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Abstract 

Background Wildfire is a major contemporary socio-ecological issue facing the people and natural resources of 
Southern California, and the prospect that a warming climate could lead to a higher probability of fire in the future is 
cause for concern. However, connecting climate change to projected burn probability is complex. While most models 
generally show temperature increasing in the future, changes in humidity and precipitation are less certain, and these 
changes interact to generate projections of future climates that are sometimes, but not always, more conducive to 
wildfire. We ran FSim, a stochastic, high-resolution spatial (270 m) and temporal (daily) fire spread model, with pro-
jected Energy Release Component (ERC) derived from multiple global climate models (GCMs) under RCP8.5 climate 
change scenario to explore the impact of a range of future climate trajectories on simulated burn probability and to 
quantify the uncertainty arising from multiple GCMs.

Results We observed considerable uncertainty in the future direction of change for burn probability. Future changes 
were more certain in the Southern Coast region of California, where 75% of simulations projected an increase in burn 
probability. In the Central Coast region, five out of eight GCM-based simulations projected increased burn probabil-
ity. Less than 1% of the total burnable study area had unanimous agreement on the projected direction of change. 
Simulated changes in burn probability were directly correlated to annual projections of changes in ERC, but were also 
affected by the seasonality of ERC change, as well as interactions between humidity, precipitation, and temperature.

Conclusions The observed variability offers insights into why, and under what climate conditions, burn probability 
may increase or decrease in the future. Our study is novel in its examination of a wide range of potential future burn 
probability projections for Southern California using a regional application of a high-resolution stochastic fire spread 
model, and the complexity that we demonstrated for Southern California suggests that simple correlations of increas-
ing fire with increasing temperature are likely underestimating the range of plausible future fire scenarios.
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Resumen 

Antecedentes Los incendios de vegetación constituyen uno de los mayores problemas que afectan a las perso-
nas y los recursos naturales del sur de California, y la proyección de que el calentamiento del clima podría llevar a 
mayores probabilidades de incendios en el futuro es motivo de preocupación. Sin embargo, la conexión del cambio 
climático con la probabilidad esperada de incendios a futuro es compleja. Mientras que la mayoría de los modelos 
generalmente muestran temperaturas que se incrementan en el futuro, los cambios en la humedad y la temperatura 
son menos ciertos, y estos cambios interactúan para generar proyecciones de climas futuros que son algunas veces, 
aunque no siempre, más conducentes a fuegos de vegetación. Nosotros hicimos correr el FSim, un modelo de propa-
gación del fuego estocástico y de resolución espacial (270 m) y temporal (diario), con un Componente Proyectado de 
Liberación de Energía (ERC por sus siglas en inglés), derivado de múltiples modelos del clima global (GCMs) bajo el 
escenario de cambio climático RCP8.5. Esto fue hecho para explorar el impacto de un rango de futuras trayectorias del 
clima en probabilidades de fuegos simulados y para cuantificar la incertidumbre que proviene de múltiples GCMs.

Resultados Observamos una gran incertidumbre en la futura dirección del cambio en la probabilidad de ocurrencia 
de incendios. Los cambios futuros fueron más seguros en la región de la costa sur de California, en donde el 75% de 
las simulaciones proyectaron un incremento en la probabilidad de incendios. En la región de la costa central, cinco de 
un total de ocho simulaciones basadas en GCMs proyectaron un incremento en la probabilidad de incendios. Menos 
del 1% del total del área de estudio con probabilidad de quemarse presentó un acuerdo unánime en la dirección de 
los cambios proyectados. Los cambios simulados en la probabilidad de incendios estuvieron directamente correla-
cionados a las proyecciones anuales de cambios en ERC, pero estuvieron también afectados por la estacionalidad del 
cambio ERC, como también en las interacciones entre humedad, precipitación y temperatura.

Conclusiones La variabilidad observada permite conocer el porqué, y bajo qué condiciones de clima, las proba-
bilidades de incendio pueden aumentar o disminuir en el futuro. Nuestro estudio es novedoso en la exploración 
dentro un rango amplio de proyecciones potenciales de futuras probabilidades de incendios para el sur de California, 
utilizando una aplicación regional de un modelo de propagación del fuego estocástico y de alta resolución. La com-
plejidad que nosotros demostramos para el sur de California sugiere que las correlaciones simples del incremento del 
fuego con el aumento de las temperaturas están probablemente subestimando el rango de posibles escenarios de 
fuego futuros.

Background
Climate change is one of the major factors linked to 
increased wildfire activity in the Western U.S., includ-
ing Southern California (Diffenbaugh et al. 2015; Abat-
zoglou and Williams 2016; Williams et  al. 2019; Goss 
et  al. 2020). Environmental conditions conducive to 
wildfire, including higher temperatures, drought, and 
a longer fire season, may continue to intensify through 
the end of the twenty-first century (Batllori et al. 2013; 
Barbero et  al. 2015; D. McEvoy et  al. 2020a, b; Brown 
et  al. 2021; Ma et  al. 2021; Dong et  al. 2022). In par-
ticular, extreme drought may increase substantially in 
California (Cook et al. 2015; D. McEvoy et al. 2020a, b; 
Brey et al. 2021), and earlier spring warming and later 
autumn cooling are expected to compress the winter 
rainy season and extend the summer dry season condu-
cive to wildfires (Westerling 2016; Luković et al. 2021; 
Swain 2021). In the absence of changes in precipitation 
and humidity, rising temperatures would raise vapor 
pressure deficit and evapotranspiration, accelerating 

drying and increasing the flammability of fuels (Wil-
liams et al. 2013).

