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Abstract 

Aim Fires are a serious threat to people’s lives and property. Detecting fires quickly and effectively and extinguish-
ing them in the nascent stage is an effective way to reduce fire hazards. Currently, deep learning-based fire detection 
algorithms are usually deployed on the PC side.

Methods After migrating to small embedded devices, the accuracy and speed of recognition are degraded due to 
the lack of computing power. In this paper, we propose a real-time fire detection algorithm based on MobileNetV3-
large and yolov4, replacing CSP Darknet53 in yolov4 with MobileNetV3-large to achieve the initial extraction of flame 
and smoke features while greatly reducing the computational effort of the network structure. A path connecting 
PANet was explored on Gbneck(104, 104, 24), while SPP was embedded in the path from MobileNetV3 to PANet to 
improve the feature extraction capability for small targets; the PANet in yolo4 was improved by combining the BiFPN 
path fusion method, and the improved PANet further improved the feature extraction capability; the Vision Trans-
former model is added to the backbone feature extraction network and PANet of the YOLOv4 model to give full play 
to the model’s multi-headed attention mechanism for pre-processing image features; adding ECA Net to the head 
network of yolo4 improves the overall recognition performance of the network.

Result These algorithms run well on PC and reach 95.14% recognition accuracy on the public dataset BoWFire. 
Finally, these algorithms were migrated to the Jeston Xavier NX platform, and the entire network was quantized and 
accelerated with the TensorRT algorithm. With the image propagation function of the fire robot, the overall rec-
ognition frame rate can reach about 26.13 with high real-time performance while maintaining a high recognition 
accuracy.

Conclusion Several comparative experiments have also validated the effectiveness of this paper’s improvements to 
the YOLOv4 algorithm and the superiority of these structures. With the effective integration of these components, the 
algorithm shows high accuracy and real-time performance.
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Resumen 

Antecedentes Los incendios representan una seria amenaza para la gente y sus propiedades. El detectar incendios 
rápida y efectivamente y extinguirlos en su estado inicial es una forma efectiva de reducir sus peligros. En la actuali-
dad, la detección de incendios basada en algoritmos de detección usando el conocimiento profundo (deep learning) 
están siendo desarrollados mediante el uso de computadores (PCs).

Metodología Luego de migrar hacia computadores cada vez más pequeños, la exactitud y velocidad de recono-
cimiento se están degradando debido a una falta de capacidad de computación. En este trabajo, proponemos un 
algoritmo de detección de incendios en tiempo real basado en la tecnología digital yolov4, que reemplaza a CSP 
Darknet53 en el yolov4 por la MobileNetV3-large, para alcanzar las características iniciales que permitan la detec-
ción de llamas y humo mientras se reduce grandemente el esfuerzo en la estructura de las redes computacionales; 
un paso que conecta PANet fue explorado con Gbneck(104,104,24), mientras que SPP fue incorporado en el paso 
que conecta MobileNetV3-large a PANet para mejorar la capacidad de extracción sobre las características de obje-
tivos pequeños. El PANet en el yolov4 fue mejorado combinando el método de fusión BiFPN, y este PANet mejorado 
incrementó además las características en la capacidad de extracción. El modelo de Vision Transformer es adicionado 
a la columna vertebral de las características de la red de extracción y al modelo yolov4 para brindar una mayor 
articulación al mecanismo de atención del modelo de cabezas múltiples para pre-procesar las características de las 
imágenes. La adición de la RED ECA a la cabeza de la red yolov4 mejora la performance del reconocimiento general 
de la red.

Resultados Estos algoritmos funcionan bien en una PC y alcanzan y reconocen una exactitud del 95% en el 
conjunto de datos públicos BoWFire. Finalmente, estos algoritmos fueron migrados a la plataforma Jeston Xavier 
NK y la red completa fue cuantificada y acelerada con el algoritmo Tensor RT. Con la función de propagación de 
imagen del robot de fuego, el reconocimiento general de la tasa de encuadre puede alcanzar 26.13, con una 
performance en tiempo real mientras se mantiene una alta exactitud de reconocimiento.

Conclusiones Diferentes experimentos comparativos han validado también la efectividad de este trabajo en el 
mejoramiento del algoritmo yoylov4 y la superioridad de estas estructuras. Con la interacción efectiva de estos com-
ponentes, el algoritmo muestra una alta exactitud y performance en tiempo real.

Introduction
Fire is one of the major public safety disasters that can result 
in casualties and economic and property losses. Detecting 
fire conditions as early as possible and extinguishing them 
in the beginning stages is an effective method to reduce 
fire hazards. Therefore, researching rapid and accurate fire 
detection is of great significance (Muhammad et al. 2018a, 
b, c). Traditional smoke detectors can sense fire when 
smoke particles enter a room, but this method has a long 
detection time and is not suitable for outdoor fire detection.

With the development of neural networks and deep 
learning and other fields (Gong et al. 2021; Succetti et al. 
2022), a video-based fire detection method is proposed. 
Compared with traditional methods, it has the advan-
tages of fast response, non-contact, visualization, intel-
ligence, and easy integration. Most fires pass through a 
long-smoldering process before the occurrence of a flame, 
generating a large amount of smoke. Due to the diffusion 
of smoke, smoke can identify the trend of fire earlier than 
flame detection, and the response time is earlier.

Although the smoke detection algorithm has made 
great progress, it has not been widely used in the real 
world, mainly because of the following reasons: fire 
generally causes the background scene to become com-
plicated, thereby reducing the accuracy of the detec-
tion algorithm, false alarms, leaks fire alarms, and other 
phenomena occur frequently; although the general fire 
detection algorithm has good accuracy, it is too compli-
cated, which will cause it to not run well on general small 
embedded devices. If the algorithm does not run stably 
on some embedded platforms, then such algorithms lose 
their practical applicability.

