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Abstract 

Background  Fire occurrence is influenced by interactions between human activity, climate, and fuels that are dif-
ficult to disentangle but crucial to understand, given fire’s role in carbon dynamics, deforestation, and habitat main-
tenance, alteration, or loss. To determine the relative balance of climatic and anthropogenic influences on fire activity, 
we quantified interannual variability in burned area across Ethiopia from 2001 to 2018 and developed a statistical 
model to assess climate and human factors contributing to patterns of area burned.

Results  Annual burned area declined nationally and within several regions from 2001 to 2018 and was closely related 
to climate, particularly antecedent temperature. Of the area that burned at least once, 62% reburned at 1–3-year 
intervals and the geographic region of frequent-fire areas did not shift over time. Despite increased enforcement of a 
fire ban over the past 20 years, no strong spatiotemporal shifts in fire occurrence patterns were detected at a national 
level.

Conclusions  Our results suggest that human influence combined with dynamics of vegetation and fuels strongly 
influenced fire occurrence in Ethiopia, indicating that geographic variation in cultural fire practices was highly influ-
ential and relatively unchanging between 2001 and 2018. In contrast, interannual variability in total burned area was 
strongly related to climate and the influence of climate on fuel abundance. Our results highlight that climate can 
strongly influence short-term variability in fire activity even as longer-term patterns may depend more strongly on 
human influence.
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Resumen 

Antecedentes  La ocurrencia de incendios está influenciada por interacciones entre actividades humanas, clima y 
combustibles, que son difíciles de desentrañar, pero que es crucial entender dado el rol del fuego la dinámica del car-
bono, en la deforestación y en el mantenimiento, alteración o pérdida de hábitats. Para determinar el balance relativo 
del clima y las influencias antropogénicas en la actividad de los incendios, cuantificamos la variabilidad interanual en 
el área quemada a través de Etiopía desde 2001 y hasta 2018, y desarrollamos un modelo estadístico para determinar 
los factores climáticos y humanos que contribuyen a los patrones del área quemada.

Resultados  El área total quemada disminuyó en el territorio nacional y en varias regiones y se relacionó muy estre-
chamente con el clima, particularmente con las temperaturas precedentes. De las áreas quemadas al menos una 
vez, el 62% se volvieron a quemar a intervalos de 1 a 3 años, y la región geográfica de áreas de fuegos frecuentes no 
cambiaron en el tiempo. A pesar de la prohibición de quemas en los últimos veinte años, no hubo fuertes cambios en 
los patrones espacio-temporales de ocurrencia de fuegos detectados a nivel nacional.

Conclusiones  Nuestros resultados sugieren que la influencia humana, combinada con la dinámica de la vegetación y 
los combustibles, influencian la ocurrencia de incendios en Etiopía, indicando que la variación geográfica en prácticas 
culturales de manejo del fuego tuvieron mucha influencia y no cambiaron relativamente entre 2001 y 2018. En con-
traste, la variabilidad interanual en el área total quemada fue relacionada muy fuertemente con el clima y su influencia 
en la abundancia de combustibles. Nuestros resultados resaltan que el clima puede influenciar fuertemente en el 
corto plazo la actividad de los incendios aun cuando los patrones a más largo plazo pueden depender más fuerte-
mente de la influencia humana.

Background
Trends and drivers of fire occurrence and burned area 
(BA) are important to identify because fire effects influ-
ence human livelihoods, carbon flux and storage, bio-
diversity, and ecosystem health (Kelly et  al. 2020; Bliege 
Bird et  al. 2008). Since 2000 CE, BA has declined glob-
ally and this decline has been attributed to both expan-
sion and intensification of agriculture (Andela et al. 2017; 
Jones et al. 2022). In Africa, BA is thought to have been 
in decline for at least the past 4000 years (Archibald et al. 
2012). Yet there is significant geographical variation in fire 
occurrence and its drivers (Jones et al. 2022). Here, we use 
BA to refer to the total burned area aggregated over broad 
(regional to national) extents, fire occurrence to refer to 
spatiotemporal patterns of burning, and fire activity as a 
broad term to encompass both BA and fire occurrence. 
Drivers of fire activity are complex and include charac-
teristics and flammability of fuels and vegetation; climate 
change and variability; and human influences on igni-
tions, fire suppression, fuels, and grazing patterns that 
affect buildup of biomass (Wahl et  al. 2019; Mann et  al. 
2016; Zubkova et  al. 2019; Hempson et  al. 2018). Accu-
rately characterizing drivers of fire activity at national 
scales, in relation to fire policy and resource management, 
is particularly crucial to support evidence-based decision-
making. Given the importance of forest and woodlands 
for ecosystem carbon storage, fire management is key to 
the success of the UN’s Reducing Emissions from Defor-
estation and forest Degradation (REDD+) program (Bar-
low et al. 2012; Weatherley-Singh and Gupta 2015).

Quantifying human influence on fire activity is chal-
lenging due to a complex array of both direct (ignitions 
or fire suppression) and indirect (livestock grazing that 
reduces fuel, land use change) effects that influence fuel 
connectivity (Archibald 2016). Human contributions to 
fire activity can be represented through factors like land 
cover and ownership, road networks, population density, 
and livestock density (Archibald et al. 2009; Probert et al. 
2019) or by indices that summarize overall human impact 
(Krawchuk et al. 2009). Africa accounts for 68% of global 
BA (Lizundia-Loiola et al. 2020) and observed declines in 
Africa BA since 2000 have been attributed to a combina-
tion of agricultural expansion and increasing moisture 
which are thought to have reduced flammability in humid 
areas (Grégoire et  al. 2013; Andela and Van Der Werf 
2014; Zubkova et al. 2019). The relative balance of these 
climate and anthropogenic influences on observed fire 
occurrence and BA in Africa is debated (Wei et al. 2020; 
Zubkova et al. 2019; Andela and Van Der Werf 2014); a 
better understanding of climate and human drivers at 
regional to national scales is needed to predict future fire 
activity and formulate effective fire policy.