Predicting the future of wildfire in California is not sim-
ple or clear, however. Although there is broad agreement 
among climate models that point towards hotter futures 
for Southern California (Cook et  al. 2015; Diffenbaugh 
et  al. 2015), precipitation quantity and timing are more 
uncertain, complicating projections of fuel moisture, 
an important parameter for assessing fire activity (Nee-
lin et  al. 2013; Swain et  al. 2018). Even when an overall 
drier future is projected, enhanced variability in seasonal 
extremes can lead to increases in both very wet and very 
dry years (Swain et  al. 2018). For Southern California, 
D. McEvoy et al. (2020a, b) showed that 7 global climate 
models (GCM) unanimously projected a future increase 
in the average number of days per summer above the 
95th percentile of the Evaporative Demand Drought 
Index (EDDI), but the magnitude varied by as much as 
30 days per summer between individual GCMs. Factors 
like the magnitude, seasonality, and spatial variability of 
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projected climate changes have proven critical to mak-
ing connections with future fire activity. For example, 
Westerling and Bryant (2008) examined statistical mod-
els to show that burn probability could either increase or 
decrease by as much as 30% by 2100 in California, while 
Lenihan et  al. (2008) used simulations from a dynamic 
vegetation model to show that annual area burned could 
either increase by as much as 50% or decrease by 40%. 
Seasonal variation is particularly important for linking 
climate to fire in Southern California, where the fire sea-
son is long and often extends beyond the hot, dry sum-
mer season into the autumn, where fire growth can be 
exacerbated by fast, dry winds, such as the Santa Ana or 
Diablo winds (Jin et  al. 2014; Faivre et  al. 2016; Keeley 
et al. 2021).

Because of this complexity, several modeling approaches 
have been used to explore the relationship between cli-
mate change and wildfire in California. Statistical models 
have extrapolated contemporary regression relationships 
between climate and fire into the future (Liu et  al. 2013; 
Brown et  al. 2020; Goss et  al. 2020; Gannon et  al. 2021; 
Dong et al. 2022), and while statistical models have com-
putational efficiency and the ability to be applied to a large 
area, they lack representation of the spatial processes of 
wildfire, including fire spread and containment. Statistical 
models mostly depend on correlations between monthly 
climate means and area burned; these correlations do 
not tend to be strong and miss critical factors like daily 
sequencing of weather and its effect on fire spread across 
topographically complex landscapes. Fire behavior and 
spread models can accomplish this task, but are more 
often applied to small areas because of their computational 
cost and the complexity of model calibration (Clark et al. 
2008; Peterson et al. 2011; Zigner et al. 2020). Models such 
as FlamMap (Finney 2006) and FARSITE (Finney 2004) 
require the user to specify weather and fuel moisture con-
ditions, and therefore cannot account for the probability of 
various sequences of ignition and weather.

The large-fire simulator FSim is a wildfire model that 
combines the strengths of statistical models with spa-
tially explicit wildfire simulation models (Finney et  al. 
2011). FSim simulates ignition, spread, and containment 
of wildfires on a fine-scale gridded landscape (generally 
90–270 m cells). FSim simulates the ignition and growth 
of wildfires under tens of thousands of hypothetical fire 
seasons to estimate the probability of a given area burn-
ing under modeled landscape conditions and has been 
widely used to develop national (Finney et al. 2011) and 
regional maps of contemporary wildfire probability in 
California and elsewhere (Scott et al. 2012, 2017; Thomp-
son et al. 2013; Riley et al. 2018; Vogler et al. 2021). FSim 
has been integrated with climate change projections to 

assess future burn probability in two limited areas: north-
ern Idaho (Riley and Loehman 2016) and northwestern 
Oregon (A. McEvoy et al. 2020a, b).

In this paper, we describe an application of FSim to 
the coastal region in Southern California, spanning San 
Francisco to the Mexican border (Fig. 1), to create maps 
of mid-twenty-first century burn probability at 270  m 
resolution. The 12 345  km2 study area comprises some 
of the most densely populated portions of California. 
These areas also have high ecological (Myers et al. 2000) 
and economic importance (Srivastava et  al. 2020) and a 
recent history of high-impact wildfires. To our knowl-
edge this is the first application of the high-resolution 
wildfire simulation model FSim to Southern California 
that incorporates multiple future GCM-based climate 
projections to produce high-resolution maps of future 
wildfire probabilities. The ensemble of FSim outputs 
we generated have the potential to serve as a basis for 
exploring how a wide range of future climate change pro-
jections under the RCP8.5 emissions scenario may create 
various spatial patterns of burn probabilities, as well as 
to invigorate and challenge fire modeling methodologies 
under climate change.

Methods
Study area
We applied FSim to the region spanning the Southern 
California coast from San Francisco to the Mexico border 
(Fig.  1) for two adjacent pyromes, or areas of relatively 
homogenous fire regime defined by fire size, frequency, 
intensity, and seasonality (Short et  al. 2020). Pyrome 
33 (henceforth Central Coast) extends south from the 
southern tip of San Francisco Bay, including the coast 
range and extending east to the edge of the Central Val-
ley. Elevation ranges from sea level to over 1500 m, and 
the climate is Mediterranean with mild, wet winters and 
hot, dry summers. The vegetation is predominantly chap-
arral and coastal sage scrub, with some woodlands and 
forests at higher elevations. Intense downslope winds 
occur seasonally in this region but are more frequent in 
the southern half of the pyrome (Dye et al. 2020). In the 
northern half of the pyrome, agriculture dominates the 
valleys. Several large cities are located along the coast in 
this pyrome, including Santa Maria, San Luis Obispo, and 
Santa Barbara, with extensive suburbs and exurbs sur-
rounding them creating wildland-urban interface (WUI).

