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Abstract 

Background Mediterranean ecosystems dominated by Pinus pinaster Ait. (maritime pine) are subject to a shift from 
fuel‑limited to drought‑driven fire regimes, characterized by an increasing wildfire extent, recurrence, and severity. 
Previous studies have not addressed the interacting effects of fire recurrence and severity on the ecosystem mul‑
tifunctionality (EMF) of maritime pine forests, although complex relationships between such fire regime attributes 
are expected. Here, we evaluated the medium‑term effects of fire recurrence and severity on the EMF response of 
unmanaged, native pine ecosystems dominated by Pinus pinaster in the western Mediterranean Basin. We considered 
four key ecosystem functions computed from functional indicators (carbon regulation, decomposition, soil fertility, 
and plant production), which were pooled into an EMF construct. The fire regime effects on the trade‑offs and syner‑
gies between the considered ecosystem functions were also analyzed.

Results Multiple ecosystem functions responded differentially to fire recurrence and severity. Fire recurrence had 
a strong effect on soil fertility, decomposition, and plant production functions. No significant effects of fire severity 
on any of the individual functions were detected. However, both fire regime attributes interacted to determine soil 
fertility and decomposition functions, suggesting that their performance is only impaired by fire severity when fire 
recurrence is low. The differing responses to the fire regime attributes among ecosystem functions fostered a signifi‑
cant EMF response to fire severity and its interaction with fire recurrence, indicating that the effect of fire severity on 
EMF was stronger under low fire recurrence scenarios, even when relationships between individual functions and 
fire severity were weak. Fire recurrence caused significant trade‑offs between functions to emerge. However, these 
trade‑offs were not strong enough to differ significantly from the intrinsic trade‑offs (i.e., regardless of the fire regime) 
of maritime pine ecosystems.

Conclusions Our results indicated the need to use an integrative approach to assess the response of ecosystem 
functioning to the fire regime in maritime pine ecosystems. Adaptive management responses are necessary towards 
the minimization of repeated burnings and the reduction of the fuel load in unmanaged maritime pine stands of the 
western Mediterranean Basin with similar characteristics to those analyzed in this study.
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Resumen 

Antecedentes Los ecosistemas mediterráneos dominados por pino marítimo (Pinus pinaster Ait.) están sujetos a 
cambios en regímenes de fuego limitados por el combustible hacia regímenes conducidos por la sequía, y caracteri‑
zados por un incremento en la extensión, recurrencia y severidad de los incendios. Estudios previos no han abordado 
los efectos interactivos de la recurrencia y severidad del fuego en la multifuncionalidad de los ecosistemas (EMF) en 
bosques de pino marítimo, aunque cabe esperar relaciones complejas entre estos atributos del regimen de fuego. En 
este trabajo, evaluamos los efectos a medio plazo de la recurrencia y severidad en la respuesta de la multifuncionali‑
dad de los ecosistemas (EMF) de bosques nativos dominados por pino marítimo no gestionados en la cuenca Medi‑
terránea occidental. Consideramos cuatro funciones clave calculadas a partir de indicadores funcionales (regulación 
del carbono, descomposición, fertilidad del suelo, y producción egetal) los cuales fueron agrupados en un constructo 
EMF. Los efectos del régimen de fuego sobre las sinergias y contrapartidas entre las funciones ecosistémicas también 
fueron analizados.

Resultados Múltiples funciones ecosistémicas respondieron diferencialmente a la recurrencia y severidad. La recur‑
rencia del fuego tuvo un efecto muy fuerte en la fertilidad del suelo, en la descomposición y en las funciones de pro‑
ducción. Ningún efecto significativo de la severidad del fuego fue detectado en ninguna de las funciones individuales. 
Sin embargo, los atributos de ambos regímenes de fuego interactuaron para determinar las funciones de fertilidad 
y descomposición, sugiriendo que su rendimiento es afectado por la severidad solo cuando la recurrencia del fuego 
es baja. Las diferentes respuestas a los atributos de los regímenes de fuego entre las funciones ecosistémicas prom‑
ueven una respuesta significativa de la EMF a la severidad del fuego y su interacción con la recurrencia, indicando que 
el efecto de la severidad sobre la EMF fue más fuerte bajo escenarios de baja recurrencia, aun cuando las relaciones 
entre funciones individuales y la severidad fueran débiles. La recurrencia del fuego causó la aparición de ontraparti‑
das significativas entre funciones. Obviamente, estas contrapartidas no fueron lo suficientemente fuertes para diferir 
significativamente de aquellas intrínsecas (i.e., independientemente del régimen de fuego) en los ecosistemas de pino 
marítimo.

Conclusiones Nuestros resultados indican la necesidad de usar una aproximación integrada para determinar la 
respuesta del funcionamiento al régimen de fuego en ecosistemas de pino marítimo. Respuestas de manejo adapta‑
tivo son necesarias para la minimización de quemas repetidas y la reducción de la carga de combustible en rodales de 
pino marítimo no gestionados en la cuenca Mediterránea, con características similares a aquellos analizados en este 
estudio.

Background
Mediterranean forest ecosystems are distributed over 
ca. 100 Mha throughout the Mediterranean Basin (Lanly 
1997) and have been subject to frequent wildfires for 
millennia (Keeley et al. 2012) as in other Mediterranean 
climate-type regions across the globe (Pausas and Keeley 
2009; Xofis et  al. 2020). Under natural fire disturbance 
regimes, wildfires are considered as an evolutionary force 
(Seidl et al. 2014) not only shaping species fire-adaptive 
traits of Mediterranean plant communities (Keeley et al. 
2011) but also the historical landscape structure related 
to the patchiness of fire effects (i.e., pyrodiversity; Jones 
and Tingley 2022). However, altered fire disturbance 
regimes currently observed in Mediterranean forests 
have led to a heightened concern about their unprec-
edented consequences on ecosystem functions and 
processes (Lasslop et  al. 2019), as well as on ecosystem 
services’ provisioning to society for human wellbeing 
(Huerta et al. 2022).