Here, we use Ethiopia as a test case to evaluate an 
approach to disentangle human and climatic influences 
on annual fire activity from 2001 to 2018 at the national 
scale. Drivers of annual fire occurrence and BA have not 
been comprehensively analyzed at a national scale in Ethi-
opia, although Molinario et  al. (2014) described general 
geographic and seasonal patterns of fire and van Breugel 
et  al. (2016) modeled the effects of climate change on 
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projected fire regimes and vegetation type distributions. 
Ethiopia, like many African countries, is striving to man-
age fire activity (and natural resources in general) in the 
face of limited scientific evidence. Ethiopia’s current fire 
policy is based primarily on evidence from other regions 
and policymakers and institutions lack the resources 
needed to predict and manage forest fires or adapt fire 
policy to changing social and ecological conditions 
(Teketay et  al. 2010). Fire policy in Ethiopia has evolved 
over the past 20 years. In 2007, the “Proclamation for the 
Forest, Development, Conservation and Utilization: Proc. 
542/2007” included a ban of forest fire. The contribution 
of fire to forest degradation is a particular concern for 
policymakers in Ethiopia because the country seeks to 
promote reforestation and forest conservation through its 
participation in REDD+ (Johansson et al. 2021; Lemenih 
and Kassa 2014). In 2013, the Ministry of Environment 
and Forests was established as an independent ministry, 
and forest governance moved from a focus on protec-
tion to sustainable economic use with conservation of 
biodiversity and enhancement of carbon stocks. With the 
formation of the Ministry of Environment and Forests, 
efforts to enforce forest fire suppression policy intensi-
fied, particularly in regions where forest fires have been 
frequent. In 2018, a new “Forest Development, Conser-
vation and Utilization, Proclamation No. 1065/2018” was 
released with increased penalties for starting forest fires 
and bushfires. Natural resource governance in Ethiopia is 
decentralized, and each regional state can adapt national 
resource and fire management policies to fit regional con-
ditions, but states have limited resources for local adap-
tation. Further, enforcement and educational campaigns 
differ among regions due to variation in resources and 
priorities. Consequently, the effects of the ongoing fire 
ban in Ethiopia and recent increases in its enforcement at 
a national scale remain unclear, as do region-level trends 
in fire activity (Johansson et al. 2018; Tsegaye et al. 2010; 
Angassa and Oba 2008).

Patterns of fire occurrence in Ethiopia are also likely 
to have been influenced by land use changes, namely 
expansion of cropland and developed areas over the past 
three decades (Kassawmar et al. 2018; Betru et al. 2019). 
Although trends vary extensively within Ethiopia, these 
land use changes have often included decreases in forest 
cover and dense vegetation and increases in large-scale 
commercial farming (Kassawmar et al. 2018; Degife et al. 
2018; Gebrehiwot et al. 2014; Belete et al. 2021). Finally, 
the distribution of tsetse flies (Glossina spp.), which are 
vectors for the livestock disease trypanosomiasis that 
limits the productivity of livestock and sometimes the 
viability of keeping livestock, may affect fire activity by 
either encouraging frequent burning to control trypano-
somiasis or by reducing density or completely excluding 

livestock grazing from areas with a high likelihood of 
trypanosomiasis.

To disentangle human and climatic influences on fire 
occurrence and BA in Ethiopia, we first investigated the 
contribution of climate variation to interannual variabil-
ity in annual BA using the Moderate Resolution Imaging 
Spectroradiometer (MODIS)-based FireCCI51 product 
(Lizundia-Loiola et  al. 2020). Then, we built a statisti-
cal model of the annual proportion of 16-km2 grid cells 
burned to identify the importance of climate, fuels, and 
human factors on fire occurrence. This approach of 
empirically modeling fire activity over both space and 
time has been used at daily-to-annual time scales within 
grid cells of ≥ 1 km2 to forecast climate change impacts 
on fire activity (Preisler et al. 2004; Preisler and Wester-
ling 2007) and to quantify factors controlling fire activ-
ity over gradients of climate or weather, fuels, terrain, and 
human impacts (Westerling and Bryant 2008; Park et al. 
2021; Masrur et al. 2022). In some analyses of large and 
heterogenous regions, the study area has been divided 
into smaller ecoregions each represented by a local model 
(Padilla and Vega-García 2011). However, local models 
may overfit and hence be less generalizable, and a single 
broader model may outperform local models in predict-
ing fire activity particularly when a nonlinear modeling 
framework is used (Park et al. 2021). Therefore, we con-
ducted our analysis at a national scale. We hypothesized 
that temporal trends in BA would be partially explained 
by climate and land cover change, but there would be 
a decline in fire occurrence consistent with increased 
enforcement of the fire ban policy. Although the fire ban 
is not limited to forest land, we expected to see greater 
policy impacts on fire activity in areas with greater forest 
cover due to the particular interest in protecting forests.