Pyrome 34 (henceforth Southern Coast) extends from 
the Santa Monica Mountains northwest of Los Angeles 
to San Diego and the US-Mexico border. The pyrome 
includes multiple high-elevation mountain ranges with 
several peaks rising above 3000  m and extends to the 
edge of the deserts to the north and to the east. The 
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climate in this pyrome is also Mediterranean. Rainfall 
occurs primarily in the winter, with the interior parts of 
the pyrome receiving less than the coast. Although the 
vegetation is predominantly chaparral and coastal sage 
scrub, the mountain ranges also support forests and 
woodlands. Many of the largest fires are driven by Santa 
Ana winds, and occur in the fall (Keeley et al. 2021). Sev-
eral statistical studies have projected future increases in 
fire size and frequency in this region (Barbero et al. 2015; 
Madadgar et al. 2020; Brey et al. 2021; Brown et al. 2021; 
Gao et  al. 2021), and it has experienced several large, 
high-consequence contemporary wildfires (Keeley et  al. 
2009; Nauslar et al. 2018; Keeley and Syphard 2021).

The large fire simulator (FSim)
FSim is described in detail in other publications (e.g. 
Finney et  al. 2011; Scott et  al. 2012; Thompson et  al. 
2013; Riley and Loehman 2016), and here we summa-
rized only its key features relevant to our study. FSim is 
a stochastic, spatially explicit model that incorporates 

weather, topography, fuels, and spatial patterns of his-
torical ignition probability to.model the ignition and 
spread of fires. FSim computes a daily large-fire ignition 
probability based on the logistic regression between his-
torical large fire ignitions in the study area and the daily 
Energy Release Component (ERC) for fuel model G of 
the National Fire Danger Rating System (Andrews et al. 
2003; Finney et al. 2011). ERC is a proxy for fuel dryness, 
and incorporates daily temperature, precipitation dura-
tion, humidity, and state of the weather (SOW) (Cohen 
and Deeming 1985). FSim only ignites and spreads fires 
on days where ERC equals or exceeds the 80th percentile 
ERC for that region (hereafter, these days are referred as 
“burn days”) (Table 1), a threshold considered to demar-
cate the fire season based on the relationship between 
large fire ignitions and ERC across most of the contigu-
ous United States (Riley et al. 2013).

During a full simulation of a specific climate period 
(e.g. 1992–2015), FSim generates statistically plausible 
weather streams for tens of thousands of iterations of the 

Fig. 1 The study area of Southern California describing spatial boundaries used for FSim modeling, including the locations selected for weather 
data in each pyrome. Inset map shows the division of pyromes across the Western United States
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same hypothetical calendar year. On each day of the year, 
FSim randomly draws a wind speed and direction value 
from their monthly joint probability distribution for the 
period being simulated. Daily ERC values are generated 
based on the mean ERC value for that day in the weather 
records for the period of study, the standard deviation 
in ERC for the day, and the temporal autocorrelation in 
ERC. Using this method, any number of years of syn-
thetic ERC streams can be simulated, with a typical num-
ber of years for this part of the country being 10,000. If 
the ERC value selected meets the  80th percentile thresh-
old, FSim can ignite new fires and/or spread existing 
fires. Locations of new ignitions are determined proba-
bilistically using a continuous kernel density raster sup-
plied by the user (in our study, we used a 40-km nearest 
neighbor) that represents the spatial point pattern of his-
torical ignition locations (Short 2017). A single iteration 
begins on January 1 and is completed once FSim reaches 
December 31. At this point, all existing fires, if any, are 
ended, and the next independent iteration year begins 
on January 1. Iterations are not sequential or temporally 
related. By performing tens of thousands of these itera-
tions, FSim produces stable and repeatable estimates of 
burn probability for any given location on the simulation 
landscape. Model outputs include ignition location, date, 
final size, and perimeter of each simulated fire. FSim 
focuses on modeling only large fires to maintain com-
putational efficiency, and because large fires account for 
the vast majority of area burned. Following Scott (2014), 
we used a large-fire threshold of 404.686  km2 (100 acres) 
for our study. Henceforth, all of our reported results are 
based on fires at or above this large-fire threshold.

FSim requires specification of three spatial boundaries 
for each pyrome being modeled (Fig.  1). The “analysis 
area” is the primary region of interest and the area for 
which final burn probability estimates are valid, equal-
ing the areas of the Central Coast and Southern Coast 

pyromes. The “fire occurrence area” (FOA) defines where 
FSim allows ignitions to start by probabilistically assign-
ing ignition locations using a continuous kernel density 
raster representing the spatial point pattern of histori-
cal ignition locations (Short 2017). We set the FOA as 
a 30  km buffer around each pyrome, but did not buffer 
the border between the two pyromes so that fires could 
spread between the pyromes without being counted mul-
tiple times (Thompson et al. 2013). Third, FSim requires a 
“fire modeling landscape” (LCP) raster, which we set as a 
60 km buffer surrounding the FOA. FSim does not allow 
ignitions in this buffer, but fires ignited in the FOA can 
burn outward through the LCP, preventing edge effects 
that might otherwise occur if fire spread was forced into 
a hard boundary. We acquired spatial landscape inputs of 
slope, elevation, aspect, fire behavior fuel model (Scott 
and Burgan 2005), canopy bulk density, canopy base 
height, canopy cover, and canopy height from the Land-
scape Fire and Resource Management Planning Tools, or 
LANDFIRE, 2016 Remap (LANDFIRE 2018). We used 
LANDFIRE products off-the-shelf, following standard 
FSim procedures (Finney et  al. 2011), and did not con-
duct additional local calibration of fuel models or canopy 
characteristics. LANDFIRE’s canopy layers are internally 
calibrated for use with the Scott and Reinhardt (2001) 
crown fire model, which is used in FSim. We resam-
pled the default LANDFIRE 30 m raster grids to 270 m 
to match our desired output resolution, then combined 
all eight grids using standard tools in FlamMap software 
(Finney 2006) to create the LCP raster required for FSim.

Modeling protocol
When referencing our modeling protocol, we have 
adopted the following terminology: a climate scenario 
refers to the historical, contemporary, or future (under 
RCP8.5 emissions trajectory) climate time periods; a cli-
mate projection refers to a unique representation of a sce-
nario (e.g. a projection of the 2040–2069 future climate 
scenario for a selected GCM); and a simulation refers to 
a 10,000 iteration run of the FSim model informed by cli-
mate data from a unique projection of a climate scenario. 
We defined four climate scenarios to model: contempo-
rary calibration (1992–2015), baseline (1979–2005), his-
torical (1979–2005), and future (2040–2069) (Table 2).