The interaction between human-induced drivers of 
global change in fire-prone ecosystems of southern 

European countries is responsible for the switch from 
fuel-limited to drought-driven fire regimes (Fernandes 
et  al. 2014), characterized by an increasing wildfire 
extent, recurrence, and severity (Vilà-Cabrera et al. 2018; 
Rodrigues et  al. 2023). First, socioeconomic transitions 
involving rural abandonment over the last decades (Pau-
sas and Keeley 2009) led to a concomitant cessation of 
forest wood gathering, traditional agriculture, and live-
stock farming practices (Fernandes 2013). These land-use 
changes, together with the lack of adaptive management 
strategies (Vilà-Cabrera et al. 2018), have exacerbated the 
simplification of the landscape mosaic (Pelorosso et  al. 
2011) and thus the load and connectivity of flammable 
fuels (Moreira et  al. 2011). Second, extended periods of 
summer drought and elevated temperatures, attributable 
to anthropogenic climate change (Turner 2010), have 
intensified fuel dryness conditions conducive to extreme 
fire events (Ruffault et al. 2018).

Global change feedbacks are especially relevant in 
fire-prone ecosystems dominated by Pinus pinaster Ait. 
(maritime pine), one of the most widely distributed pine 
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forests together with Pinus halepensis Mill. (Aleppo 
pine), in Mediterranean Basin lowlands and the Atlan-
tic coast of Portugal (Tapias et  al. 2004). Maritime pine 
forests are native to the western Mediterranean Basin 
(Tapias et  al. 2004), but their distribution in this region 
has been expanded by plantation development in the 
mid-twentieth century for wood production and resin 
tapping (Proença et  al. 2010; (Fernandes et  al. 2016a). 
In addition, the species has been introduced in temper-
ate regions of Australia, South Africa, or Chile, among 
other countries, due to its wide tolerance to soil types 
and climatic conditions (Tapias et  al. 2004; Santamaría 
2015). Maritime pine stands are intrinsically flammable 
because of the structure, physicochemical properties and 
accumulation rates of the litter (Fernandes and Rigolot 
2007). Crowning potential is also elevated by the com-
mon presence of a well-developed understory, usually 
dominated by fine-fuel rich species (Fernández-García 
et  al. 2019a), and ladder fuels that enhance vertical fuel 
continuity (Castedo-Dorado et  al. 2012). As an adap-
tion to frequent, stand-replacing crown fires in several 
provenance regions of the western Mediterranean Basin, 
Pinus pinaster populations feature early flowering (4–10 
years) and are able to massively release seeds that are 
protected from fire in serotinous cones (Tapias et  al. 
2004; Calvo et al. 2008; (Fernández-García et al. 2019a). 
The opening of serotinous cones occurs progressively 
during a period of two to three days following the ther-
mal shock, which leads to an effective seed dispersal after 
the fire has been extinguished (Fernandes and Rigolot 
2007). Regardless of the fire-evader strategy of the spe-
cies to attain successful post-fire recruitment, fuel man-
agement is a key element of maritime pine stands such 
that stand production and fire resistance objectives are 
simultaneously met (Fernandes and Rigolot 2007). In this 
context, the modification of the understory fuel load and 
structure through mechanical treatments or prescribed 
burning is considered essential to minimize surface fire 
intensity (Fernandes and Botelho 2004). Similarly, the 
removal of ladder fuels by pruning and stand thinning is 
mandatory to minimize crowing potential in the stand 
(Fernandes and Rigolot 2007; Jiménez et al. 2016). These 
treatments are anticipated to effectively reduce fire haz-
ard while promoting stand production and wood quality 
(Chambonnet 2005). However, the implementation of 
active fuel management practices has been discontinued 
in many cases (Rodriguez-Vallejo and Navarro-Cerrillo 
2019; Alegria et al. 2021) because of the low demand of 
forest resources in maritime pine ecosystems by rural 
populations (e.g., resin tapping; Torres et al. 2016). This 
situation is particularly aggravated in the transition area 
of Atlantic and Mediterranean climatic conditions in the 
westernmost part of the Mediterranean Basin, where 

high plant productivity and increased summer drought 
coexist (Fernandes and Rigolot 2007). Together with fuel 
build-up, the expansion of the wildland-urban inter-
face to the vicinity of unmanaged maritime pine stands 
raised fire ignition probability and thus the recurrence of 
extreme wildfire events (Fernandes et  al. 2014; Fuentes 
et al. 2018), with often catastrophic results in populated 
areas (Pausas and Keeley 2009).