Methods
Study area
Ethiopia is ecologically diverse, with vegetation that 
ranges from desert and savanna at low elevation to closed 
forest and heathlands at high elevation (Friis et al. 2010). 
Elevation gradients strongly control the spatial distribu-
tion of vegetation types, and these vegetation patterns 
contribute to a distinct spatial distribution of fire fre-
quency (Figs.  1 and 2). A high plateau at 1500–3000-m 
elevation covers much of central Ethiopia, divided by the 
African Rift Valley. Annual precipitation increases from 
east to west and with increased elevation (Fig.  2). Most 
of Ethiopia experiences a primary rainy season from June 
to September (kiremt) and a secondary rainy season from 
February to May (belg) also occurs in the south and in 
the highlands of southeastern, central, and northeastern 
Ethiopia (Philip et al. 2018; Seleshi and Zanke 2004). Cor-
respondingly, much of the BA in Ethiopia occurs from 
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November to March with minimal BA in June and July 
(Molinario et  al. 2014). The El Niño/Southern Oscilla-
tion influences precipitation patterns, but this influence 
is complex and varies spatially and by season (Seleshi and 
Zanke 2004; Dinku et al. 2018). Accordingly, correlations 
between El Niño/Southern Oscillation and BA anomaly 
vary in both strength and directionality across Ethiopia 
(Andela and Van Der Werf 2014). Lightning-ignited fires 
are uncommon in Ethiopia, even in montane areas where 
lightning strikes occur in forests and heathland during 
the dry season (Molinario et  al. 2014; Johansson et  al. 
2012). Rather, most fires are set by people for harvesting 
honey, improving pasture, and controlling woody plant 
encroachment (Johansson et  al. 2012; Angassa and Oba 
2008); facilitating hunting and firewood collection (Jensen 
and Friis 2001); production of charcoal (Andaregie et al. 
2020); and rotational burning of croplands and crop resi-
dues (The Oakland Institute 2011; Kassawmar et al. 2018). 
Ethiopia’s regional states (Fig. 1) were used for visualizing 
results and for assessing BA trends at a sub-national level. 
Under Ethiopia’s ethnic federalism, each of these regions 
also represents the homeland of a different ethnic group 
or groups (Aalen 2011), each with their own cultural prac-
tices and social-ecological systems.

Fire occurrence datasets
Two MODIS fire occurrence datasets were considered 
for this study. The MCD64A1 dataset (Giglio et al. 2018), 

with a pixel size of 500 m, has been widely used along 
with its predecessors for analyses of BA in Africa (Zub-
kova et  al. 2019; Archibald et  al. 2009; Hempson et  al. 
2018). The FireCCI51 dataset, which uses just the finer-
grained bands from MODIS, can detect fires at 250 m 
pixel size and offers greater detection accuracy for small 
fires (Lizundia-Loiola et al. 2020). Based on an accuracy 
assessment of each dataset within Ethiopia (see Supple-
mentary Material), we proceeded to use FireCCI51 rather 
than MCD64A1 for further analysis.

Seasonality
Because monthly BA was minimal from June–August, 
during the primary rainy season, area burned was aggre-
gated into “fire years” beginning on 1 July (e.g., the 2001 
fire year was 1 July 2001–30 June 2002). Google Earth 
Engine (Gorelick et  al. 2017) was used to extract burn 
date for each MODIS pixel within each fire year from 
2001 to 2018 across Ethiopia. The earliest day of burn was 
selected in the case of multiple fire detections in the same 
pixel because the earliest date is more likely to represent 
the actual day of burn, although we did not account for 
the possibility of burning happening with a given pixel 
twice within the same fire year. To provide background 
information on fire seasonality, we calculated 10-day run-
ning means of BA for each year, nationally and by region 
as well as vegetation type (Figs. S2 and S3, see the “Fac-
tors affecting fire occurrence” section).

Fig. 1  Mean interval between fires from 2001 to 2018 across Ethiopia, based on the FireCCI51 dataset. Regional names and boundaries are also 
shown along with elevation
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Climate
To investigate climate influences on annual BA and fire 
occurrence, we considered rainfall, temperature, and 
soil moisture (Table  1). Antecedent climate as well as 
fire-season climate was assessed because antecedent cli-
mate over the prior 1–2 years can influence BA in the 
fire year via biomass productivity (Andela and Van Der 
Werf 2014; Zubkova et al. 2019; Abatzoglou et al. 2018). 
Variables were aggregated over five time periods to rep-
resent a range of possible climatic influences: (1) by 
fire year (July 1–June 30), (2) November to April of the 
fire year (main fire season), (3) calendar year to capture 

antecedent conditions in the months leading up the main 
fire season, (4) two calendar years (e.g., 2000 and 2001 for 
the 2001–2002 fire year), and (5) prior two calendar years 
(e.g., 1999 and 2000 for the 2001–2002 fire year). We 
also calculated climate anomalies relative to 2001–2019 
means for each variable and time period.

We used the Climate Hazards group Infrared Precipita-
tion (CHIRP) dataset (Funk et al. 2015) for monthly pre-
cipitation because it provides highly accurate estimates 
at this time scale in Ethiopia and has lower bias than the 
CHIRPS dataset which integrates station data (Dinku 
et al. 2018). For estimates of annual and seasonal temper-
ature and soil moisture at 0–10-cm depth, we used the 
Famine early warning system network Land Data Assimi-
lation System (McNally et  al. 2017), which was devel-
oped to monitor drought and has been previously used 
to model BA across Sub-Sahara Africa (Zubkova et  al. 
2019). Finally, we considered the influence of El Niño/
Southern Oscillation interannual variability on BA using 
the National Oceanic and Atmospheric Administration’s 
Oceanic Niño Index (https://​origin.​cpc.​ncep.​noaa.​gov/​
produ​cts/​analy​sis_​monit​oring/​ensos​tuff/​detre​nd.​nino34.​
ascii.​txt).

Factors affecting fire occurrence
We used an array of geospatial datasets to quantify 
potential factors affecting fire occurrence (Table 1). To 
estimate the influence of livestock, we used the Grid-
ded Livestock of the World v. 3 (Gilbert et  al. 2018), 
which has a reference year of 2010. The dasymetric 
rasters of cattle, sheep, goat, pig, horse, and chicken 
densities were converted into Tropical Livestock Units 
(Jahnke 1982) and summed to estimate total livestock 
biomass per unit area. To quantify the potential influ-
ence of tsetse flies, we used a suitability map showing 
the probability of tsetse fly occurrence developed by 
Leta et al. (2015).