Contemporary calibration (1992–2015)
The contemporary calibration scenario (1992–2015) was 
included for the purpose of calibrating FSim, because this 
period best corresponds with the available observed fire 
records (Short 2017). Following standard FSim best prac-
tices, we calibrated FSim until both the mean fire size and 
mean number of fires per year were each within the 70% 

Table 1 Fire statistics for observational records in each pyrome 
over the contemporary calibration period (1992–2015). Average 
fire size and frequency statistics are from the Short (2017) 
database. The  80th % ERC threshold is calculated from ERC values 
for the gridMET pixel coinciding with the Fort Hunter Ligget 
RAWS (Central Coastal) and the Chilao RAWS (Southern Coastal)

Area
(km2)

Average fire 
size  (km2)
[70% 
confidence 
interval]

Fire Frequency 
(per year per 
 103  km2)
[70% 
confidence 
interval]

80th % ERC

Central Coastal 76 890.27 8.54
[7.16, 9.11]

0.43
[0.41, 0.45]

58.6

Southern Coastal 50 261.96 14.12
[12.38, 15.86]

0.87
[0.84, 0.91]

83.6
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confidence intervals of the 1992–2015 observed means 
(Table 1).

We supplied  FSim with  ERC data derived from grid-
MET, an observation-based gridded climate dataset 
that blends spatial attributes of the gridded climate data 
Parameter-elevation Relationships on Independent Slopes 
Model (PRISM) (Daly et al. 2008) with desirable temporal 
attributes from regional reanalysis using climatically aided 
interpolation (Abatzoglou 2013). We used Fire Family Plus 
(Bradshaw and McCormick 2009) to calculate daily ERC 
from gridMET. Since ERC calculations required a state of 
weather (SOW) variable that is not included in gridMET, 
we calculated SOW from gridMET precipitation duration 
and percent of cloud cover, where cloud cover was inferred 
from the ratio between solar radiation and potential maxi-
mum radiation, and we calculated precipitation duration 
following methods described by Abatzoglou and Kolden 
(2013).

Conventionally, FSim is driven with weather data 
from a single representative weather station within the 
pyrome. For this study, we identified a Remote Access 
Weather Station (RAWS) with a relatively central loca-
tion within each pyrome and with long, complete wind 
records. In the Central Coast, we chose the Fort Hunter 
Liggett RAWS (36° 00′ 42″ N, 121° 14′ 30″ W), and in 
the Southern Coast we chose the Chilao RAWS (34° 19′ 
54″ N, 118° 01′ 49″ W). The wind speed and direction 
distribution tables required by FSim were constructed 
from RAWS because spatially downscaled wind data in 
gridMET may poorly represent the wind patterns at the 
selected RAWS locations. ERC values for 1992–2015 
were taken from the gridMET pixel that coincided with 
the RAWS coordinates (Fig. 1).

Calibration consisted primarily of adjusting three 
model parameters in FSim: the rate of spread multipliers, 
“acrefract” (a divisor number that FSim applies to help 
model the probability of a large fire day), and the wind 
speed distribution table. In FSim, wind speed bins are 
typically capped at 30mph. Even though we could suc-
cessfully calibrate to annual statistics without changing 

the default wind speed bins, we simulated lower than 
expected fire sizes during the Santa Ana wind season, 
Oct-Dec (Raphael 2003). Since the Santa Ana winds rou-
tinely exceed 30 mph, we manually adjusted the wind 
speed distributions to allow for winds up to 100 mph 
that were recorded in the historical observations. This 
had the desired effect of increasing average fire size in 
the fall and winter. To isolate the effect of climate change, 
and following the approach of Riley and Loehman (2016) 
we retained the LCP raster, the ignition probability grid, 
winds, and all final model parameters from this calibra-
tion for all additional simulations, updating only the 
weather inputs.

Baseline (1979–2005)
GCMs project climate starting in the past and then pro-
ceed into the future. As with many other studies that 
explore climate change impacts into the future (e.g., 
Barros et al. 2021; Clark et al. 2021; Heidari et al. 2021), 
we supplied FSim with GCM-based climate for both a 
future period and a recent historical period to fully cap-
ture a GCM’s expression of future climate while also 
capturing its bias by comparison to the actual observed 
climate. To understand this historical bias component, 
we first required simulation of a baseline climate scenario 
for comparison to the historical GCM-based climate 
described in the next section. To create the baseline, 
we conducted a single 10 000 iteration FSim simulation 
informed by 1979–2005 gridMET ERC values; in this 
case, we accepted the assumption that gridMET repre-
sents the “true” ERC values over 1979–2005. We chose 
the 1979–2005 time period because this overlaps with 
the standard historical period available for GCM-based 
climate described in the following section.

Historical (1979–2005)
Simulations for the historical climate period are informed 
by downscaled GCM-based climate over the 1979–2005 
time period retrieved from the MACA-v2-METDATA 
downscaled climate dataset (Abatzoglou and Brown 

Table 2 Summary of the different simulation scenarios and their purpose within our modeling framework

Scenario Climate
Data

Purpose

Contemporary Calibra-
tion (1992–2015)

gridMET Calibrate model settings to reflect observed contemporary fire statistics

Baseline (1979–2005) gridMET Simulations covering historical GCM period for comparison with GCM-based simulations

Historical (1979–2005) 8 GCMs
(downscaled MACAv2-METADATA)

GCM-based simulations for the historical period

Future (2040–2069) 8 GCMs
(downscaled MACAv2-METADATA)

GCM-based simulations for mid-twenty-first century under RCP8.5 emissions
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2012). MACA-v2-METDATA uses gridMET as the refer-
ence dataset for its downscaling algorithm. We calculated 
ERC in the same way as for the contemporary calibration 
and baseline periods, with the exception of adjustments 
we implemented to correct for “GCM drizzle.” “GCM 
drizzle” is a well-documented GCM phenomenon (Sun 
et al. 2006; Ahlgrimm and Forbes 2014) and is manifested 
in MACAv2-METDATA as an unrealistically high fre-
quency of days with extremely light rain in the summer. 
Because this unrealistically suppresses ERC values, we 
adjusted the drizzle days by removing the lowest precipi-
tation days from MACAv2-METDATA for the historical 
period until the number of drizzle days matched those in 
the gridMET data for the baseline period (i.e. the period 
we considered as the “true” values) for each month. In 
subsequent analyses, simulation results from the histori-
cal period were compared with simulation results from 
the baseline period to interpret GCM bias.