Based on the above analysis, we conclude that the limi-
tations of current fire detection algorithms include too 
many parameters for the algorithm to calculate and poor 
immunity to environmental disturbances resulting in the 
algorithm being prone to false alarms. For these reasons, 
in this paper, we propose a new lightweight fire detec-
tion algorithm. The contribution of the algorithm is as 
follows:
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1. It is proposed to replace the backbone network CSP-
Draknet53 of YOLOv4 (Bochkovskiy et  al. 2020) 
with the MobileNetV3 (Howard et al. 2019) network, 
which can effectively extract valid information and 
greatly reduce the computational complexity of the 
algorithm.

2. In this paper, the YOLOv4 algorithm improves mul-
tiscale feature fusion by extending a PANet (Liu et  al. 
2018) path at the G-bneck (104, 104, 24) layer to improve 
the detection of multi-pose and multi-scale targets.

3. The Spatial Pyramid Pooling (SPP (He et  al. 2015)) 
module is added to the path from the feature layer 
of the backbone output to the PANet to improve the 
feature extraction of small targets.

4. The path fusion method based on BiFPN (Tan 
et al. 2020) is used to improve the path aggregation 
method of PANet to further improve the feature 
extraction capability.

5. The Vision Transformer (Dosovitskiy et  al. 2020) 
model is added to the backbone feature extraction 
network and PANet of the YOLOv4 model to give 
full play to the model’s multi-headed attention mech-
anism for pre-processing image features.

6. Efficient Channel Attention (ECA) (Wang et al. 2020) 
is added to the header network of YOLOv4, which 
reduces the input of interference information and 
improves the overall recognition effect of the network.

7. The algorithm running stably on PC was successfully 
migrated to Jeston Xavier NX, and TensorRT was 
used to accelerate the algorithm.

8. For the model training and experimental com-
parison of this algorithm, we collected a series of 
flame and smoke images, including single flame and 
smoke, multi-body flame and smoke, indoor fire, 
forest fire, and complex background fire scenarios, 
with a total of 29,980 images, divided into a train-
ing set, a validation set and a test set according to a 
ratio of 7:1:2.

Related work
Traditional fire detection is typically based on a com-
bination of flame and smoke sensors, but this type 
of method has severe restrictions on the environ-
ment used and cannot be used in all situations. With 
the widespread use of video cameras in public safety 
systems, fire detection techniques based on machine 
learning methods of image information have been rap-
idly developed. Traditional vision-based fire detection 

methods generally achieve fire detection by extracting 
fire features, such as color (Töreyin et  al. 2006; Chen 
et  al. 2006; Genovese et  al. 2011, Celik and Demirel 
2009), texture (Gunay et al. 2012; Chunyu et al. 2009; 
Yuan et al. 2016a, b; Dimitropoulos et al. 2016), shape 
(Hongyu et  al. 2020; Töreyin et  al. 2005), and motion 
state (Han and Lee 2009, Yuan 2008). Related research 
results are as follows: Kim et al. (2014) established an 
RGB color model to achieve fire detection, but the 
robustness and generalization ability of the method 
was insufficient; Wang et al. (2020) proposed a fusion 
of flame color and local features, a flame detec-
tion method based on KNN background subtraction; 
Günay and Çetin (2015) proposed a real-time dynamic 
texture recognition method using projection to ran-
dom hyperplanes and deep neural network filters and 
applied the method to infrared video, real-time flame 
detection. Emmy Prema et  al. (2018) preliminarily 
segmented the flame regions in the image accord-
ing to the YCbCr color space and extracted static 
and dynamic texture features for the candidate flame 
regions through 2D 1446 Fire Technology 2022 tem-
poral wavelet decomposition and 3D volume wavelet 
decomposition. Finally, the candidate flame regions are 
classified according to the extracted texture features. 
Jia et  al. (2016) adopted non-linear enhanced smoke 
color features to identify smoke regions, then used 
motion features to measure saliency, and finally used 
motion energy and saliency maps to segment smoke 
regions. Habiboğlu et al. (2012) divided the video into 
spatiotemporal blocks and used the covariance-based 
spatiotemporal features extracted from these blocks 
to train an SVM classifier. Dimitropoulos et al. (2014) 
employed background subtraction and color analy-
sis to define candidate regions, and then modeled fire 
behavior in time and space using color probability, 
flicker, space, and energy simultaneously for each can-
didate region, and performed dynamic texture analy-
sis. Finally, the candidate regions are classified using 
a two-class SVM classifier. Yuan et al. (2016a, b) pro-
posed a method for forest fire detection using drones. 
Firstly, the candidate area is extracted by the color 
feature of the flame; then, the motion vector of the 
candidate area is calculated by the Horn-Schunck opti-
cal flow algorithm, and the binary image is obtained 
by thresholding and morphological operation on the 
motion vector. Finally, the spot counting method is 
used to locate the fire source in the binary image. Kim 
and Lattimer (2015) and Kim et  al. (2016) extracted 
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the texture and motion features of flames and smoke 
from long-wave infrared images for autonomous navi-
gation of robots in fire environments. Although these 
algorithms are less dependent on the computing power 
of the hardware, the accuracy of detection is affected 
by the accuracy of the algorithm’s feature extraction 
and is also susceptible to interference from the envi-
ronment, and the shape and color characteristics of 
flames and smoke are very complex and variable. It is 
becoming clear that traditional vision algorithms alone 
cannot effectively solve these problems.