We evaluated three potential annual land cover data-
sets for our statistical model (see the “Model of fire 
occurrence” section), so that change in land cover could 
be incorporated into the analysis. The best-performing 
land cover dataset was a Landsat-based product cre-
ated by the Regional Centre for Mapping of Resources 
and Development (RCMRD) (https://​rcmrd.​maps.​arcgis.​
com/​apps/​webap​pview​er/​index.​html?​id=​c9541​94840​
d74c4​8a760​485fe​00ffb​1e) which used a Continuous 
Change Detection and Classification algorithm (Zhu and 
Woodcock 2014) to map annual land cover in five catego-
ries: forest, grassland, cropland, wetlands, and other. The 
RCMRD land cover predicted fire occurrence better in 
our statistical model (see the “Model of fire occurrence” 
section) than the Midekisa et al. (2017) and the European 
Space Agency CCI (Li et  al. 2018) land cover datasets. 

Fig. 2  Mean annual precipitation from 2001 to 2018 across Ethiopia, 
and potential natural vegetation types from van Breugel et al. (2015)

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
https://rcmrd.maps.arcgis.com/apps/webappviewer/index.html?id=c954194840d74c48a760485fe00ffb1e
https://rcmrd.maps.arcgis.com/apps/webappviewer/index.html?id=c954194840d74c48a760485fe00ffb1e
https://rcmrd.maps.arcgis.com/apps/webappviewer/index.html?id=c954194840d74c48a760485fe00ffb1e
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Because the RCMRD dataset was only available annu-
ally through 2017, the 2017 land cover layer was used to 
represent the 2018 fire year as well. To complement the 
land cover data, we also used the 2018 Livelihood Zones 
map from the Famine Early Warning Systems Network 
(https://​fews.​net/), which identifies areas in which people 
share similar livelihoods.

Vegetation types were represented using a map of 
Potential Natural Vegetation (PNV) (van Breugel et  al. 
2015), which was derived from the Ethiopian atlas of 

vegetation (Friis et al. 2010). We also developed vegeta-
tion-based maximum annual values for the Normalized 
Differenced Vegetation Index (NDVI) and the Enhanced 
Vegetation Index from the MODIS Terra Vegetation 
Indices (MOD13Q1.006) product, whose 250 m pixel size 
matches that of the FireCCI51 BA product. To charac-
terize the difference in soils and how they may influence 
vegetation productivity, we used nutrient availability 
(SQ1) from the Harmonized World Soil Database v1.2 
(Wieder et al. 2014).

Table 1  Variables considered for the model of proportion of 16-km2 cells burned (using random forest). The final list of variables 
following variable selection is shown in Fig. 5. Variables which changed annually are italicized and static variables are not italicized. See 
Supplementary material for additional details on variables

Category Variable Source Details

Response Proportion burned Lizundia-Loiola et al. (2020) Proportion of area burned within 16-km2 
cells

Political Region Famine Early Warning Systems Network 
(FEWS NET), https://​fews.​net/

Regional states of Ethiopia

Time Year Fire year was included to detect temporal 
trends

Climate CHIRP precipitation Funk et al. (2015)

Climate FLDAS soil moisture McNally et al. (2017) 0–10 cm depth

Climate FLDAS temperature McNally et al. (2017) Mean monthly temperature at 2 m

Vegetation Potential natural vegetation types Friis et al. (2010); van Breugel et al. (2015) Categorized into 14 vegetation types (Fig. 6 
and Table S3)

Vegetation Normalized Differenced Vegetation Index MODIS vegetation indices (MOD13Q1v006) Per-pixel maximum value from all 16-day 
vegetation indices layers in a given calendar 
year

Vegetation Enhanced Vegetation Index MODIS vegetation indices (MOD13Q1v006) Per-pixel maximum value from all 16-day 
vegetation indices layers in a given calendar 
year

Land cover Land cover types Regional Centre for Mapping of Resources 
for Development, https://​rcmrd.​maps.​arc-
gis.​com/​apps/​webap​pview​er/​index.​html?​
id=​c9541​94840​d74c4​8a760​485fe​00ffb​1e

From Landsat imagery, available annually 
2000–2017

Human influence Tropical Livestock Units per km2 Jahnke (1982); Gilbert et al. (2018) Calculated from Gridded Livestock of the 
World v. 3, relative to 2010

Human influence Livelihood zone type FEWS NET Livelihood Zones, https://​fews.​
net/

Categorized into agropastoral, pastoral, 
cropping (Meher dominant), cropping (Belg 
dominant), other/unknown

Human influence Human population density Lloyd et al. (2019)

Human influence Protected area types World Database on Protected Areas 
(https://​www.​prote​ctedp​lanet.​net/)

Categorized into: non-protected, UNESCO-
MAB Biosphere Reserve, World Heritage Site, 
National Park, Sanctuary, Wildlife Reserve, 
National Forest Priority Area, Controlled 
Hunting Area

Human influence Probability of tsetse fly occurrence Leta et al. (2015)

Terrain Elevation Shuttle Radar Topography Mission (SRTM) 
v4

90 m pixels

Terrain Slope SRTM

Terrain Terrain Ruggedness Index (TRI) from SRTM, following Riley et al. (1999)

Terrain Standard deviation of elevation from SRTM Using a 7×7 pixel window (630 m)

Soils Soil nutrient availability Wieder et al. (2014) Nutrient availability (SQ1)

https://fews.net/
https://fews.net/
https://rcmrd.maps.arcgis.com/apps/webappviewer/index.html?id=c954194840d74c48a760485fe00ffb1e
https://rcmrd.maps.arcgis.com/apps/webappviewer/index.html?id=c954194840d74c48a760485fe00ffb1e
https://rcmrd.maps.arcgis.com/apps/webappviewer/index.html?id=c954194840d74c48a760485fe00ffb1e
https://fews.net/
https://fews.net/
https://www.protectedplanet.net/
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Burned area trends
As a preliminary analysis to assess changes in annual BA 
over the study period, the Theil-Sen slope estimator was 
used to assess annual BA trends nationally, by region 
of Ethiopia and by PNV type (Sen 1968). The Theil-Sen 
slope estimator is well-suited to analysis of BA trends 
because it is robust to outliers (Parks and Abatzoglou 
2020; Collins et  al. 2022), and was calculated using the 
“trend” R package (Pohlert 2020).