Future (2040–2069)
For this study we selected a mid-century period (2040–
2069) under RCP8.5 high-warming climate change sce-
nario to explore the impacts of significant climate change. 
While changes to the landscape resulting from distur-
bance are likely to occur, this period is not so far in the 
future that broad-scale vegetation changes such as biome 
shifts are expected. Retaining the same landscape for all 
simulations also has the advantage of isolating the effect 
of changes in climate on projected fire activity without 
these interacting with changes in vegetation to alter this 
signal. We made similar adjustments to correct for “GCM 
drizzle” in the ERC calculations, but the target number 
of drizzle days for the future period were altered by the 
ratio of unadjusted drizzle days in the future period to 
the historical period (Appendix 1). Total precipitation 
values were only trivially affected by this adjustment 
procedure. In subsequent analyses, simulation results 
from the future period (2040–2069) were compared to 
the historical period (1979–2005) to interpret projected 
changes within each GCM in the future.

Selection of GCMs for historical and future scenarios
FSim requires extensive computing power (for example, 
a single 10 000 iteration simulation run of FSim for our 
study region takes approximately 2  weeks to complete). 
To make computing more manageable for this study, we 
selected a subset of eight GCMs from the 18 available 
GCMs downscaled by MACAv2-METDATA (Abatzo-
glou and Brown 2012). We subjectively chose these eight 
GCMs to incorporate the broad range of variability in his-
torical bias and future change in ERC-based “burn days,” 
the key climate threshold used by FSim to ignite and 

spread fires (Appendix 2). In this evaluation, we defined 
historical bias for each GCM as the difference in average 
number of annual burn days between the historical and 
baseline periods, and we defined future change as the dif-
ference between each GCM’s future (2040–2069) and his-
torical (1992–2005) periods. To evaluate our subset, we 
performed a post-hoc Kruskal–Wallis test for equality of 
distributions between the historical and future distribu-
tion of burn days for the 8-GCM subset and the full set of 
18 available MACAv2-METDATA GCMs and found that 
there were no statistical differences between the two sets 
(Appendix 3), suggesting our selection of models reason-
ably represent all available climate projections. For each 
of the 8 GCMs selected, we conducted two separate FSim 
simulations, one using ERC values representative of the 
historical period (1979–2005) and one using ERC values 
representative of the future period (2040–2069).

Results
Contemporary calibration and baseline simulations
Our contemporary calibration (1992–2015) simulations 
produced averages of 0.43 and 0.87 large fires per year 
per 1000  km2, with average sizes of 8.33  km2 and 14.18 
 km2, for the Central Coast and Southern Coast, respec-
tively. Following standard FSim best practices, all numbers 
were calibrated well within the 70% confidence intervals 
of the observed fire records (Table  1). Seasonally, simu-
lated median fire size and frequency of the contemporary 
calibration followed similar patterns as the correspond-
ing observational record with some exceptions, notably an 
underrepresentation of median fire size during the fall and 
winter months in the Southern Coast, and a peak fire fre-
quency lagged by about one month in both pyromes (Fig. 2).

In our baseline (1979–2005) simulation, monthly pat-
terns of fire size and frequency held a similar pattern, 
but were lower than the 1992–2015 calibration period 
due to lower ERC during this time period (Fig. 2). Aver-
age annual burn probability for the baseline simulation 
were about four times higher for the Southern Coast 
at 0.0080 than the Central Coast at 0.0023. Burn prob-
abilities are interpreted as percentages – for example, 
a burn probability of 0.0080 is equivalent to a 0.80% 
annual chance of a fire at that pixel. As expected, 
localized areas of high burn probability generally cor-
responded to places with historically high ignition den-
sity and fuel types with high rates of spread, such as the 
grass and grass-shrub dominated regions of the north-
east and southeast sectors of the study area (Fig.  3). 
Grass and grass-shrub fuel types combined accounted 
for over 50% of the total study area and reported the 
highest average burn probability resulting from the 
baseline simulation (Fig. 4).
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Historical (1979–2005) and future (2040–2069) GCM‑based 
simulations
When burn probability is averaged over the entire 
pyrome (hereafter referred to as landscape-wide 
burn probability), five simulations resulted in a future 
increase and three resulted in a decrease in the Central 
Coast pyrome, while six simulations resulted in a future 
increase and two resulted in a decrease in the Southern 
Coast pyrome (Fig.  5). Regardless of whether the simu-
lation projected an overall increase or decrease, each 
individual simulation exhibited local spatial variability 
(Fig. 6). For example, even though the simulation based 
on GFDL-ESM2M projected the highest overall decrease 
of burn probability in the Southern Coast (Fig. 6c), some 
areas also had localized increases.

The spatial uncertainty was more pronounced for the 
GCM simulations that had an overall decrease of burn 
probability (e.g., bcc-csm1-1-m; Fig. 6a). In the Central 
Coast pyrome, three simulations projected an over-
all decrease in landscape-wide average burn probabil-
ity. But, all three of these simulations simultaneously 

agreed on a decrease in only 19.2% of all burnable pix-
els. In contrast, for the simulations that resulted in a 
landscape-wide increase in burn probability, 91.3% of 
the burnable pixels agreed across GCMs on an increase 
in burn probability. Across the study area, the majority 
of burnable areas had 5–6 simulations that all agreed 
on a burn probability increase, but few pixels had 
unanimous increase or decrease (Table  3; Fig.  7). In 
the Southern Coast, 89.41% of burnable pixels had 5–6 
simulations that agreed on a burn probability increase; 
in the Central Coast, 74.55% of burnable pixels had 5–6 
simulations that agreed on a burn probability increase.