The effects of recurrent and severe wildfires in the veg-
etation and soils of fire-prone pine ecosystems are well 
documented (e.g., Calvo et  al. 2008; Calvo et  al. 2016; 
Taboada et  al. 2017; Fernández-García et  al. 2019a, 
2020a; Fernández-Guisuraga et al. 2022a). In these sce-
narios, seedling recruitment may be hampered due to 
immaturity risk of seeder species (Calvo et  al. 2008), 
seed bank damage (Maia et al. 2012), and high seedling 
mortality in the early post-fire stages (Fernandes et  al. 
2008). Similarly, changes in the composition and struc-
ture of the woody understory community can under-
mine the establishment and growth of pine seedlings 
and saplings through facilitative or competitive interac-
tions (Taboada et al. 2017; (Fernández-Guisuraga et al. 
2022a). Resprouter species in the understory can easily 
recolonize the open spaces created by stand-replacing 
wildfires (Calvo et  al. 2003). Additionally, shrubs that 
depend on fire-stimulated recruitment from exist-
ing seed banks (Taboada et  al. 2017) or opportunis-
tic species that rely on seed dispersal from unburned 
patches nearby (Arnan et  al. 2013) could rapidly colo-
nize recently burned areas. In addition to changes in the 
vegetation composition and structure, recurrent and 
severe wildfires may entail intense heat-induced effects 
on physicochemical (Mataix-Solera et  al. 2011; Romeo 
et al. 2020) and biological (e.g., Rincón and Pueyo 2010; 
Fernández-García et  al. 2020a>; Sáenz de Miera et  al., 
2020) soil attributes, particularly in the first soil centim-
eters (Badía et al. 2017). However, these shifts are highly 
variable as a function of (i) the considered post-fire time 
period (Muñoz-Rojas et  al. 2016) due to the transient 
nature of heat-induced effects (Hart et  al. 2005) and 
(ii) the relevance of biotic feedbacks exerted by above 
and belowground communities (Adkins et  al. 2020). 
For example, previous research evidenced that frequent 
wildfires may induce soil organic matter and nutrient 
depletion as a consequence of successive heating, low 
vegetation recovery, and subsequent soil erosion pro-
cesses (Knicker 2007and references therein). However, 
increased fire recurrence has been also reported to pro-
mote the establishment of more productive, resprouter 
plant species (Nano and Clarke 2011; Pausas and Kee-
ley 2014), thus increasing soil organic carbon (SOC) 
and nutrients concentration in the short-term after fire 
(Moghli et al. 2022).
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Due to the anticipated contrasting effects of recur-
rent and severe wildfires on several ecosystem attributes 
or functional indicators (Moghli et  al. 2022), the use of 
an integrative methodology to assess the impact of fire 
regimes on the response of fire prone ecosystems (e.g., 
ecosystem multifunctionality (EMF) evaluation) is con-
sidered more appropriate than the common use of sin-
gle indicators to avoid biased perceptions (Lucas-Borja 
et al. 2021). Also, the use of single attributes is not con-
sistent because ecosystems are valued for their capability 
of maintaining several functions simultaneously (Hector 
and Bagchi 2007; Hedo et al. 2015), and complex trade-
offs can emerge between multiple ecosystem attributes 
(Byrnes et al. 2014). Previous studies have seldom consid-
ered the effect of fire recurrence (Moghli et al. 2022) and 
severity (Huerta et  al. 2022) on the EMF, nor the inter-
acting effects of fire recurrence and severity, although we 
expect complex relationships between such fire regime 
attributes in the functioning of fire-prone pine ecosys-
tems (Fernández-García et al. 2019a, 2020a). Also, to the 
best of our knowledge, there are no studies using an inte-
grative EMF methodology to assess ecosystem response 
to fire in pine ecosystems dominated by maritime pine 
worldwide and particularly in the Mediterranean Basin. 
Altogether, these knowledge gaps limit our understand-
ing about processes driving ecosystem resilience and 
multifunctionality dynamics in the current context of 
global change. We aimed to bridge these gaps by evaluat-
ing the medium-term (three years after wildfire) effects 
of fire recurrence and severity on the EMF response of 
a burned pine ecosystem dominated by Pinus pinaster 
in the western Mediterranean Basin. We considered 
four key ecosystem functions computed from functional 
indicators: (1) carbon (C) regulation, (2) decomposi-
tion, (3) soil fertility, and (4) plant production. The fire 
regime effects on the trade-offs and synergies between 
the considered ecosystem functions were also analyzed. 
We focused on medium-term effects because, at this time 
scale, abiotic and biotic feedbacks are expected to drive 
long-term ecosystem stability (Hart et  al. 2005; Adkins 
et al. 2020).

Methods
Study site
The study site is located inside the perimeter of a 
stand-replacingwildfire that occurred in summer 2012 
(19–21 August) on Sierra del Teleno mountain range 
(western Mediterranean Basin; Fig.  1). The wildfire 
burned 11,602 ha mostly covered by Pinus pinaster eco-
systems native to the study site, which has been corrobo-
rated by paleobotanical studies covering the last 1000 
years (Santamaría 2015). However, maritime pine forests 
have undergone an important expansion in the last two 

centuries in the site owing to an increasing concern for 
the conservation of the stands during their exploitation 
(Santamaría 2015). Fuel hazard reduction treatments of 
these stands ceased in the last decade of the twentieth 
century (Taboada et al. 2021). The Haines index (Haines 
1988) reached its highest value during the initiation and 
spread of the wildfire, indicative of extreme fire weather 
conditions (García-Llamas et  al. 2019). There were no 
substantial unburned islands within the fire scar.

The site lies at an altitude between 836 and 1499 m, in 
the limit of the Mediterranean climate region (Fernán-
dez-Guisuraga et al. 2022b). The mean annual tempera-
ture and the annual precipitation are 10 °C and 640 mm 
respectively, with less than 2 months of summer drought 
(Ninyerola et  al. 2005). The dominant soil types at a 
spatial resolution of 1  km (Jones et  al. 2005) are acidic 
and classified as Haplic Umbrisols and Dystric Rego-
sols according to the Harmonized World Soil Database 
(Nachtergaele et al. 2010). Three years after the wildfire, 
the vegetation in the study site was mainly dominated 
by Pinus pinaster (obligate seeder) regeneration stands 
in seedling and sapling growth stages, with a well-devel-
oped shrub community dominated by the resprouters 
Pterospartum tridentatum (L.) Willk. and Erica australis 
L., as well as the obligate seeder Halimium lasianthum 
subsp. alyssoides (Lam.).