The subsequent rise of fields such as neural networks, 
artificial intelligence, and deep learning has provided new 
opportunities to address fire detection. Related research 
results are as follows: Frizzi et al. (2016) used a 6-layer CNN 
to solve the three classification problems of fire, smoke, 
and no fire. Tao et al. (2016) used deep convolutional neu-
ral networks to achieve end-to-end training from raw pixel 
values to classifier output, which successfully improved the 
accuracy of smoke detection. Yin et  al. (2017) proposed a 
14-layer deep normalized convolutional neural network 
(DNCNN) to achieve automatic extraction of smoke fea-
tures. Xu et al. (2021) applied deep learning techniques to 
adaptively learn and extract the features of forest fires. The 
method first integrated two independent learners, Yolov5 
and EfficientDet, to complete the fire detection process. Sec-
ond, another individual learner, EfficientNet, is responsible 
for learning global information to avoid false positives, and 
finally, the detection results are based on the decisions of the 
three learners. Kim and Lee (2019) proposed a deep learn-
ing-based fire detection method using video sequences, 
which uses a convolutional neural network (R-CNN) to 
detect suspicious fire areas (SRoF) and non-hazardous fires 
based on their spatial features. fire area. Then, the aggre-
gated features within bounding boxes in consecutive frames 
are accumulated by LSTM to classify whether there is a fire 
in the short term. Decisions in successive short periods are 
then combined into a majority vote for the final decision in 
the long period. Zhang et al. (2018) solved the problem of 
insufficient training data by inserting real smoke or simu-
lated smoke into the forest background to generate syn-
thetic smoke images and used the synthetic smoke image 
dataset to train Faster R-CNN to obtain a smoke detection 
model. Xu et al. (2019) proposed a novel deep saliency net-
work-based method for video smoke detection. Informative 
smoke saliency maps are extracted by combining pixel-level 
saliency convolutional neural networks and object-level 
saliency convolutional neural networks, and the presence 
of smoke in images is predicted by combining deep feature 
maps and saliency maps. Lin et al. (2019) constructed a joint 
framework of RCNN and 3D CNN, using RCNN to extract 

static spatial information and using 3D CNN to extract spa-
tiotemporal features, thus solving the problem of fire smoke 
detection and localization. It can be seen that the complex 
CNN can extract the spatial features of the smoke target and 
can accurately locate the smoke in time, which is very suit-
able for smoke detection. Bhattarai and Martinez-Ramon 
(2020) used deep convolutional neural networks to extract, 
process, and analyze key information from thermal imaging, 
creating an automated system capable of detecting critical 
objects at fire sites in real time. Wu et al. (2022) proposed 
a video fire detection algorithm based on YOLOv5, which 
improved SPP, and used an activation function (GELU) 
and predictive bounding box suppression (DIoU-NMS), 
with excellent performance of the final algorithm. Huang 
et al. (2023) proposed a light forest fire detection algorithm 
with a defogging function. The algorithm first obtains a 
fog-free image after a dark channel operation on the image 
and then detects the image with a lightened and improved 
YOLO-L-Light algorithm. Xue et  al. (2022) proposed an 
improved forest fire classification and detection algorithm 
based on YOLOv5, which introduced SIoU and CBAM, 
and improved PANet to a BiFPN-like structure, and the 
final algorithm outperformed the original algorithm in all 
aspects. Zhao et  al. (2022) proposed an improved YOLO 
algorithm that extends the feature extraction network in 
three dimensions and adds feature propagation proper-
ties to improve the network performance and reduce the 
algorithm parameters. Sathishkumar et al. (2023) proposed 
a learning without forgetting (LwF) method for fire detec-
tion algorithms, which addresses the possibility that the 
detection model may lose its ability to classify the original 
dataset when applying migration learning thereby greatly 
reducing the number of steps required to migrate the detec-
tion model for learning. Zheng et al. (2023) novel algorithm 
for remote sensing forest fire detection is proposed, which 
first uses FireYOLO for the initial recognition of the target, 
then applies the Real-ESRGAN algorithm to the target to 
improve image clarity, followed by FireYOLO for a second 
recognition. Each of these algorithms has its own character-
istics and solves some of the challenges in fire detection, but 
it is still a challenging problem to improve the accuracy of 
the algorithm and its immunity to interference while reduc-
ing the number of parameters to a great extent.

Materials and methods
In order to further improve the real-time performance 
of the deep learning-based fire detection algorithm, 
this paper proposes a fire detection algorithm based on 
MobileNetV3-large and YOLOv4 (hereafter referred to 
as MobileNetV3-large-YOLOv4 algorithm), the structure 
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of which is shown in Fig. 1. The algorithm improves the 
network structure of YOLOV4: the MobileNetV3-large 
is used as the backbone network to achieve the initial 
extraction of smoke and flame features; the PANet path 
is extended at the G-bneck(104, 104, 24) layer to improve 
the multi-scale feature fusion and enhance the detection 

of multi-pose and multi-scale targets; the feature layer at 
the backbone output to the PANet’s path, the SPP mod-
ule, is added to improve the feature extraction of small 
targets; the path of PANet is modified according to the 
path connection principle of BiFPN; the Vision Trans-
former model is added to the backbone feature extraction 

Fig. 1 The network structure of MobileNetV3-large-YOLOv4
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network of yolo4 model and PANet to give full play to the 
multi-head attention mechanism of the model to pre-pro-
cess the image features; the ECANet is introduced in the 
head network to reduce the input of interference informa-
tion and improve the extraction of effective information. 
The algorithm runs well on PC and achieves a recognition 
accuracy of 95.04% on the public dataset BoWFire (Chino 
et al. 2015). Finally, these algorithms are migrated to the 
Jeston Xavier NX platform to quantify and accelerate the 
entire network using the TensorRT algorithm. Using the 
image propagation function of the fire robot, the over-
all recognition frame rate can reach about 26.13, and the 
algorithm has a high real-time performance while main-
taining a high recognition accuracy.