Generally, relationships between large fire frequency 
and size were strong and related to burn probability, 
where larger and more frequent fires produced higher 
burn probabilities (Fig. 8). In the Central Coast, future 
changes in fire frequency ranged from − 0.23 to + 0.36 
fires per year per 1000  km2, while projected changes 
in fire size ranged from –3.19  km2 to + 5.43  km2. In 
the Southern Coast, projected changes in ignition fre-
quency ranged from − 0.11 to + 0.41 fires per year per 

Fig. 2 Comparative monthly large-fire statistics from the observational fire occurrence database records and the baseline gridMET FSim runs. 
Median monthly large-fire size  (km2) is shown for a) Central Coast and b) Southern Coast, and the monthly large-fire frequency (fires per 1000  km2) 
is shown for c) Central Coast and d) Southern Coast
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1000  km2, while projected changes in fire size ranged 
–3.07  km2 to + 4.28  km2. The grass and grass-shrub fuel 
types generally had the largest future increases in burn 
probability, while timber-litter generally had the least 
change, but the magnitude of those changes varied per 
the eight GCM-based simulations (Fig. 4).

Historical bias, defined as the difference between each 
GCM and the gridMET data for the historical period 
(1979–2005), was usually positive and large (up to 150% 
for burn probability and 55% for burn days), with the 
exception of those driven with HadGEM2-ES365 and 
MIROC5 in Central Coast (negative bias of less than 

10% for burn days) and CanESM2 in Southern Coast 
(negative bias of 45% for burn probability) (Appendix 
4). Bias in the average number of burn days was well 
correlated with bias in simulated landscape burn prob-
ability for both pyromes (adjusted  R2 = 0.89 and 0.94 
for Central Coast and Southern Coast, respectively).

Future changes to ERC
To model fire ignition and spread, FSim model structure 
requires ERC burn days, which in turn are highly cor-
related with simulated burn probability; for our study, 
a future increase in burn days generally translated into 

Fig. 3 Comparative maps showing a) the annual burn probability resulting from FSim simulations based on baseline gridMET (1979–2005); b) the 
ignition density grid based on the historical fire occurrence database (1992–2015); and c) the fire behavior fuel model (Scott and Burgan 2005) of 
the study area

Fig. 4 Summary of results aggregated by fuel types (Scott and Burgan 2005) that were present in our study area: a) the percentage of the entire 
Southern California analysis area identified as each of five fuel types; b) the average burn probability for all pixels of each fuel type under the 1979–
2005 baseline scenario; and c) for each GCM-based simulation, the change in burn probability between the future (2040–2069) and the baseline 
(1979–2005) scenarios by fuel type. All results reported here are summarized for the entire study area, i.e. they are not separated by pyrome
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a future increase in burn probability (Fig.  9; adjusted 
 R2 = 0.82 and 0.92 for Central Coast and Southern Coast, 
respectively). But, there were notable exceptions to this 
rule—for example, Southern Coast simulations based 
on HadGEM2-CC365 projected a small increase of burn 

probability despite a 5% decrease in burn days (Fig.  9). 
ERC is calculated primarily as a function of tempera-
ture, relative humidity, and precipitation – in general, 
warmer, drier, and less humid weather translates to lower 
fuel moisture and thus higher ERC. All GCMs that we 

Fig. 5 Landscape burn probability simulated for the historical (1979–2005) and future (2040–2069) scenarios for a Central Coast and b Southern 
Coast. Dashed lines connect simulations based on the same GCM across both periods; red dots show the baseline gridMET burn probability
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considered projected warmer futures, but projected 
precipitation and humidity varied (Fig.  10). Such wide 
variability is common for Southern California, where 
projections of future precipitation are notoriously uncer-
tain (Neelin et  al. 2013; Chang et  al. 2015; Swain et  al. 
2018). Additionally, the magnitude of the projected cli-
mate change varied among the GCMs (Fig. 10), as did the 
seasonal distribution of changes (Appendix 5). In simu-
lations based on bcc-csm1-1-m, for example, average 
annual temperature was projected to rise by nearly 2  °C 

Fig. 6 Change in burn probability simulated from the historical (1979–2005) to future (2040–2069) periods for simulations based on each of 8 
GCMs, a-h 

Table 3 Percent of burnable area where 1–2, 3–4, 5–6, or 
7–8 simulations agree on a burn probability increase, for each 
pyrome and for the combined study area. There were not any 
cases where no simulations had a burn probability increase, 
therefore 0 is omitted from table

1–2 3–4 5–6 7–8

Central Coast 0.18% 23.69% 74.55% 1.58%

Southern Coast 0.05% 4.94% 89.41% 5.60%

Full Study Area 0.12% 15.22% 81.26% 3.40%



Page 12 of 19Dye et al. Fire Ecology           (2023) 19:20 

(near the lower limit of all projections we considered) 
in both pyromes (Fig. 10), but rainier winters and more 
humid summers resulted in reduced ERC and burn prob-
ability (Appendix 6). In the Central Coast, simulations 
based on HadGEM2-CC365 projected a decline in burn 
probability, despite projecting temperature increases of 
2.7  °C, which was near the upper limit of the GCMs we 
considered. But, a 1% increase in relative humidity (larg-
est humidity increase among all GCMs), combined with 
an average of 3 more rainy days per year, were sufficient 
to counteract the large temperature increase and corre-
sponded with a reduced burn probability (Fig. 10).