Fire regime characterization
We used a Landsat Thematic Mapper (TM) false color 
composite (R = band 5; G = band 4; B = band 1) to digi-
tize the perimeter of a previous large wildfire occurred 
in 1998 (around 3000  ha) within the study site. There-
fore, we defined two fire recurrence scenarios within 
the 2012 fire scar (Fig.  1): low recurrence (one wildfire 
in the last 15 years) and high recurrence (two wildfires 
in the last 15 years) (Fernández-Guisuraga et  al. 2019), 
which is consistent with the fire return intervals over the 
last decades in the maritime pine stands in the region 
(Taboada et al. 2021). The two fire recurrence scenarios 
have similar mean altitude (low recurrence = 971 ± 99 m; 
high recurrence = 1,035 ± 91  m) and slope (low recur-
rence = 5.7 ± 4.4º; high recurrence = 7.2 ± 4.9º), and soil 
types are homogeneously distributed in them (field 
observation). Therefore, it can be assumed that the vari-
ability in abiotic conditions between fire recurrence 
scenarios is minimal. The areas affected by a single fire 
event (low recurrence) had a mean pine density of 906 
individuals/ha in the pre-fire situation (stand age = 35–95 
years old). The areas affected by two fire events (high 
recurrence) featured a pre-fire mean pine density of 13 
individuals/ha (stand age = 12–14 years old) (Taboada 
et  al. 2018). The cover of the understory community in 
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the pre-fire situation was remarkably higher in the high 
fire recurrence scenarios than in areas burned only once 
(regional Forest Service of Castilla y León, personal com-
munication). Subsequent to the 1998 and 2012 wild-
fires, high-intensity salvage logging of the burned Pinus 
pinaster stands was implemented by the regional Forest 
Service, with 70–80% of the merchantable burned wood 
(> 10 cm diameter) removed.

Fire severity, as a descriptor of aboveground biomass 
consumption (Morgan et al. 2014) of the 2012 wildfire in 

the study site, was estimated using the differenced Nor-
malized Burn Ratio (dNBR; Key 2006). The dNBR was 
computed from bottom-of-atmosphere (BOA) reflec-
tance data of bands 4 (near infrared) and 7 (short-wave 
infrared) of pre (September 20, 2011) and post-fire (Sep-
tember 6, 2012) Landsat 7 Enhanced Thematic Mapper 
Plus (ETM+) Collection 1 Level-1  scenes (Path 203/Row 
31) downloaded from the USGS Earth Explorer data por-
tal (http:// earth explo rer. usgs. gov/). To obtain a Landsat 7 
ETM  + BOA product, we performed an atmospheric and 

Fig. 1 Spatial patterns of fire recurrence and severity, as well as the location of the field plots within the fire scar of the wildfire occurred in summer 
2012 in the Sierra del Teleno mountain range (western Mediterranean Basin)

http://earthexplorer.usgs.gov/
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topographic correction to the optical bands of pre and 
post-fire scenes using the ATCOR algorithm (Richter and 
Schläpfer 2018), which was parametrized following the 
methodology of Fernández-Guisuraga et  al. (2021). The 
dNBR was computed following the Eq. 1 and Eq. 2.

The offset term in Eq. 2 is calculated as the mean dNBR 
value from pixels in unchanged areas between pre- and 
post-fire scenes outside the wildfire perimeter (Parks 
et  al. 2014). We chose the dNBR index because it is 
used operationally as the primary spectral index within 
the European Forest Fire Information System (EFFIS) 
and in the Monitoring Trends in Burn Severity (MTBS) 
program in the USA, together with the Relative dNBR 
(RdNBR; Miller et al. 2009). Also, the dNBR index is the 
methodological reference for the estimation of fire sever-
ity in initial assessments (Soverel et al. 2010) and previ-
ously offered a higher performance than the RdNBR in 
the study site (Fernández-García et al. 2018a). The dNBR 
fire severity retrieval was validated through the Com-
posite Burn Index (Key and Benson 2005), a standard 
and integrative multi-strata approach to conduct ini-
tial assessments of fire severity in the field and validate 
remote sensing products (Holden et al. 2009). We meas-
ured the CBI in 54 field plots of 30 m × 30 m 3 months 
after the wildfire. The plots were established in the field 
using a random sampling design. The linear relationship 
between the dNBR and the CBI had a coefficient of deter-
mination (R2) of 0.86. The equation of the linear model 
and CBI thresholds proposed in the literature (Quintano 
et al. 2017; (Fernández-García et al. 2018b) were used to 
establish two fire severity categories based on the dNBR 
(Fig. 1): low (dNBR ≤ 732.57) and high (dNBR > 732.57).

We identified four recurrence-severity scenarios within 
the 2012 fire scar by overlaying the fire recurrence and 
severity classes (low recurrence-low severity, low recur-
rence-high severity, high recurrence-low severity and 
high recurrence-high severity). Three years after the 2012 
wildfire, resprouter shrub species dominated over obli-
gate seeder shrubs in the high fire recurrence scenarios, 
the opposite pattern being observed in areas burned 
with low fire recurrence, characterized by a higher 
cover of obligate seeders shrubs and pine seedlings/sap-
lings (Fernández-Guisuraga et  al. 2020). Fire severity 
was inversely related to the recovery of Pinus pinaster 
in both fire recurrence scenarios, but no clear effect of 

(1)
NBRETM+ = (Band4 − Band7)/(Band4 + Band7)

(2)dNBR = 1000 NBRpre − NBRpost − offset

fire severity on the shrub community recovery emerged 
(Fernández-Guisuraga et al. 2019).