Model of annual BA
Given our particular interest in national-scale BA, we 
constructed a linear model of national-scale annual BA to 
assess the extent to which interannual variability in BA 
could be explained by a simple climate-only model. To 
identify variables to include in our model we calculated 
Pearson correlations (r) between each climate variable 
and annual BA at both the national and regional levels. 
For this linear model, we considered the time period 
from each of the four variables that was best correlated 
with BA but that did not have |r| > 0.7 with other pre-
dictors being considered, and added year to indicate 
trends not explained by climate. Notably, soil moisture 
from the prior 2 years was correlated with temperature 
from the prior 2 years (r = 0.72), so fire-year soil mois-
ture was used instead. Stepwise selection by the Akaike 
Information Criterion was used to identify the most par-
simonious model (using the “step” function in R), which 
incidentally included all five predictors.

Model of fire occurrence
To characterize the influences of the above factors on 
fire occurrence on a per-pixel and per-year basis, we 
created a random forest statistical model (RF, Breiman 
2001) in which the response variable was annual propor-
tion of area burned within 16-km2 grid cells (hereafter 
PB for proportion burned), aggregated from the 250-m 
FireCCI51 pixels. All other variables were aggregated to 
this 16-km2 grain size using either the mean or the most 
abundant class value (for categorical variables) (Table 1). 
All datasets were reprojected to an Albers Equal Area 
projection for analysis so that pixels were of equal size.

We used random sampling performed separately for 
each fire year to reduce the potential influence of both 
temporal and spatial autocorrelation, stratifying the 
samples within each year by selecting 150 cells (16-km2) 
each of 0%, 1–50%, and >50% PB (n = 450 samples from 
each year) so the full range of PB was well-represented. 
Pixels classified as urban, impervious surface, or water 
in the land cover and livelihood zone datasets were not 
considered for sampling (n = 165). We then performed 
a two-step variable selection process. First, to address 
redundancy among variables, we determined all pairs of 

variables with a Spearman rank correlation coefficient of 
|rs| ≥ 0.7. We iteratively ran RF regression models and at 
each step removed the variable with lower importance 
(quantified by the Model Improvement Ratio [MIR], 
Murphy et  al. 2010) in the most strongly correlated 
pairs until no pair of predictors had |rs| > 0.7. Second, to 
remove variables not contributing to model accuracy, we 
utilized the “VSURF” R package (Genuer et al. 2015). This 
multi-step procedure involves repeatedly running RF 
models with progressively fewer variables and retaining 
only variables that substantially diminish model accuracy 
when taken out (Genuer et al. 2010).

After performing variable selection, we ran RF using 
default settings in the “randomForest” R package (Liaw 
and Wiener 2002) except that we constructed more 
trees (n = 2000). Model accuracy was assessed by with-
holding four fire years at random as a test dataset (2004, 
2007, 2009, and 2015), such that the test dataset (n = 
1800 samples) was temporally distinct from the training 
dataset (n = 6300 samples). To visualize relationships 
between individual predictors and fire occurrence, we 
constructed partial dependence plots (Friedman 2001) 
using the “pdp” R package (Greenwell 2017).

Results
Burned area trends
Annual BA in Ethiopia declined significantly from 2001 
to 2019 on a national scale as well as in the central 
and northern regions of Oromia, Amhara, and Tigray 
(Table 2). The region with the highest mean annual BA, 
Benishangul-Gumuz, showed a marginally significant (p 
< 0.1) decrease in annual BA. Annual BA also declined 
in the PNV type with the majority of fire across Ethiopia, 
dry combretum wooded grassland, but did not change 
significantly in most other types (Table 3).

Table 2  Mean (± standard deviation) annual burned area (BA) 
from 2001 to 2019 by region of Ethiopia and trends assessed with 
the Theil-Sen slope estimator

† p < 0.1, *p < 0.05, and **p < 0.01 after a Holm-Bonferroni correction was 
applied

Region Mean annual BA (kha) Theil-Sen slope

Benishangul-Gumuz 3002 ± 300 −29.3†

Gambella 1594 ± 116 −2.6

Oromia 1220 ± 242 −39.2**

Amhara 1155 ± 253 −45.8**

SNNPR 1077 ± 278 +8.1

Tigray 240 ± 125 −18.7**

Afar 8 ± 5 −0.2

Somali 7 ± 8 +0.3

Total 8303 ± 893 −122.6*
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Climate and annual BA
Annual BA at a national scale corresponded strongly with 
mean temperature over the prior two years (rs = 0.76, p 
< 0.05). The linear model of interannual variability in BA 
indicates variation could mostly be explained by climate:

where BA is national annual BA in kha (n = 18 fire 
years), T is mean temperature over the prior 2 years in 
degrees Celsius, SM is fire-year soil moisture in m3 m−3, 
ONI is November–April Oceanic Niño Index, and P 
is total precipitation of the prior 2 years in mm. When 
the “year” term was removed from this model, adjusted 
R2 decreased to 0.80. Regional-level climate correlations 
showed that in most of Ethiopia BA was negatively but 
not significantly related to precipitation, soil moisture, 
and El Niño/Southern Oscillation and positively related 
to temperature, except for the arid eastern regions which 
comprised <0.2% of national BA (see Fig. 3).