Discussion
Simulation complexity
We found that while some simulations did suggest that fire 
activity could increase in the future, there is high uncer-
tainty in where, when, and by how much these increases 

occur. The complexity of future climate change on burn 
probability derives from the temporal variability of ERC 
and climatic variables (temperature, precipitation, and rela-
tive humidity) from which ERC is computed, the spatial 
variability of factors that contribute to fire growth (e.g., fuel 
types and topography), and interactions of both temporal 
and spatial variability. Wide variability in projections of 
climate change are not uncommon for Southern Califor-
nia, particularly for future precipitation projections which 
are notoriously uncertain in the region (Neelin et al. 2013; 
Chang et  al. 2015; Swain et  al. 2018). Seasonally, changes 
that occur in the winter, outside of Southern California’s 
primary fire season, can have less of an impact on fire than 
change occurring during the summer. For example, Central 
Coast simulations based on IPSL-CM5A-LR projected a 
warmer, drier, and less humid future but only a modest (5%) 
increase in burn probability (Fig. 10). However, the majority 
of the climatic changes occurred in the winter, when they 

Fig. 7 Map showing areas where more than one simulation agree on a projected increase of burn probability from the historical (1979–2005) to 
future (2040–2069) periods
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are less likely to impact fire, while summer was projected 
to become comparatively much more humid and rainier 
with relatively minor temperature increases (Appendix 5). 
Simulations based on CanESM2 were unique in that they 
projected an increase in burn probability for both pyromes 
despite also projecting an overall wetter and more humid 
future (Fig. 10). But, the majority of these changes occurred 
overwhelmingly in winter, outside of the main fire season, 
while in summertime, climate actually became more con-
ducive to fire—in August, for example, projected temper-
atures increased by 3.8  °C and 4.5  °C for the Central and 
Southern Coast, respectively, while humidity decreased 
and precipitation remained unchanged (Appendix 5). Stud-
ies that rely on mean annual climate metrics cannot accu-
rately capture these complexities, which are instrumental in 
making reasonable assumptions about shifts in fire regimes 
due to climate change. However, we did not account for 
seasonally lagged climate effects, such as the amount or 
timing of spring snowmelt, which can affect fuel dryness at 
high latitudes during the fire season (Westerling 2016).

Fire size and frequency
Burn probability derives from both the number of igni-
tions that are simulated and the final size of the fire as 
it grows over consecutive burn days (Fig. 8). FSim has 
a built-in suppression algorithm designed to stop fire 
growth after encountering more than two consecutive 
non-burn days if the ignition occurred in a non-timber 
fuel type, or more than seven consecutive burn days if 
ignition occurred in a timber fuel type. Therefore, once 
a fire ignites, the temporal variability of burn days, 
along with the ignition location, fuel type, topography, 
winds, and landscape characteristics, work together 
to determine the growth and final size of the fire. This 
contributes to the stochasticity that is a hallmark of 
FSim, allowing the model to simulate a more realistic 
version of fire behavior, spread, and containment than 
is possible with purely statistical models. It also reveals 
complexity in the relationship between burn days, igni-
tion, fire size, and burn probability.

Fig. 8 Scatterplot showing the relationship between the change in mean fire size  (km2) and annual fire frequency (fires per 1000  km2) from the 
historical (1979–2005) to future (2040–2069) periods
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Recent modeling work by Ager et  al. (2022) sug-
gested that increases to fire size, rather than frequency, 
were more important for estimating future burned area, 
but our simulations did not unanimously support this 
hypothesis. For example, Central Coast simulations 
based on IPSL-CM5A-LR projected a decline in mean 
fire size of about 0.50  km2 but an increase in ignition fre-
quency, yet burn probability is still projected as a slight 
increase (Fig.  8). Similarly, Southern Coast simulations 
based on MIROC-ESM-CHEM projected an increase of 
fire frequency but negligible change to fire size, yet burn 
probability still had a projected increase of 20%. Clear 
relationships between size, frequency, and burn probabil-
ity are also complicated by FSim’s spatial stochasticity. 
Relationships between size, frequency, and burn proba-
bility can be complex, because ignitions may be in differ-
ent places in the different GCM simulations, combined 
with complicating factors of the seasonal distribution and 
magnitude of changes relative to specific aspects of the 
climate.

Fire activity is more than just climate
FSim simulations in this study reflected regional spatial 
patterns of the underlying contemporary fire record in 
Southern California, simulating high burn probability in 
regions that frequently experienced wildfire historically 
(Fig.  3), while spatial patterns in the future projections 
were modified by the magnitude and seasonality of inter-
acting climate changes (Fig. 10). In reality, however, other 
factors will also influence the spatio-temporal patterns of 
fire in the future, in addition to climate. The spatial distri-
bution of vegetation types was held constant in our simu-
lations across all three timesteps, in order to isolate the 
effect of climate. However, vegetation distribution and 
conditions are unlikely to remain constant throughout 
the century as fire, drought, and insect and disease out-
breaks catalyze long-term type shifts in California (For-
restel et al. 2011; Keeley and Brennan 2012; Syphard et al. 
2019). A critical next step to modify additional versions of 
our work will be to incorporate potential future changes 
in vegetation (Harris et al. 2016). Vegetation shifts could 

Fig. 9 The linear relationship between the percentage change in the average number of burn days per year (days exceeding the 80th percentile 
ERC) and the percentage change in annual burn probability, where projected change is the difference between the future period (2040–2069) and 
historical period (1979–2005) for each GCM
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either moderate or exacerbate changes in fire probabil-
ity depending on the type and direction of change. For 
example, Hurteau et  al. (2019) showed that future pro-
jected area burned in the Sierra Nevada Mountains of 
California could be as much as 14% lower when mod-
eled vegetation change is included in addition to climate 
change, because a warmer, dryer climate would reduce 
the available biomass over the long term, while Parks 
et al. (2015) showed that fire could become self-limiting. 
Others have proposed that specific aspects of vegetation 
change will lead to more fire, such as the introduction 
of invasive species into previously unoccupied territory 
(Tortorelli et  al. 2022). Climate-vegetation feedbacks 
are also critical. In our model structure, an increase in 
precipitation is most likely to decrease burn probability 
because this directly results in lower ERC values. How-
ever, it is possible that increased precipitation could lead 
to greater vegetation productivity, thereby increasing the 
availability of fuels to burn when droughts do occur (Ellis 
et al. 2021), and enhanced variability of wet and dry spells 
could then lead to periods of high productivity followed 
by periods of intense drought (Swain 2021). Similarly, the 

interacting effects of precipitation and temperature in the 
future could change the underlying composition of for-
est biomass itself, which in turn has consequences for fire 
activity (Clark et al. 2017).

