2022.e01127
https://doi.org/10.1080/19475705.2018.1526219
https://doi.org/10.1080/19475705.2018.1526219
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1371/journal.pone.0150073
https://doi.org/10.1007/s00704-013-0966-1
https://doi.org/10.1007/s00704-013-0966-1
https://doi.org/10.1007/s41324-021-00425-2
https://doi.org/10.1117/1.jrs.15.034520
https://doi.org/10.1371/journal.pone.0022722
https://doi.org/10.1371/journal.pone.0022722
https://doi.org/10.1080/19475705.2020.1853251
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.3390/su9040641
https://doi.org/10.1007/s10668-019-00566-3
https://doi.org/10.1007/s10668-019-00566-3
https://doi.org/10.3390/cli4010013
https://doi.org/10.1071/WF10109
https://doi.org/10.1071/WF10109
https://doi.org/10.1371/journal.pone.0096084
https://doi.org/10.1371/journal.pone.0096084
https://doi.org/10.7717/peerj.12029
https://doi.org/10.7717/peerj.12029
https://doi.org/10.1371/journal.pone.0161344
https://doi.org/10.1371/journal.pone.0161344
https://doi.org/10.1007/s13753-019-00233-1
https://doi.org/10.1007/s13753-019-00233-1
https://doi.org/10.1016/j.ecolind.2021.107735
https://doi.org/10.1016/j.ecolind.2021.107735

	Forest fire pattern and vulnerability mapping using deep learning in Nepal
	Abstract 
	Background 
	Results 
	Conclusions 

	Resumen 
	Antecedentes 
	Resultados 
	Conclusiones 

	Introduction
	Materials and methods
	Study area
	Data used
	Forest fire data
	Forest cover area and vegetation dataset
	Bioclimatic variables
	Topographical variables
	Anthropogenic variables
	Field-based dataset

	Data preparation
	Statistical analysis
	Fire-vulnerability modeling
	Selection of input variables
	Maximum entropy
	Deep neural network

	Accuracy assessment

	Results
	Modern fire regime across Nepal
	Fire-vulnerability modeling

	Discussion
	Anthropogenic factors

	Conclusions
	Acknowledgements
	References