Field sampling and laboratory analyses
In summer 2015 (3 years after the last wildfire), we estab-
lished 80 field plots of 2 m × 2 m for vegetation and soil 
sampling following an equally stratified random design, 
using the fire recurrence and severity scenarios as strata 
(Fig. 1). The field plots were located in burned maritime 
pine ecosystems within the fire perimeter using as refer-
ence the Spanish Forest Map and ensuring a minimum 
distance of 500 m from the fire perimeter. We used a GPS 
receiver in real time kinematics mode  (RMSEX,Y < 3 cm) 
to locate the plots in the field. First, the vascular plants 
in each plot were assigned to a growth form according to 
plant habit and height (Vashistha et  al. 2011): (1) trees, 
(2) shrubs and subshrubs, and (3) forbs and grasses. 
Then, we measured vegetation cover by growth forms in 
steps of 5% through a visual estimation method (Calvo 
et al. 2008).

A composite soil sample made of four subsamples 
of the uppermost 3  cm was collected from the cardi-
nal points of each plot. Prior to sample collection, we 
removed litter and charred woody debris. The samples 
were sieved in the field with a 2-mm mesh size and then 
were separated into two fractions. One fraction was air-
dried for 1 week in the laboratory before analyzing soil 
chemical properties. The other fraction was stored at 4 
ºC in the field and delivered to the laboratory, where they 
were frozen at − 20 ºC until soil enzyme analyses.

Six soil functional indicators were determined as prox-
ies of several ecosystem functions and EMF, together 
with vegetation cover by growth forms (Table  1). SOC 
was determined by the Walkley-Black dichromate oxi-
dation method (Nelson and Sommers 1982). Available 
phosphorous (P) was analyzed on a UV Mini 1240 spec-
trophotometer at a wavelength of 882  nm after diges-
tion with  HClO4 following the method of Olsen et  al. 
(1954). Total nitrogen (N) was determined by a distilla-
tion method using an automatic micro-Kjeldahl analyzer 
(Bremner and Mulvaney, 1982). Acid phosphatase (phos-
phate-monoester phosphohydrolase) and β-glucosidase 
(β-D-glucoside glucohydrolase) enzyme activities were 
determined using the procedure of Tabatabai (1994), 
and urease (urea amidohydrolase) activity using a Phar-
maSpec 1700 spectrophotometer following the method 
of Kandeler and Gerber (1988).

Ecosystem multifunctionality calculation and data analyses
The ecosystem functional indicators measured in the 
field plots (SOC, enzyme activities, total N, available P, 
and vegetation cover by growth forms) were assigned to 
one of the four ecosystem functions considered in this 
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study: C regulation, decomposition, soil fertility, and 
plant production (Table 1). SOC pool is the largest car-
bon reservoir in the short and medium-term after fire in 
fire-prone Mediterranean ecosystems (Kaye et  al. 2010; 
Fonseca et al. 2022). Fire-induced changes in SOC have 
direct and indirect effects on soil organic matter turnover 
(Maslov et al. 2020), ecosystem productivity (Fernández 
et al. 1999), and, ultimately, on the global C cycle and the 
climate system (Novara et al. 2011). Therefore, SOC was 
used as a proxy for C regulation function. Decomposi-
tion function was estimated from soil enzyme activities 
(β-glucosidase, acid phosphatase, and urease) because of 
their essential role in catalyzing biochemical reactions 
related to soil organic matter degradation and nutrient 
turnover (Sinsabaugh et  al. 2008; Kotroczó et  al. 2014). 
Total N and available P content in the soil were used 
as a proxy for soil fertility function. Besides controlling 
many biogeochemical reactions in terrestrial ecosys-
tems (Maestre et al. 2012), these nutrients sustain a wide 
variety of physicochemical processes in organisms and 
strongly limit primary production in most ecosystems 
worldwide (Elser et al. 2007; Fatemi et al. 2016). Finally, 
plant production function was assessed from vegetation 
cover by growth forms, which is considered as a strong 
proxy for aboveground biomass distributed across the 
plant community strata, and thus for ecosystem produc-
tivity in many biomes (Maestre et  al. 2012; Brun et  al. 
2019and references therein), including Mediterranean 
ecosystems (Madrigal-González et al. 2022).

According to Maestre et  al. (2012), we assumed that 
higher values of each functional indicator corresponded 
to higher performance of the underlying ecosystem func-
tion. The average of the top-functioning 5% plots for each 
raw indicator were used to standardize them into a per-
centage of maximum performance (Delgado-Baquerizo 
et al. 2016). The standardized functional indicators were 
pooled into the four considered ecosystem functions. 
EMF was computed through the averaging approach of 

the individual functions (Maestre et al. 2012). The stand-
ardization by the top-functioning plots and the averag-
ing approach are among the most widely implemented in 
the literature because of the straightforward interpreta-
tion of the ecosystem capability to sustain multiple func-
tions (Maestre et al. 2012; Byrnes et al. 2014; Huerta et al. 
2022; Fernández-Guisuraga et al. 2023).

The multivariate associations between the pool of 
ecosystem functions (i.e., C regulation, decomposition, 
soil fertility, plant production) and fire recurrence, fire 
severity, and their interaction, were explored through a 
permutational multivariate analysis of variance (PER-
MANOVA) implemented with 1000 random permu-
tations. Then, we fitted ordinary least square (OLS) 
models (two-way analysis of variance (ANOVA)) to 
assess whether the fire regime had a significant effect 
on each ecosystem function and EMF. Therefore, the 
dependent variables in OLS models were as follows: 
(i) C regulation, (ii) decomposition, (iii) soil fertil-
ity, (iv) plant production, and (v) EMF. The predictors 
were the fire recurrence, severity, and their interaction. 
Finally, the trade-offs and synergies between ecosystem 
functions in the different fire recurrence and sever-
ity scenarios were unraveled through Pearson correla-
tion heatmaps. Following the method of Moghli et  al. 
(2022) and Felipe-Lucia et al. (2018), we first estimated 
intrinsic synergies and trade-offs between functions, 
regardless of the fire regime, by computing Pearson cor-
relations between OLS model residuals for each func-
tion using fire recurrence and severity as predictors. 
Second, we removed the influence of shared responses 
to fire severity through the calculation of Pearson cor-
relations between OLS model residuals for each func-
tion using fire severity alone as predictor. Third, we 
removed the effect of shared responses to fire recur-
rence in the same way, but using fire recurrence as the 
only predictor in OLS models for each function. Signifi-
cant differences between the correlations of each pair 