Fire feature extraction based on MobileNetV3‑large
The MobileNet network is a lightweight CNN proposed 
by Google. The convolution model of MobileNetV1 
mainly uses the depthwise separable convolution (depth-
wise separable convolution) to replace the ordinary con-
volution method. The depthwise separable convolution 
process is shown in Fig. 2. It is achieved by using different 
convolution kernels for each input channel to perform 

convolution, and then channel adjustment through 1 × 1 
convolution kernel, and add a BN (Batch Normalization) 
layer and ReLU after the convolution layer, activation 
function. Suppose the size of the input feature map is D 
W × DH × M, and the size of the output feature map is D 
W × DH × N, where DW and DH are the width and height of 
the feature map, respectively, and M and N are the num-
ber of channels of the input and output feature maps, 
respectively. For a standard convolution with a convolu-
tion kernel size of DK × DK, there are N convolution ker-
nels of DK × DK × M, so the calculation formula of the 
parameter PN can be expressed as:

Each convolution kernel has to undergo DW × DH cal-
culations, and its calculation amount SN table is shown 
as:

In depthwise separable convolution, a standard con-
volution can be divided into depthwise convolution and 

(1)PN = DK × DK ×M × N

(2)SN = DK × DK ×M × N × DW × DH

Fig. 2 Depth-separable convolution structure
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pointwise convolution two-step operation. Depthwise 
convolution requires only a DK × DK × M Convolution 
kernel; the size of the convolution kernel of point-
wise convolution is 1 × 1 × M, and there are N in total, 
because this parameter PD is expressed as:

Each parameter of depthwise convolution and pointwise 
convolution needs to go through DW × DH operations, and 
its computational cost SD is expressed as:

The ratio of depthwise separable convolution modules 
to standard convolution parameter quantities RP table. 
It is shown as formula (5), and the calculation ratio RQ is 
expressed as formula (6).

It can be seen from the above formula that the parame-
ters and calculation amount of the depthwise separable 
convolution are reduced 1

N
+

1
D2
K

 for standard 
convolution.

The MobileNetV1 network structure is prone to failure 
of the convolution kernel of the depth convolution part 
during the training process, that is, most of the param-
eters of the convolution kernel are 0, which affects the 
feature extraction effect. MobileNetV2 uses the inverted 
residuals block (Sandler et  al. 2018) structure on the 
basis of V1, as shown in Fig.1E. Firstly, point-by-point 
convolution is used to increase feature dimension, then 
depthwise convolution is used for feature extraction, and 
finally point-by-point convolution is used for dimension 
reduction, and the ReLU activation function is replaced 
with the ReLU6 activation function, which makes the 
model more powerful under low-precision computing 
robustness and remove the last ReLU layer. The formula 
of the ReLU6 activation function is expressed as:

When the input dimension is the same as the output 
dimension, the residual connection in ResNet is intro-
duced to directly connect the output with the input. The 
characteristics of this inverted residual structure are that 
the upper and lower layers have low feature dimensions, 
and the middle layer has high dimensions, which avoids 
the failure of the convolution kernel in the deep convolu-
tion process of MobileNetV1, and the use of single depth 

(3)PD = DK × DK ×M +M × N

(4)SD = DK × DK ×M × N × DW × DH +M × N × DW × DH

(5)RP =
PD

PN
=

1

N
+

1

D2
K

(6)RQ =
SD

SN
=

1

N
+

1

D2
K

(7)ReLU6(x) = min(max(0, x), 6)

convolution in the high-dimensional feature layer is not 
would increase the amount of parameters too much. In 
addition, the introduction of residual connections can 
avoid the phenomenon of gradient disappearance when 
deepening the network depth.

MobileNetV3 uses a 3 × 3 standard convolution and 
multiple bneck structures to extract features. After the 
feature extraction layer, a 1 × 1 convolution block is used 
to replace the fully connected layer, and a maximum 
pooling layer is added to obtain the final classification 
result, which further reduces the amount of network 
parameters. MobileNetV3 includes two structures, large 
and small, and this paper uses the large structure. In 
order to adapt to the model recognition task, the input 
image size is set to 416 × 416. The structure of Mobile-
NetV3_large is shown in Table  1, where SE means 
whether to use the attention module, NL means which 
activation function to use, and s means the step size.

Improvement and optimization of the neck structure
The PANet structure is used in four feature layers
The shallow network contains more localization infor-
mation, while the deep network contains more seman-
tic information, and the localization information of 
small-scale pedestrians is lost after a series of down-
sampling operations. The aim of this section is to 
improve the detection accuracy of the YOLOv4 detec-
tion model for small-scale flames and smoke by fusing 
multi-scale features so that more localization informa-
tion of the shallow small target line flames and smoke 
is transferred to the deeper network.

The PANet structure first performs top-to-bottom 
feature extraction in the traditional feature pyramid 
structure FPN (Lin et al. 2017) (Feature Pyramid Net-
work), which only enhances semantic information and 
does not convey localization information, then com-
pletes bottom-to-top path-enhanced feature extrac-
tion in the next feature pyramid, which conveys strong 
localization information in the shallow layer; next, the 
adaptive feature pooling layer uses features from each 
layer of the pyramid to enable more accurate classifi-
cation and localization at a later stage. The next layer 
is the adaptive feature pool layer, which uses features 
from each layer of the pyramid to enable more accu-
rate classification and localization at a later stage. 
Figure  3 shows various types of relational network 
structures related to the neck structure of this paper, 
where a is FPN, b is PANet, c is BiFPN, and d is the 
neck relational network structure of the algorithm in 
this paper, which is obtained by fusing the structural 
features of PANet and BiFPN.

The YOLOv4 algorithm uses the PANet structure 
on the three effective feature layers, but it is still not 
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effective in recognizing small target pedestrians and 
multi-attitude pedestrians. Therefore, YOLOv4 is 
improved as shown in Fig.  3  to perform multi-scale 
feature fusion on the four effective layers.

Medium‑ and large‑scale feature layers introduce SPP 
structure
The SPP structure was originally used as a transi-
tion layer between convolutional layers and fully con-
nected layers to solve the problem of size mismatch. 
Subsequently, researchers found that this structure can 
enhance the receptive field; therefore, some researchers 

tried to introduce the improved SPP module into the 
target detection network, splicing multi-scale local area 
features, and improving the accuracy of target detection 
(Huang et al. 2020; Mao et al. 2020). YOLO V3-608 with 
SPP module outperforms AP50 by 2.7% in the COCO 
object detection task.

In YOLO V4, the SPP module is set after the small-
scale feature layer to be responsible for the predic-
tion of small and medium-sized targets, but the SPP 
module is not set after the medium-scale feature layer 
and the large-scale feature layer. Therefore, it is easy 
to lose small objects during the propagation process. 