Model of proportion burned
The RF model explained 67.2% of annual PB at the level of 
16-km2 cells. An examination of mean PB over the period 
of analysis (Fig.  4 and Fig. S4) shows that areas with 
underpredicted burning occurred mainly in the west-
ern regions of Gambella and Benishangul-Gumuz, while 
areas of overprediction occurred in parts of the Southern 
Nations, Nationalities, and Peoples’ Region (SNNPR) and 
the northern regions of Amhara and Tigray. Overpre-
diction of burning occurred primarily in years with low 
antecedent temperature when observed total BA was low 

BA = T× 3500− SM× 51963−ONI× 150+ P× 4.67− year × 46.6+ 26608

adjusted R2
= 0.85, p < 0.05 for all predictors except ONI [p = 0.15]

(Figs. S5 and S6), indicating that the model was unable 
to fully reproduce climatic influences on fire within these 
areas.

A calculation of fire frequency in 250-m resolution pix-
els shows that in areas that experienced at least one fire, 

62% burned at intervals of ≤ 3.0 years on average and 
45% burned at intervals of < 2.0 years (Fig. 1). Moreover, 
correlations (rs) between rasters of PB were ≥ 0.78 for all 
possible combinations of fire years (Fig. S7), indicating 
strong spatial dependence in PB and fire frequency that 
did not shift appreciably over time.

After variable selection, the model of PB contained 13 
variables. Population density was the most important 
variable followed by four other variables with importance 
> 0.7: NDVI, elevation, land cover type, and November–
April precipitation (Fig.  5). PB tended to be greater if 
population density was low, elevation was low, NDVI was 
high, and the probability of tsetse fly occurrence was high 
(Fig. 6). According to the land cover dataset, grasslands 
tended to have higher proportion burned and croplands 
had lower PB (Fig. 6). In a model without tsetse fly occur-
rence, low livestock occurrence was also associated with 
higher PB, but was removed from the model during vari-
able selection when tsetse fly occurrence was considered 
due to a high correlation between the two and better pre-
dictive ability of tsetse fly occurrence.

The climate variables in the model showed that low 
precipitation and low soil moisture anomalies during the 
fire season (November to April) led to greater PB, along 
with high antecedent precipitation and soil moisture 

Table 3  Annual burned area (BA) trends by potential natural vegetation type assessed with the Theil-Sen slope estimator

† p < 0.1, *p < 0.05, and **p < 0.01 after a Holm-Bonferroni correction was applied

Vegetation type Mean annual BA (kha) Theil-Sen slope

Dry combretum wooded grassland (Wcd) 6969 ± 795 −114.2*

Edaphic wooded grassland (wd) 580 ± 45 0.9

Afromontane moist transitional forest (Fe) 489 ± 70 −8.3

Acacia-Commiphora bushland (Bd/Bds) 74 ± 60 1.4

Afromontane forest (Fb/Be/wd) 73 ± 15 −1

Afromontane rain forest (Fa) 50 ± 15 −1.1

Freshwater swamp (X) 42 ± 11 −1.8*

Afroalpine vegetation (A) 10 ± 19 0.1

Semi-desert (S) 5 ± 3 0.1

Halophytic vegetation (Z) 5 ± 2 −0.2

Desert (D) 2 ± 2 0

Acacia tortilis woodland (We) 1 ± 1 0

Montane Ericaceous belt (E) 0 ± 1 0



Page 9 of 16Harris et al. Fire Ecology           (2023) 19:15 	

(Fig. 6). Moreover, some vegetation types tended to burn 
more than otherwise expected: wet areas (R, X, wd), 
Afromontane moist transitional forest (Fe), and dry com-
bretum wooded grassland (Wcd).

Discussion
Fire activity is driven by a complex combination of 
human, climatic, and fuel-related factors making it dif-
ficult to identify controls (Forkel et  al. 2019). Moreo-
ver, the controls of fire activity that emerge are likely to 
vary depending on whether an analysis focuses on space 
or time; temporal analyses are more likely to highlight 
controls that vary substantially from year to year (Zub-
kova et  al. 2019; Wei et  al. 2020; Andela and Van Der 
Werf 2014) as seen in our analysis of climatic influence 
on annual BA, spatial analyses are likely to highlight the 
biophysical template (e.g., van Breugel et  al. 2016) and 

analyses that are both temporal and spatial such as our 
PB model are likely to reflect both.

We were initially surprised by the relatively weak influ-
ence of climate on PB across Ethiopia given that climate 
explained the majority of interannual variability in national 
BA. A simple explanation is that climate varied from 2001 
to 2018 whereas human influence on fire remained nearly 
constant over time when viewed at a national scale. The 
strong spatial correlation in PB across all sets of fire years 
in our analysis supports a narrative of consistent human 
influence as well as consistent patterns of fuel continuity 
and structure (e.g., as indicated by NDVI and annual land 
cover). This result is surprising given (a) the national fire 
ban in Ethiopia and changes in its enforcement and (b) 
dramatic land use changes documented in different parts 
of the country including expansion of cropland and defor-
estation in some areas (Belete et al. 2021; Duriaux-Chavar-
ría et al. 2020; Betru et al. 2019; Degife et al. 2018).