Table 1 Functional indicators considered as proxies of ecosystem functions and ecosystem multifunctionality (EMF)

Ecosystem function Functional indicator Unit

Carbon regulation Soil organic carbon (SOC) %

Decomposition β‑Glucosidase activity µmolp−NP  hour− 1  g− 1 soil

Urease activity µmolN−NH4+  hour− 1  g− 1 soil

Acid phosphatase activity µmolp−NP  hour− 1  g− 1 soil

Soil fertility Total nitrogen (N) %

Available phosphorous (P) mg  kg− 1

Plant production Cover of trees %

Cover of shrubs and subshrubs %

Cover of forbs and grasses %
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of functions among the three correlation matrices were 
tested using the Zou’s confidence interval (Zou 2007).

Statistical significance was considered at 5% level 
(p-values lower than 0.05) for all analyses, which were 
performed in R 4.2.2 (R Core Team, 2022) using vegan 
(Oksanen et  al., 2020), corrplot (Wie and Simko 2021) 
and cocor (Diedenhofen and Musch 2015) packages.

Results
The analysis of the behavior of individual ecosystem func-
tions in the medium-term after fire (Table 2; Fig. 2A–D) 
showed that fire recurrence had a strong effect (p-val-
ues < 0.01) on soil fertility, decomposition, and plant pro-
duction functions. No significant effects of fire severity 
on any of the functions were detected (p-values > 0.05). 
However, both fire regime attributes interacted (p-val-
ues < 0.01) to determine soil fertility and decomposition 
functions. Specifically, the C regulation function did not 
show a significant response (p-values > 0.05) to changes 
in fire recurrence and severity (Table 2; Fig. 2C). The soil 
fertility function significantly declined (p-value < 0.001) 
with fire recurrence (Table  2; Fig.  2A), the decomposi-
tion function following the opposite pattern (Table  2; 
Fig.  2B). The significant interaction between fire recur-
rence and severity evidenced in soil fertility and decom-
position functions (p-values < 0.01) indicates that the 
performance of both functions was only impaired by fire 
severity when fire recurrence is low (p-values < 0.05). The 
response of plant production function was only affected 

by fire recurrence (Table  2; Fig.  2D), showing a signifi-
cant increase (p-value < 0.01) in scenarios of high fire 
recurrence.

The differential responses of the individual ecosystem 
functions to the fire regime attributes translated into a 
significant EMF response to fire severity (p-value < 0.05) 
and its interaction with fire recurrence (p-value < 0.01), 
but the isolated effect of fire recurrence was not signifi-
cant (p-value > 0.05) (Table  2; Fig.  2E). The interaction 
between fire recurrence and severity indicates that high 
fire severity had a negative effect on EMF only under low 
fire recurrence scenarios (p-value < 0.01).

These results are consistent with the PERMANOVA fit-
ted to the pool of individual ecosystem functions, which 
were not significantly associated with fire recurrence 
(pseudo-F = 0.254; p-value = 0.636), but with fire severity 
(pseudo-F = 6.025; p-value = 0.013) and the interaction 
between both fire regime attributes (pseudo-F = 9.757; 
p-value = 0.003).

There were no significant intrinsic trade-offs between 
ecosystem functions/EMF, i.e., without the influence of 
the fire regime (Fig. 3A). The same pattern was observed 
when considering the environmental filter exerted by 
fire severity (Fig. 3C). We evidenced that fire recurrence 
caused two significant trade-offs to emerge: between soil 
fertility and both decomposition and plant production 
functions (Fig.  3B). However, there were no significant 
differences in the Pearson correlation coefficients of each 
pair of functions between the three correlation matrices 

Table 2 Effect of fire recurrence (R) and severity (S), as well as their interaction (R×S), on the individual ecosystem functions 
and ecosystem multifunctionality (EMF). The significance of ordinary least square (OLS) model parameters is represented by 
***(p-value < 0.001), **(p-value < 0.01), *(p-value < 0.05), and ns (p-value > 0.05)

Response variable df Parameter Sum of squares F-value p-value

C regulation 1 R 0.034 1.473 0.228 ns

1 S 0.002 0.104 0.748 ns

1 R×S 0.087 3.824 0.054 ns

Decomposition 1 R 0.416 24.269 < 0.001 ***

1 S 0.031 1.790 0.185 ns

1 R×S 0.139 8.120 0.006 **

Soil fertility 1 R 0.697 42.070 < 0.001 ***

1 S 0.060 3.628 0.060 ns

1 R×S 0.168 10.129 0.002 **

Plant production 1 R 0.242 6.964 0.009 **

1 S 0.119 3.340 0.071 ns

1 R×S 0.000 0.000 0.984 ns

EMF 1 R 0.001 0.124 0.726 ns

1 S 0.041 5.813 0.018 *

1 R×S 0.072 10.142 0.002 **

df, degrees of freedom
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or scenarios (intrinsic synergies/trade-offs, driven by fire 
recurrence and driven by fire severity) (Table 3).