Table 1 MobileNetV3-large construction method diagram

Input Operator #exp Out SE NL Stride

4162 × 3 Conv2d – 16 – HS 2

2082 × 16 bneck 16 16 – RE 1

2082 × 16 bneck 64 24 – RE 2

1042 × 24 bneck 72 24 – RE 1

1042 × 24 bneck 72 40 1 RE 2

522 × 40 bneck 120 40 1 RE 1

522 × 40 bneck 120 40 1 RE 1

522 × 40 bneck 240 80 – HS 2

262 × 80 bneck 200 80 – HS 1

262 × 80 bneck 184 80 – HS 1

262 × 80 bneck 184 80 – HS 1

262 × 80 bneck 480 112 1 HS 1

262 × 112 bneck 672 112 1 HS 1

262 × 112 bneck 960 160 1 HS 2

132 × 160 bneck 960 160 1 HS 1

132 × 160 bneck 960 160 1 HS 1

132 × 160 Conv2d – 960 – HS 1

132 × 960 Pool – – – 1

12 × 960 Conv2d – 1280 – HS 1

12 × 1280 Conv2d – 1000 – 1

Fig. 3 Schematic representation of the various types of network relationship structures
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The characteristics of the target lead to the omission 
of small targets. In this paper, after the medium-scale 
feature layer and the large-scale feature layer, the SPP 
module is added, and the feature tensors of different 
scales extracted by the backbone network are input 
into the SPP module, so that the characteristics of small 
and medium-sized targets are more obvious, target 
identification.

The SPP module consists of three max-pooling layers 
and one connection layer. Figure 1 (c) shows the structure 
of the SPP module. The maximum pooling is performed 
by a pooling core, the size of the pooling core is 5 × 5, 
9 × 9, and 13 × 13, and the step length of the pooling core 
is 1. Therefore, after the pooling operation, three new 
feature maps of the same size as the original feature map 
are obtained. The three feature maps are superimposed 
with the original feature maps to get the final output of 
the module.

Improved PANet
When three feature tensors of different scales pass 
through the SPP module, the PANet structure is adopted 
for further feature fusion. Small-scale features are more 
responsive to the overall target, while large-scale features 
are better at expressing local features. However, consid-
ering the use of MobileNetV3-large to replace CSPDark-
net53, YOLOv4 is lightweight and reduces the ability of 
feature fusion. This paper applies the path fusion idea 
in BiFPN to improve PANet in YOLOv4. In BiFPN, the 
input nodes and output nodes of the same layer can be 
connected across layers to ensure that more features 
are incorporated without increasing the loss. This algo-
rithm performs cross-layer connections on the same level 
of PANet (the three orange lines in Figs. 1A and 3d); in 
this way, the path from low-level information to high-
level information can be shortened, and their seman-
tic features can be combined. In BiFPN, adjacent layers 
can be merged in series. In this paper, the adjacent lay-
ers of PANet are merged in series (the three blue lines in 
Figs. 1A and 3d).

The improved PANet has the characteristics of bidi-
rectional cross-scale connection and weighted feature 
fusion, which improves the feature fusion ability and fur-
ther increases the feature extraction ability.

Introduction of ECA attention mechanism
When learning and understanding the unknown, 
humans quickly focus their attention on key areas and 
ignore useless information in order to get the informa-
tion they need quickly and accurately. Researchers have 
been inspired to incorporate attention mechanisms into 

convolutional neural networks to improve the perfor-
mance of traditional network models while sacrificing a 
small amount of computation. In this paper, the Efficient 
Channel Attention (ECA) module is added to YOLOv4, 
and the weights are trained on the channel dimensions of 
the four feature layers of the head network to make the 
model more focused on useful information. The specific 
structure of ECA Net is shown in Fig. 1D.

The ECA module can be seen as an improved version 
of the Squeeze-and-Excitation (SE (Hu et al. 2018)) mod-
ule. The authors of the ECA argue that the SE prediction 
of the channel attention mechanism has the side effect 
of capturing all channel dependencies inefficiently and 
unnecessarily, whereas convolution has good cross-channel 
information acquisition capabilities, so the ECA module 
replaces the 2-full joins of the SE module with 1D convolu-
tion. The size of the convolution kernel of the 1D convolu-
tion affects the coverage of cross-channel interactions, so 
it is important to choose the 1D convolution kernel size k. 
Although k can be adjusted manually, this wastes a lot of 
time and effort. k is non-linearly proportional to C. The 
larger C is, the stronger the long-term interaction; con-
versely, the smaller C is, the stronger the short-term inter-
action, i.e.:

Once the channel dimension C has been determined, the 
convolution kernel size k is then:

where γ and b are the regulation parameters; |t|odd 
denotes the nearest odd number t.

In this paper, the ECA module is applied to the enhanced 
feature extraction network by adding an attention mecha-
nism to the 152 × 152, 76 × 76, and 38 × 38 feature layers 
extracted from the backbone network, so that the subse-
quent training of the network can focus on the effective fea-
tures and improve the detection capability of the algorithm.

Introduction of Vision Transformer
The Vision Transformer model was designed with the prin-
ciple of not changing the transformer too much, using the 
Transformer Encoder part to do the classification, i.e., just 
to solve the problem of its poor performance in classifica-
tion tasks with large data. Alexey Dosovitskiy et  al. were 
inspired by the success of transformer scaling in NLP and 
attempted to apply the standard transformer directly to 
images with as few modifications as possible, eventually 
proposing the Vision Transformer for computer vision 
modules, whose network structure is shown in Fig. 1F.

(8)C = ∅(k) = 2(γ×k−b)

(9)k = ϕ(C) =
log2(C)

γ
+

b

γ
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The Vision Transformer first chunks the image and then 
adds a classification token to the image sequence so that the 
sequence of images is cut into smaller chunks from a single 
image, with the dimensionality changing as shown in Eq. 10.

Instead of using the traditional transformer encoding 
method, the Vision Transformer’s position encoding first 
initializes the position information randomly and then 
trains to learn the image features. Finally, the extracted 
image features are used to generate feature predictions 
for different target classes. The encoding used is shown in 
Eqs. 11 and 12.