Fig. 3  Pearson correlation coefficients between annual burned area and climate aggregated over different periods, over all of Ethiopia and by 
region. Significant relationships (p < 0.05 with a Holm-Bonferroni correction applied) are indicated with *. ENSO is El-Niño/Southern Oscillation
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Fig. 4  Mean proportion burned averaged across the 2002–2018 fire years as observed and predicted by the random forest model, along with 
model residuals (reds indicate overprediction in residual plot). Regional boundaries of Ethiopia are shown

Fig. 5  Variable importance (model improvement ratio, MIR) from random forest model of fire occurrence. MIR is scaled such that the most 
important variable in a given model is 1 and 0 indicates no contribution to model accuracy
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Apparently, the changes in national fire policy and 
land use have not yet substantially impacted burning 
practices in the sparsely-populated and remote areas 
where burning was most frequent. Gambella, Benis-
hangul-Gumuz, and SNNPR, where our results show 
fire frequency as highest, have experienced a large-scale 

transfer of land to agricultural investors particularly since 
2008 (Shete et al. 2016; Shete and Rutten 2015; Moreda 
2017). Although the results of this study do not yet show 
a significant impact on fire regimes from this land use 
change, continued expansion of commercial agricul-
ture could dampen burned area as has been observed at 

Fig. 6  Relationships between fire occurrence (proportion of 16-km2 pixel burned) and predictor variables in the random forest model, shown using 
partial dependence plots. Variables are in order of importance from top left to bottom right (see Fig. 5). For details on the variables, see Table 1. 
Potential Natural Vegetation (PNV) classes are as follows: A = Afroalpine vegetation, Bd = Somalia-Masai Acacia-Commiphora deciduous bushland 
and thicket, Bds = Acacia-Commiphora stunted bushland, D = desert, E = montane Ericaceous belt, Fa = Afromontane rain forest, Fb/Be/wd = 
complex of Afromontane undifferentiated forest with wooded grasslands and evergreen or semi-evergreen bushland and thicket at lower margins, 
Fe = Afromontane moist transitional forest, R = riverine wooded vegetation, S = Somalia-Masai semi-desert grassland and shrubland, Wcd = dry 
combretum wooded grassland, Wdk = upland Acacia wooded grassland, We = Acacia tortilis wooded grassland and woodland, X = freshwater 
swamp, w = water bodies, wd = edaphic wooded grassland on drainage-impeded or seasonally flooded soils, Z = halophytic vegetation, Zw = 
lakes with Halophytic shoreline vegetation
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a global scale (Andela and Van Der Werf 2014; Andela 
et al. 2017). Humans modulate fire-climate relationships 
through socio-ecological burning practices, land use, and 
land management policy, which can sometimes produce 
dramatic shifts in fire regimes (Archibald et al. 2012; Pau-
sas and Keeley 2014; Taylor et al. 2016). Therefore, future 
demographic or policy changes may strongly affect fire 
occurrence in Ethiopia as they now affect spatial patterns 
of BA over our period of analysis.

We had expected to find indirect evidence of national 
fire policy and an ongoing fire ban on fire activity, yet 
our analysis did not find strong support for policy-driven 
declines in fire activity at a national level. Annual BA did 
decline significantly over the study period and the nega-
tive effect of year in the model of annual BA suggests that 
some of this negative trend was not explained by climate. 
However, climate did account for the majority of influ-
ence on annual BA, and BA did not decline significantly 
in dominantly forested vegetation types which should be 
most strongly affected by the national fire policy due to 
an interest in reducing forest fires. Although the strong 
role of population and land cover in the RF model sug-
gests a strong human influence on fire regimes, this influ-
ence did not appear to change over the period of analysis. 
Instead, interannual variability in BA was well-explained 
by climate at a national scale. Differences in BA trends 
among regions seemed to arise from differences in cli-
matic controls on BA, namely whether antecedent or 
fire-season conditions were more influential, and these 
controls are likely to vary at subregional scales, particu-
larly in geographically diverse regions like Oromia and 
Amhara. The fact that including year did not improve the 
RF model further suggests that there were no strong PB 
trends over time at a national scale that were not attrib-
utable to the factors considered in the model, although 
the inclusion of region in the model does suggest some 
otherwise-unexplained spatial variability. Finally, maps 
of model residuals for each year did not show any strong 
temporal trends, such as those that would be created by a 
strong shift in fire policy or its enforcement. It is possible 
that the declines in BA in Tigray, Amhara, and Oromia 
could in part be explained by regional variation in the 
success of fire ban enforcement due to higher population 
densities, greater resources, and expertise. Because our 
analyses were aimed primarily at identifying national-
scale trends, we cannot rule out policy impacts at local to 
regional scales.

We found that fires occurred less frequently in crop-
lands and areas with moderate to high population den-
sity, consistent with prior work (Andela et  al. 2017; 
Molinario et  al. 2014; Archibald 2016). Much of the 
frequent-fire areas of Ethiopia are comprised of sparsely 
populated lowlands characterized by shifting cultivation, 

where fields are often left fallow for 1–2 years (The Oak-
land Institute 2011; Kassawmar et  al. 2018) and 3 or 
more years in Gumuz communities (Wagino and Ama-
nuel 2021; Moreda 2017). Moreover, annual burning has 
been observed in these areas to facilitate hunting and 
firewood collection within woodlands (Jensen and Friis 
2001). Only 4% of area burned every 2 years or less was 
cropland in 2018 according to the land cover dataset 
we used (cropland made up 23% of the entire country), 
suggesting that frequent fire is not limited to cropland 
but rather is regionally extensive. Grasslands within the 
frequent-fire areas are often dominated by Hyparrhe-
nia rufa, a tall native annual grass that grows rapidly in 
the dependable rainfall of western Ethiopia and contrib-
utes to frequent fire in tropical grasslands and savannas 
worldwide (D’Antonio and Vitousek 1992). Ethiopia has 
had limited success in enforcing fire control policy, and 
given that the areas with the highest frequency have low 
population density and lack of roads, infrastructure to 
stop fire spread is likely to remain a major hurdle (Degife 
et  al. 2018; Archibald 2016). This combination of cul-
tural burning practices, vegetation-fire interactions, and 
infrastructure likely explains the association between low 
population density and frequent fire that we observed. 
According to the population data in our analysis (Lloyd 
et  al. 2019), total area with a population density of < 1 
person ha−1, where fire was most likely according to our 
model, decreased by 9% from 2001 to 2018. This suggests 
that population growth in rural areas in Ethiopia may be 
responsible for a modest decrease in observed annual BA 
and could perhaps account for the negative effect of year 
in our BA model.