Discussion
The understanding of how fire regime attributes shape 
ecosystem functions and processes threatened by land-
use changes and anthropogenic climate warming is of 
utmost importance for predicting ecosystem responses 
to future global change scenarios (Bowman et  al. 2014; 
Archibald et  al. 2018). This will also provide integrated 
insights on management strategies tailored to secure the 
provision of multiple functions and ecosystem services 
in the context of global change (Fernandes et  al. 2016b; 
Taboada et al. 2021). This study represents a first attempt 
to shed light into the response of pine ecosystems’ func-
tioning as modulated by the interacting effects of fire 
recurrence and severity using an integrative ecosystem 

multifunctionality approach. This is particularly rel-
evant in the current context of projected increases in 
wildfire frequency (Turco et  al. 2014) and severity (van 
Mantgem et  al. 2013) in Mediterranean-type ecosys-
tems worldwide. A key finding of our study is that fire 
recurrence and severity attributes interacted strongly to 
modulate the response of the pool of ecosystem func-
tions (i.e., EMF) in burned maritime pine ecosystems in 
the medium-term after fire. Our study also highlights 
the need to use an integrative methodology to assess the 
response of ecosystem functioning to fire, since mul-
tiple ecosystem functions responded differentially to 
both attributes of the fire regime, as evidenced in previ-
ous research (e.g., Fernández-García et al. 2020a; Huerta 
et al. 2022; Moghli et al. 2022). In this sense, most of the 
individual functions showed a strong response to changes 
in fire recurrence, and some of them to the interaction 

Fig. 2 Predicted effects (mean ± 95% confidence intervals) of fire recurrence (R) and severity (S), as well as their interaction (R×S), on soil fertility 
(A), decomposition (B), C regulation (C), and plant production (D) functions, as well as on ecosystem multifunctionality (EMF) (E). The significance of 
ordinary least square (OLS) model parameters is represented by ***(p-value < 0.001), **(p-value < 0.01), *(p-value < 0.05), and ns (p-value > 0.05)
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between fire recurrence and fire severity, whereas no 
individual function was sensitive to the isolated effect of 
fire severity.

The absence of a clear effect of fire recurrence and 
severity on the C regulation function may be related with 
the high net primary production of secondary succession 
in burned areas and the associated organic matter inputs 
to the soil from litterfall and root litter decomposition 
(Knicker et al. 2005; Heath et al. 2015). Indeed, the recov-
ery of resprouter shrub species was very high three years 
after fire in the study site, particularly in the most dis-
turbed scenarios (Fernández-García et  al. 2020b). Also, 

the recruitment of pine seedlings and obligate seeder 
shrubs was noticeable in scenarios of low fire recurrence 
because of the higher replenishment of canopy and soil 
seed banks under longer fire-free periods (time since last 
fire of 15 years) (Fernández-García et al. 2019a), and the 
more favorable microclimatic conditions on the forest 
floor for seedling establishment (Taboada et al. 2017). In 
addition, soil organic carbon release from decaying burnt 
wood, particularly in the first 2 years after fire (Marañón-
Jiménez and Castro 2013), may help to buffer the effects 
of fire recurrence and severity on soils (Knicker 2007). 
The fast reestablishment of resprouter species may also 

Fig. 3 Intrinsic synergies and trade‑offs between standardized ecosystem functions (A), synergies and trade‑offs driven by fire recurrence (B), and 
synergies and trade‑offs driven by fire severity (C). Asterisks denote significant Pearson correlations between each pair of ecosystem functions 
within each scenario (A–C).

Table 3 Test for significant differences between the Pearson correlations of each pair of functions/EMF among the three correlation 
matrices using the Zou’s confidence interval. The three correlation matrices correspond to intrinsic synergies and trade‑offs (I), 
synergies and trade‑offs driven by fire recurrence (R), and synergies and trade‑offs driven by fire severity (S). If the Zou’s confidence 
interval (lower confidence interval (LCI) and upper confidence interval (UCI) does not include zero, the two correlations are 
significantly different

Pearson correlations I vs. R I vs. S R vs. S

LCI UCI LCI UCI LCI UCI

C ~ Fert. − 0.23 0.21 − 0.25 0.19 − 0.23 0.19

 C ~ Decomp. − 0.22 0.33 − 0.31 0.23 − 0.37 0.17

 C ~ Prod. − 0.21 0.37 − 0.27 0.31 − 0.22 0.37

 C ~ EMF − 0.11 0.13 − 0.12 0.12 − 0.11 0.13

Fert. ~ Decomp. − 0.12 0.45 − 0.41 0.18 − 0.01 0.57

Fert. ~ Prod. − 0.10 0.45 − 0.32 0.27 − 0.05 0.51

Fert. ~ EMF − 0.15 0.33 − 0.29 0.15 − 0.07 0.39

Decomp. ~ Prod. − 0.39 0.17 − 0.26 0.30 − 0.38 0.16

Decomp. ~ EMF − 0.21 0.19 − 0.24 0.14 − 0.15 0.23

Prod. ~ EMF − 0.17 0.26 − 0.20 0.25 − 0.18 0.26



Page 11 of 16Fernández‑Guisuraga et al. Fire Ecology           (2023) 19:32  

be accountable for the strong increase of plant produc-
tion function in scenarios of high fire recurrence. First, 
post-fire resprouting capacity has a key role in plant spe-
cies fitness since bud-forming tissues of resprouter spe-
cies enable a rapid recovery of aboveground biomass 
shortly after the fire (Keeley et al. 2011; Pausas and Kee-
ley 2014). Second, resprouter species have competitive 
advantages over seeder species with increased resource 
availability (Keeley et al. 2016). Accordingly, decreases in 
maritime pine cover with fire recurrence may cause spa-
tio-temporal changes in resource allocation and contrib-
ute to higher production and diversity of the understory 
community (Tessler et  al. 2016; (Fernández-Guisuraga 
et al. 2022a).