Algorithm quantization based on TensorRT
To have a faster operation speed on the embedded 
platform, this paper further quantifies the related 
algorithms. The commonly used methods are net-
work pruning, model quantization, and so on. Con-
sidering that the MobileNetV3-large-YOLOv4 
algorithm has adopted the MobileNetV3-large light-
weight network structure, continuing to prune the 

(10)B,C ,H ,W ⇒ B,N ,P2CN =
HW

P2

(11)PE(pos, 2i) = sin(
pos

10, 000
2i

dmodel

)

(12)PE(pos, 2i + 1) = cos(
pos

10, 000
2i

dmodel

)

MobileNetV3-large-YOLOv4 network will destroy the 
integrity of the entire network, so this paper adopts 
the model quantization method to achieve the quanti-
zation of the algorithm.

Model quantization methods can be divided into 
quantization-aware training and post-training quanti-
zation, where post-training quantization methods are 
divided into hybrid quantization, 8-bit integer quanti-
zation, and half-precision floating-point quantization. 
This paper uses the TensorRT acceleration engine to 
process the model weight file using the post-training 
quantization method, converts the weight from float 
type to int8 type, and performs overall optimization 
through a series of operations such as tensor fusion, 
kernel adjustment, and multi-stream execution. The 
algorithms can be deployed directly on embedded 
devices.

Results and discussion

Training dataset
This paper is a collection of flame and smoke images 
including single flames and smoke, multiple flames and 
smoke, indoor fires, forest fires, and complex back-
ground fires. Smoke is individually labeled. A total of 

Table 2 The number of each type of dataset

Types of datasets Total number

Training sets 21,009

Test sets 2973

Validation set 5998

Fig. 4 Part of the dataset

Table 3 The anchor of fire and smoke

Size

The flame’s prior box size (w,h)

 13 × 13 (116,220) (155,230) (367,67)

 26 × 26 (41,72) (71,55) (61,105)

 52 × 52 (18,31) (24,81) (27,67)

The smoke’s prior box size (w,h)

 13 × 13 (96,210) (115,170) (263,43)

 26 × 26 (21,55) (51,34) (55,76)

 52 × 52 (13,21) (13,56) (17,43)
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29,980 datasets were collected and divided into train-
ing, validation, and test sets in a 7:1:2 ratio, as shown in 
Table 2. Datasets were selected and merged from several 
publicly available datasets, including FLAME (Shamsos-
hoara et al. 2021), FireNet Dataset (Jadon et al. 2019), and 
BoWFire. If the experiments below do not specify what 
dataset is used, then the dataset used in the experiments 
is the test set. Figure 4 shows some of the datasets used in 
this paper.

Anchor box
The prior box in the MobileNetV3-large-YOLOV4 algo-
rithm requires two categories of flame and smoke, which 
are obtained by the K-means clustering method in this 
paper. The size of the input image is 416 × 416. When 
K-means clustering is used for 76 and 73 iterations, the 
ratio of the prior frame to the real frame of the flame 
and smoke reaches 76.54% and 74.6%, respectively. The 
resulting flame and the smoke prior box are shown in 
Table 3.

Model building and training
The specific hardware and software configuration is 
shown in Table  4. The network model training is based 
on the deep learning framework of Tensorflow 2.5, and 
the algorithm in this paper is implemented.

Evaluation criteria
The test set is divided into two categories, positive sam-
ples and negative samples. TP is the number of posi-
tive samples predicted as positive; FP is the number of 
negative samples predicted as positive; FN is the num-
ber of positive samples predicted as negative; TN is the 
number of negative samples predicted as negative. This 
paper uses the accuracy, detection rate, false detection 
rate, precision mAP, and running frame rate FPS as the 
evaluation indicators of the algorithm. The above indi-
cators are defined as follows:

(1) Accuracy

(2) Detection rate (recall rate)

(3) Missing detection rate

(13)Accuracy =
TP + TN

TP + FP + FN + TN

(14)Recall =
TP

TP + FN

(15)FNrate=
FN

FN + TP

Table 4 Software and hardware configuration

Component Configuration

Operating system Ubuntu 18.04

Memory 32

GPU Nvidia GeForce RTX 3070

GPU acceleration library CUDA 11.2 cuDNN v8.2.1

Deep learning framework Tensorflow2.5

Programming language Python3.9

Fig. 5 The loss curves
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Table 5 Ablation experiment results

Number MobileNetV3‑
large

Vision 
transformer

Path fusion 
improvement for 
PANet

ECA Net Add more SPP Give PANet expansion 
from three to four layers

mAP(%) FPS

1 (YOLOv4) – – – – – – 88.57 48

2  + – – – – – 83.78 90

3 –  + – – – – 90.73 46

4 – –  + – – – 89.51 47

5 – – –  + – – 89.48 47

6 – – – –  + – 89.61 47

7 – – – – –  + 90.31 43

8  +  + – – – – 85.64 84

9  + –  + – – – 84.63 87

10  + – –  + – – 86.63 88

11  + – – –  + – 84.46 88

12  + – – – –  + 85.51 78

13 –  +  + – – – 91.43 41

14 –  + –  + – – 92.47 45

15 –  + – –  + – 91.33 46

16 –  + – – –  + 92.24 40

17 – –  +  + – – 91.55 44

18 – –  + –  + – 90.67 45

19 – –  + – –  + 92.43 39

20 – – –  +  + – 92.15 45

21 – – –  + –  + 94.32 40

22  +  +  + – – – 86.67 77

23  +  + –  + – – 87.12 74

24  +  + – –  + – 86.34 77

25  +  + – – –  + 87.12 75

26  + –  +  + – – 86.31 80

27  + –  + –  + – 85.41 83

28  + –  + – –  + 87.43 76

29  + – –  +  + – 86.91 86

30  + – –  + –  + 87.12 77

31  + – – –  +  + 87.61 73

32 –  +  +  + – 92.13 37

34 –  +  + –  + – 92.34 39

35 –  +  + – –  + 94.10 35

36 –  + –  +  + – 93.23 43

37 –  + –  + –  + 95.33 38

38 –  + – –  +  + 94.13 40

39 – –  +  +  + – 92.41 42

40 – –  +  + –  + 93.54 38

41 – –  + –  +  + 93.67 39

42 – – –  +  +  + 95.13 39

43  +  +  +  + – – 88.12 72

44  +  +  + –  + – 87.45 73

45  +  +  + – –  + 89.11 70

46  +  + –  +  + – 87.11 72

47  +  + –  + –  + 90.03 65

48  +  + – –  +  + 89.13 67

49  + –  +  +  + – 87.13 75
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(4) False detection rate

(5) Precision mAP

The definition of mAP is shown in Eq. 17, which repre-
sents the average precision of the target average precision 
AP (AP is calculated by the P-R curve) of N classes, and 
N = 2 in this experiment.