The strong relationships between climate and annual 
BA suggest that climate was responsible for the major-
ity of recent changes in BA in Ethiopia, as is true more 
broadly across sub-Saharan Africa (Zubkova et al. 2019; 
Wei et  al. 2020). However, the strong role of anteced-
ent temperature on BA that we found was unexpected 
because previous research on BA in Africa has focused 
on the importance of antecedent moisture (Andela and 
Van Der Werf 2014; Zubkova et al. 2019), although Wei 
et al. (2020) also noted a positive effect of temperature on 
fire activity in mesic areas. High antecedent temperatures 
may increase fuel productivity in relatively mesic areas, 
which would account for the temperature-BA relation-
ship that was particularly strong in the relatively mesic 
west-central regions of Benishangul-Gumuz and Oromia. 
In southwestern Ethiopia, fire-season soil moisture was 
instead the strongest correlate with BA, perhaps because 
this area experiences a secondary rainy reason from Feb-
ruary to May that may dampen fire activity (i.e., stronger 
or earlier belg rainfall corresponds with higher fire-sea-
son soil moisture).
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The spatial distribution of fire frequency in Ethiopia is 
striking, with fires occurring every 2 years or less across 
western lowlands compared with less frequent fire else-
where. This pattern is influenced by spatial variability in 
climate, which van Breugel et  al. (2016) found to be the 
strongest influence on fire frequency across Ethiopia, and 
by vegetation cover and type as reflected in the high impor-
tance of NDVI and land cover in our model of PB and the 
moderate importance of vegetation type. Elevation and ter-
rain complexity in our PB model also in part represent the 
spatial template of climate and vegetation as it influences 
fire regimes. However, this spatial variability in fire regimes 
may also arise from differences in cultural burning practices, 
which affect landscape management and vegetation dynam-
ics (Kimmerer and Lake 2001; McKemey et al. 2020).

The Gambella and Benishangul-Gumuz regions, where 
fire frequency was particularly high, are home to ethnic 
groups that speak languages that belong to the Nilotic lan-
guage group whereas the rest of the ethnic groups in Ethio-
pia belong to the Afroasiatic language group (Ado et  al. 
2021). There is evidence that neighboring Nilotic-speaking 
groups use fire to manage tsetse fly (Glossinidae) popula-
tions to control trypanosomiasis risk (Langlands 1967), but 
while non-Nilotic neighbors do use fire to manage pasture 
resources in other parts of Ethiopia (Johansson et al. 2012, 
2018), there are no reports that they use fire to manage 
tsetse flies. The Spearman rank correlation between the 
tsetse fly occurrence and fire frequency was r = 0.50 and 
tsetse fly occurrence was the 6th most important variable 
in our RF model; however, causation and the directional-
ity of the relationship are not known. The effect of tsetse 
flies was related to livestock density, as livestock density 
was included in a preliminary RF model without tsetse fly 
occurrence, but was excluded when tsetse fly occurrence 
was added. In general, high livestock densities tend to con-
strain fire activity by reducing fuel quantity and increasing 
fuel heterogeneity (Archibald and Hempson 2016). Com-
munities in areas with high rates of trypanosomiasis may 
have developed frequent burning practices that reduce 
trypanosomiasis risk, or high rates of trypanosomiasis may 
keep livestock populations low thus contributing to higher 
fuel loads. If the former, fire suppression policy in regions 
with high occurrence of tsetse flies could increase trypano-
somiasis risk. In the second case, expansion of veterinary 
extension services that reduce the effects of trypanosomia-
sis and other vector-borne diseases on livestock, may act to 
reduce fire frequency. In either case, these topics deserve 
further research to guide evidence-based policymaking.

Conclusions
We conclude that, while there is strong evidence that 
humans play an important role in fire regimes in Ethi-
opia, these human influences on fire occurrence in 

Ethiopia did not change significantly from 2001 to 2018, 
and therefore that interannual variability in BA was 
largely attributable to climate. Our analysis also suggests 
that people and vegetation exert dominant influence on 
fire occurrence and therefore that the long-term trajec-
tory of fire activity in Ethiopia will be shaped largely by 
land use and demographic changes and cultural practices 
and their interplay with patterns of vegetation and igni-
tions. Consequently, successful participation in REDD+ 
is likely to hinge on either selecting areas with currently 
low fire frequency or engaging substantially with local 
communities to ensure that REDD+ projects are pro-
tected from severe fire within frequent-fire areas. Unless 
off-set by significant changes in how people currently use 
fire, BA in Ethiopia could rise in the near future as tem-
peratures increase and the fire season become hotter and 
drier (van Breugel et al. 2016). Our analysis suggests that 
the ongoing ban on fires has not substantially affected fire 
activity in Ethiopia at a national scale, and underscores 
the immense challenges involved in altering fire regimes. 
Our findings also help to explain how climate can be such 
a strong influence on short-term trends in BA even in 
systems known to be dominated by human-caused fires 
(Zubkova et al. 2019; Wei et al. 2020). Our analysis sug-
gests that fire frequency may be interconnected with 
complex adaptations to specific social-ecological con-
texts, such as tsetse fly occurrence and associated live-
stock and rangeland management practices. Re-greening 
goals will be better informed by this study and future 
research that considers burning timing, land use, and cul-
tural fire use and management (Lemenih and Kassa 2014; 
Mertz 2009; Khatun et al. 2017; Barlow et al. 2012).
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