Previous studies also evidenced that recurrent fires can 
reduce nutrient pools of the soil in fire-prone Mediter-
ranean ecosystems (e.g., Caon et  al. 2014and references 
therein). Nutrient volatilization, surface runoff, and ero-
sion processes may be associated with nutrient deple-
tion in frequently burned areas if cumulative soil losses 
in the medium term after fire could not be offset by 
nitrogen fixation or soil organic matter mineralization 
(Mayor et  al. 2016a; Hinojosa et  al. 2021). The opposite 
trend followed by the decomposition function in high 
recurrence scenarios (increase with fire recurrence) can 
be explained by the close relationship between soil nutri-
ents and extracellular enzyme activity (Fernández-García 
et  al. 2019b), since these enzymes originate from living 
organisms to catalyze important reactions in the cycling 
of soil nutrients (Miesel et al. 2011; (Mayor et al. 2016b). 
In this sense, several authors evidenced that high nutri-
ent availability inhibits the production of these substrate-
dependent enzymes because of the involved energy costs 
(Bünemann 2008). Also, the dominance of resprouter 
species may be responsible for the increased decomposi-
tion function in high fire recurrence scenarios. Accord-
ing to previous studies (López-Poma and Bautista 2014; 
(Mayor et al. 2016b), resprouter species are very likely to 
survive the fire and regain their above-ground biomass 
in the same location, with the root system being mostly 
unaffected. Thus, the resilience of rhizosphere hotspots, 
with enhanced microbial activity, is greater when associ-
ated to resprouter rather than to seeder species. Remark-
ably, the soil fertility and decomposition feedbacks were 
modulated by fire severity only when fire recurrence was 
low, as evidenced by the significant interaction between 
both fire regime attributes. This result may be attribut-
able to the high pre-fire load of the surface fuel complex 
in unmanaged maritime pine stands of low fire recur-
rence scenarios in the site (Fernández-Guisuraga et  al. 
2022b) owing to the high rates of flammable litter accu-
mulation and the well-developed understory. In this con-
text, the high fuel load close to the ground would have 

contributed to an extreme fire behavior and a strong fire 
heat-induced impact on soil biochemical properties (Pau-
sas et  al. 2002), whose legacy would even persist in the 
medium-term after the wildfire.

The divergent responses among functions fostered a 
significant EMF response to fire severity and its inter-
action with fire recurrence, indicating that the negative 
effect of high fire severity on EMF was stronger under 
low fire recurrence scenarios, even when relationships 
between individual functions and fire severity were 
weak. This suggests that ignoring the interplay among 
functions can lead to biased assumptions about fire dis-
turbance responses when ecosystem functioning is ana-
lyzed as a whole (Lefcheck et al. 2015; Moghli et al. 2022). 
Indeed, EMF is considered an ecosystem-level outcome 
in its own right rather than a substitute for or an indica-
tor of patterns in individual functions (Byrnes et al. 2014; 
Grman et al. 2018). Our results suggest that, when con-
sidering the functioning of the maritime pine ecosystem 
as a whole, management efforts should be targeted at 
reducing fire risk in order to ensure sufficiently long fire-
free intervals (Fernández-García et al. 2019a) and reduc-
ing the fuel load in the surface fuel complex to minimize 
surface fire intensity and crown fire hazard (Fernández-
Guisuraga et al. 2022b). However, we recognize that spe-
cific management goals would require the consideration 
of individual functions and the associated ecosystem ser-
vices to keep their performance at high levels.

The environmental filter exerted by fire recurrence 
caused two significant trade-offs to emerge, involving 
soil fertility, decomposition, and plant production func-
tions. This is consistent with the lower soil fertility func-
tion and higher decomposition and plant production 
functions evidenced in the high fire recurrence scenarios 
as compared to the low recurrence scenarios (Fig.  2). 
Despite this trend, we found no significant differences 
between intrinsic synergies and trade-offs in our study 
site and those driven by fire recurrence and severity. This 
suggests that the filter exerted by the fire regime is not 
strong enough to cause substantial changes in the intrin-
sic relationships between functions in Mediterranean 
ecosystems, as found by Moghli et  al. (2022) in burned 
Pinus halepensis forests of eastern Spain. However, pro-
jected global change scenarios in Mediterranean ecosys-
tems can turn the trends observed here into significant 
trade-offs.

We acknowledge that our study is based on a single 
fire event with limited fire recurrence, and thus the rep-
licability of the EMF methodological approach should 
be further tested in other unmanaged maritime pine 
stands of the western Mediterranean Basin with similar 
characteristics to those analyzed here. Future research 
should also focus on testing our approach in maritime 
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pine ecosystems with different fire history and at differ-
ent time scales after fire, as well as in managed stands to 
evaluate the effectiveness of fuel hazard reduction treat-
ments in preserving ecosystem functioning.

Conclusions
In this study, we analyzed for the first time the interact-
ing effects of recurrence and severity attributes of the fire 
regime on the ecosystem functioning of pine forests domi-
nated by Pinus pinaster in the western Mediterranean 
Basin using an integrative ecosystem multifunctionality 
approach. Our results indicated that multiple ecosystem 
functions showed divergent responses to both attributes of 
the fire regime, and thus, the use of an integrative approach 
to assess the response of ecosystem functioning to fire is 
deemed necessary. In this context, we found that fire recur-
rence and severity interacted strongly to modulate the 
response of ecosystem multifunctionality over the medium-
term after fire, indicating a stronger impact of fire severity 
on ecosystem functioning under low fire recurrence sce-
narios than in more frequently burned areas. Therefore, 
our results suggest that adaptive management responses 
are necessary towards the minimization of repeated burn-
ings and the reduction of the fuel load in unmanaged mari-
time pine ecosystems of the western Mediterranean Basin.
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