(6) Running frame rate FPS refers to the number of 
frames per second.

Experimental results and analysis

Speeds up the convergence of the network during training
In the “Anchor box” section, the algorithm uses the 
K-means clustering algorithm to regenerate the prior 
box of the network, x. The specific loss curved of this 
paper’s algorithm compared with YOLOv4 during the 
training process is shown in Fig.  5. When the train-
ing reaches 600 rounds, the algorithm in this paper has 
basically reached stability, while the YOLOv4 algorithm 
has been in a slightly oscillating state. This proves to a 
certain extent that the convergence speed of this paper’s 

(16)FPrate=
FP

FP + TN

(17)mAP =

∑

AP

N (class)
=

∑

AP

2

algorithm is significantly higher than that of YOLOv4, 
and the final loss value is also much lower than that of 
YOLOv4.

Ablation experiment
The ablation experiments were performed for the 
MobileNetV3-large-YOLOv4 algorithm. The images 
used in this experiment came from a collection of 2000 
randomly selected images containing fire and smoke 
from the test set.  As can be seen from Table  5, using 
MobileNetV3-large instead of CSPDarknet results in a 
slight decrease in mAP but a significant increase in FPS, 
e.g., experiment 2. Adding a path from the backbone 

Table 5 (continued)

Number MobileNetV3‑
large

Vision 
transformer

Path fusion 
improvement for 
PANet

ECA Net Add more SPP Give PANet expansion 
from three to four layers

mAP(%) FPS

50  + –  +  + –  + 89.11 73

51  + –  + –  +  + 88.17 78

52  + – –  +  +  + 89.88 80

53 –  +  +  +  + – 93.02 35

54 –  +  +  + –  + 95.02 30

55 –  +  + –  +  + 95.46 35

56 –  + –  +  +  + 96.02 37

57 – –  +  +  +  + 95.40 36

58  +  +  +  +  + – 89.03 68

59  +  +  +  + –  + 92.01 64

60  +  +  + –  +  + 90.32 68

61  +  + –  +  +  + 90.23 66

62  + –  +  +  +  + 90.34 69

63 –  +  +  +  +  + 95.55 30

64 (our algorithm)  +  +  +  +  +  + 90.30 61

Table 6 Comparison of the recognition effects of various model 
files for similar fire and smoke

Method False alarm rate 
(%)

Accuracy (%)

Types of recognition Fire

Faster R-CNN (Ren et al. 2015) 33.1% 67.1%

SSD (Liu et al. 2016) 27.3% 68.9%

YOLOv3 (Redmon et al. 2018) 31.2% 68.9%

YOLOv4 13.1% 74.3%

MobileNetV3-large-YOLOv4 11.1% 85.8%

Types of recognition Smoke

Faster R-CNN 35.6% 63.7%

SSD 33.6% 62.9%

YOLOv3 35.3% 64.7%

YOLOv4 16.7% 74.5%

MobileNetV3-large-YOLOv4 15.8% 76.3%
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to the PANet results in a slight decrease in FPS but an 
increase in mAP, e.g., experiment 7. Modifying the net-
work structure of the PANet along the lines of BiFPN 
results in a large increase in mAP but a slight decrease in 
FPS, e.g., experiment 4. The introduction of more SPPs 
has a greater impact on mAP and a small reduction in 
operating speed, e.g., experiment 6. MobileNetV3-large, 
the BiFPN-based PANet, ECANet, and the SPP module 
introduced at multiple ends each have their own focus on 
algorithm improvement and complement each other. As 

a result, the MobileNetV3-large-YOLOv4 algorithm pro-
posed in this paper achieves good overall performance. 
For example, in experiment 64, the algorithm achieves an 
mAP of 90.30% and an FPS of 61 and can accurately iden-
tify smoke and flames in real time.

Detection performance of fire‑like and smoke‑like targets
Due to the specific nature of detection targets such as 
flame and smoke, flame-like lighting effects and white 
cloud-like smoke effects are often encountered in real 

Fig. 6 Recognition renderings
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fire detection scenarios. The presence of these smoke 
and fire targets can affect the accuracy of model detec-
tion. Considering the improvements to the YOLOv4 
algorithm in this paper, this problem can be addressed 

to a large extent by comparing the detection effec-
tiveness of each model file through experiments on a 
certain number of collected fire-like and smoke-like 
datasets, as shown in Table 6. It is also clear from the 
data in this table that the algorithm in this paper has a 
much lower false alarm rate for flame and smoke than 

Table 7 Comparison of different methods

Method Fire Smoke

Missing 
detection 
rate (%)

Accuracy 
(%)

Missing 
detection 
rate (%)

Accuracy (%)

Faster R-CNN 42.3% 68.1% 43.1% 64.5%

SSD 41.7% 67.7% 43.4% 62.1%

YOLOv3 36.1% 69.9% 40.3% 65.3%

YOLOv4 24.1% 74.9% 27.3% 70.4%

MobileNetV3-
large-YOLOv4

23.2% 77.7% 21.4% 74.5%

Fig. 7 Recognition renderings

Table 8 Comparison of different methods

Method Params (M) mAP (%) mAP@0.5 (%) FPS

Faster R-CNN 108 75.56 66.03 16

SSD 90.57 76.41 69.17 60

YOLOv3 234.67 84.12 69.13 51

YOLOv4-tiny 22.57 75.13 60.13 151

YOLOv4 243.91 88.15 70.61 48

MobileNetV3-
large-YOLOv4

43.71 89.73 70.33 81
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Fig. 8 Confusion matrix for six algorithms
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the other four algorithms and a much higher accuracy 
rate than the other algorithms. Figure  6 shows the 
results of the algorithm runs, from which we can see 
that only the algorithm in this paper did not identify 
fire and smoke-like scenes as flames and smoke, effec-
tively avoiding the interference of the environment 
to the algorithm in this paper. From this, we deduce 
that the original Vision Transformer and ECA Net 
do have a very strong ability to filter out interference 
information.