The timing of ERC change is particularly important 
for Southern California because the hot, dry summer 
fire season and the fall wind-dominated fire season often 
produce different fire effects (Jin et al. 2014; Keeley et al. 
2021). Fast, dry downslope winds like the Santa Ana in 
the southern part of our study area (Raphael 2003; Guz-
man-Morales et  al. 2016) and the Diablo winds in the 
northern part of our study area (Smith et  al. 2018; Liu 
et al. 2021) are a major driver of autumn fires in Califor-
nia that have contributed to some of California’s most 
devastating wildfire disasters in recent years (Kolden 
and Abatzoglou 2018). Although future changes in winds 
were not explicitly considered in our study, projected 
changes in burn days could have had major implications 
for future simulated fire in the fall and winter by increas-
ing or decreasing the chances of the model selecting days 
that both exceed FSim’s burn day threshold and also have 
high wind speeds. Santa Ana fires are not historically well 

Fig. 10 The corresponding changes in annual burn probability, burn days per year, mean annual temperature, rainy days per year, and relative 
humidity from the historical (1979–2005) to future (2040–2069) period for a) Central Coast and b) Southern Coast. Note that y-axis scales for 
precipitation (rainy days per year) and relative humidity are inverted (i.e. negative changes, or drier conditions, are shown above the 0 line in order 
to map consistently with higher burn probability)
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correlated with fuel moisture (Keeley et  al. 2021), but a 
future increase in ERC heightens the possibility of high 
wind speeds coinciding with low fuel moisture, thereby 
increasing both the frequency of modeled ignitions and 
the ensuing rate of fire spread. However, just as vegeta-
tion is unlikely to remain constant, we cannot necessar-
ily expect the occurrence of downslope winds to remain 
identical in the future. The few studies that have explored 
the future of Santa Ana winds agree that winds will 
become more concentrated in November–December, 
but may overall become less intense (Miller and Schlegel 
2006; Guzman-Morales and Gershunov 2019).

ERC values calculated from the eight GCMs exhibited 
significant bias when compared to the gridMET-based 
ERC values during the historical period (1979–2005). 
These biases partly captured the uncertainty in the 
observation-based ERC values, as the observations are 
taken from a single location within each pyrome and may 
represent a single manifestation of climate in a chaotic 
weather system (Kreienkamp et al. 2012). Bias is common 
in modeling work and is not unique to our study, and it 
provides an opportunity to examine how present-day 
uncertainties relate to future projections. For example, 
a recent study for Southern California documented con-
sistently positive historical bias in wildfire hazard predic-
tors, with a 10-GCM ensemble median EDDI nearly 5 
times that of their baseline gridMET EDDI (Fig. 6 in D. 
McEvoy et al. 2020a, b). Additional complications in our 
study arose by drawing climate information from single 
grid points. Whereas most GCMs are understood to reli-
ably capture broad continental or global patterns, they 
exhibit much higher variability at the scale of a region, 
locality, or a single grid cell (Langenbrunner et al. 2015). 
However, FSim requires climate input from a single 
point, and averaging this climate over an entire pyrome, 
for example, may have dampened extremes and resulted 
in a more moderated weather stream than is realistic for 
any given pixel. For the large two-pyrome regional study 
area we considered, a pixel size of 270  m is fairly high-
resolution and is sufficient to assess broad regional pat-
ters; however, it is not sufficient to interpret highly local 
effects. Other limitations of the model are inability to 
capture micrometeorology (such as eddying of wind on 
the lee side of topography) and the potential for a cell to 
burn twice during a simulation year. In addition, future 
climate could produce no-analog fuel moisture (ERC) 
and wind conditions that are not captured by this study. 
Other sources of uncertainty we did not consider, but 
that will certainly continue to interact with climate to 
influence future fires, include changes to management 
practices (Williams and Abatzoglou 2016), popula-
tion distribution (Syphard et  al. 2019), Santa Ana wind 

strength and seasonality (Guzman-Morales and Gershu-
nov 2019), and the spatial pattern and cause of ignition 
(Balch et al. 2017).

Conclusion
Our study evaluated the effects of eight different climate 
change projections drawn from GCMs on mid-twenty-
first century fire activity for Southern California. By 
incorporating each projection into a high-resolution 
spatial fire behavior simulator, we were able to describe 
a range of complexities related to the impact of climate 
alone on the direction, seasonality, and magnitude of 
future changes to fire activity. Our results are most use-
ful for interpreting the differences in fire activity simu-
lated with an array of potential mid-twenty-first century 
climate projections, under the RCP8.5 warming scenario 
only, and not as absolute predictions of fire activity in 
the future. Our study highlights the complexity we may 
expect to see in the future, and suggests that fire in the 
future will not follow one single homogeneous story. 
Examining this complexity is a critical step for under-
standing how fire models such as FSim can be appropri-
ately used to prepare for future fire activity (Riley and 
Thompson 2017). Efforts to plan for future fire could lev-
erage this complexity, for example, by following a model 
of resilient socio-ecological systems that are capable of 
thriving in a future that could have either more or less 
fires (McWethy et  al. 2019). Future work that explores 
and resolves some of the limitations we mentioned in 
the discussion would be highly impactful for continuing 
to characterize the complexity of future fire.
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