The algorithm in this paper improves the detection effect 
of small targets
In this paper, we connect PANet structures on four 
effective layers and use multiple SPP structures as tran-
sition layers between the convolutional and fully con-
nected layers to address the size mismatch and improve 
the algorithm’s detection of small flame states early in 
the fire. As a result, a certain number of small target fire 
tests were collected. This image set was used to compare 
the recognition effectiveness of the model algorithm 
with that of detecting small-size flames or smoke. As 
shown in Table  7 and Fig.  7, the accuracy of the algo-
rithm in this paper is far superior to other algorithms. 
We can also see from Fig. 7 that all the algorithms except 
this one miss some small size flames and smoke. These 
combined experimental analyses demonstrate that the 
improvements to the algorithm’s neck network in this 
paper can indeed greatly improve the detection of small 
targets.

Table 9 Comparison of different methods

Method Detection 
rate (%)

False 
alarm 
rate (%)

Accuracy (%)

Muhammad et al. (2018b) 97.48 18.69 89.82

Muhammad et al. (2018c) 93.28 9.34 92.04

Chaoxia et al. (2020) 92.44 5.61 93.36

MobileNetV3-large-YOLOv4 94.13 6.17 95.14

Fig. 9 Running renderings on PC
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Comparison with other algorithms
In this paper, six common deep learning image recogni-
tion algorithms are used for fire detection, and the final 
comparison results are shown in Table  8 below. The 
results show that the algorithm in this paper can achieve 
the best balance between recognition speed and accu-
racy. It is only slower than YOLOv4-tiny, while its accu-
racy is infinitely close to YOLOv4. Considering that the 
difference in algorithm effectiveness cannot be visually 
compared by just a few percentages of data, this paper 
uses confusion matrices (Fig. 8) for further comparison. 
From the distribution of each confusion matrix, we can 
clearly see that the confusion matrix of this paper’s algo-
rithm has the best data on the positive diagonal, further 
showing the advantage of this paper’s algorithm.

At the same time, this paper selects three classic 
algorithms (listed in Table 9) and compares them with 
the MobileNetV3-large-YOLOv4 algorithm. The pub-
lic dataset used is BoWFire (including 119 fire images 
and 107 non-fire images), which has been used as a 
test dataset by many fire detection research works 
(Howard et  al. 2017). We can see that the false alarm 
rate of MobileNetV3-large-YOLOv4 is slightly higher, 
but the detection rate and accuracy are better. Figure 9 
shows the final recognition effect.

Algorithms are deployed on Jetson NX
We deployed the algorithms in this paper on the fire 
extinguishing robot RXR-M80D-13KT, as shown in 
Fig. 10. We play a video from a mobile device to simu-
late a real-time fire situation, while using the TensorRT 
algorithm on the embedded device (Jeston Xavier 
NX) to accelerate the algorithm in this paper to recog-
nize the fire images captured from the fire extinguish-
ing robot. We can finally find that the algorithm has 
achieved a frame rate of 26.13 FPS for real-time recog-
nition and detection, and there are no significant false 
detections. We used a firefighting robot as the image 
delivery platform and Jeston Xavier NX as the algorithm 
running platform, and then recognized in real time 
a total of 2334 images, including 1387 flame images, 
1082 smoke images and 846 images without flame and 
smoke, selected from the image test set and some real 
collected images, and presented the final test results on 
the confusion matrix (Fig. 11), and the final results are 
excellent. Some of the recognition results are shown in 
Fig.  12, and from this figure, we can also find that the 
algorithm did not show any misjudgment or omission.

Conclusions
This paper presents the MobileNetV3-large-YOLOv4 
algorithm, which can be used for real-time fire iden-
tification in small embedded devices. Based on the 

experimental results, the following conclusions can be 
drawn.

(1) Using the MobileNetV3-large-YOLOv4 algorithm 
to identify the fire public dataset BoWFire, the iden-
tification accuracy can reach 96.24%. Deployed on 
the Jeston Xavier NX, the FPS can be stabilized at 
around 26. Overall, this algorithm achieves a bal-
ance of running speed and accuracy, with excellent 
overall performance.

(2) The MobileNetV3-large-YOLOv4 algorithm has 
good fire recognition performance and can recognize 
various types of fires. Several improved and impor-
tant components of the algorithm play an important 
role in real-time fire recognition, and through 
the effective integration of these components, 
the algorithm shows high accuracy and real-time  
performance.

(3) The MobileNetV3-large-YOLOv4 algorithm is 
not only suitable for the PC side but also for the 
embedded side. The algorithm can be deployed 
directly on the embedded Jeston Xavier NX plat-

Fig. 10 Appearance of RXR-M80D-13KT
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form and can meet the real time and accuracy of 
fire recognition. The cloud AI algorithm can there-
fore be pushed to the edge side for computation, 
which is in line with current requirements for edge 
intelligence.

(4) However, the algorithm is still inadequate: due to 
legal provisions such as fire prevention in urban 
areas, the algorithm in this paper lacks more field 
exercises, and it is hoped that more sites will 
be available for simulating realistic fires in the 
future.

Fig. 11 The final test results on the confusion matrix

Fig. 12 The real-time recognition effect of fire
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