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Abstract 

Background  Wildfires are increasingly frequent in the Western US and impose a number of costs including from the 
instantaneous release of carbon when vegetation burns. Carbon released into the atmosphere aggravates climate 
change while carbon stored in vegetation helps to mitigate climate change. The need for climate change mitiga-
tion is becoming more and more urgent as achieving the Paris climate agreement target of limiting global warm-
ing to 1.5 °C seems ever more challenging. A clear understanding of the role of different carbon sources is required 
for understanding the degree of progress toward meeting mitigation objectives and assessing the cost and benefits 
of mitigation policies.

Results  We present an easily replicable approach to calculate the economic cost from carbon released instantane-
ously from wildfires at state and county level (US). Our approach is straightforward and relies exclusively on publicly 
available data that can be easily obtained for locations throughout the USA. We also describe how to apply social 
cost of carbon estimates to the carbon loss estimates to find the economic value of carbon released from wildfires. 
We demonstrate our approach using a case study of the 2017 Eagle Creek Fire in Oregon. Our estimated value 
of carbon lost for this medium-sized (19,400 ha) fire is $187.2 million (2020 dollars), which highlights the significant 
role that wildfires can have in terms of carbon emissions and their associated cost. The emissions from this fire were 
equivalent to as much as 2.3% of non-fire emissions for the state of Oregon in 2020.

Conclusions  Our results demonstrate an easily replicable method for estimating the economic cost of instantaneous 
carbon dioxide emissions for individual wildfires. Estimates of the potential economic costs associated with carbon 
dioxide emissions help to provide a more complete picture of the true economic costs of wildfires, thus facilitating 
a more complete picture of the potential benefits of wildfire management efforts.
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Resumen 

Antecedentes  Los fuegos de vegetación están incrementando su frecuencia en el oeste de los EEUU, lo que impone 
una cantidad de costos incluyendo la liberación instantánea de dióxido de carbono cuando la vegetación se quema. 
Este carbono liberado a la atmósfera agrava el cambio climático mientras que el carbono almacenado en la veg-
etación puede ayudar a mitigar el cambio climático. La necesidad de mitigar el cambio climático es cada vez más y 
más urgente para lograr el objetivo del acuerdo climático de París de limitar el calentamiento global a 1,5 °C, lo que 
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parece ser cada día más desafiante. Se requiere entonces comprender claramente el rol de diferentes fuentes de emi-
siones de carbono para entender el grado de progreso hacia los objetivos de mitigación establecidos y determinar el 
costo y beneficios de las políticas de mitigación.

Resultados  Presentamos una aproximación replicable para calcular el costo económico de la emisión instantánea 
de carbono producida por incendios a nivel de estados o condados (en los EEUU). Nuestra aproximación es directa 
y se basa en datos públicos disponibles que pueden ser rápidamente obtenidos para distintos lugares de los EEUU. 
Describimos también cómo aplicar el costo social de las estimaciones de carbono perdido para encontrar el valor 
económico del carbono emitido por los incendios. Demostramos esta aproximación usando un estudio de caso del 
incendio de Eagle Creek en el estado de Oregón. Nuestro valor estimado del carbono perdido por este incendio de 
tamaño medio (19.400 ha) fue de US$ 187,2 millones (dólares de 2020), lo que ilustra sobre el rol significativo que 
los incendios de vegetación tienen en términos de emisiones y sus costos asociados. Las emisiones de este incendio 
equivalieron al 2,3% de las emisiones totales (no relacionadas con incendios) del estado de Oregón en el año 2020.

Conclusiones  Nuestros resultados muestran un método fácilmente replicable para estimar los costos económi-
cos de las emisiones instantáneas de carbono por incendios individuales. Las estimaciones del potencial costo 
económico asociado a las emisiones de carbono ayudan a tener un panorama más completo de los verdaderos 
costos de los incendios, facilitando de esa manera una mejor visión de los beneficios potenciales de los esfuerzos 
puestos en el manejo de los incendios.

Background
The frequency and severity of wildfires in the western 
US have increased in the last several decades (Parks and 
Abatzoglou 2020; Westerling 2016). Between 1970 and 
1986, the average annual area burned in the USA was 
approximately 116,100  ha, and from 1987 to 2002, this 
increased to over 404,700 ha per year (Calkin et al. 2005). 
In addition, the number of western US wildfires burning 
more than 400 ha has grown by 1300% in western US for-
ests between 1984 and 2011 (Dennison et al. 2014). Cli-
mate change is thought to play a significant role in this 
increase, through increased aridity of forest fuel (Abatzo-
glou and Williams 2016). Hazardous fuel buildup (Calkin 
et al. 2015; Haugo et al. 2019) is an additional reason for 
more large wildfires.

In addition to their direct impact on forests and peo-
ple, wildfires also have impacts on forest carbon. Forests 
can contribute significantly to climate change mitiga-
tion efforts while also providing other ecosystem bene-
fits (Seddon et al. 2021). The 2020 National Greenhouse 
Gas Inventory (NGHGI; US Environmental Protection 
Agency 2020) found that 480 billion ha of forest land 
in the coterminous 48 states and southeast and south-
central Alaska sequestered 564.5 MMT CO2 Eq in 2018. 
This amount equaled 8.4% of total US carbon emissions 
that year (6667 MMT CO2eq). Beyond existing forest 
land, there would also be significant economic benefit 
in increasing forest areas across the USA; Haight et  al. 
(2020), for example, showed that the cost of significant 
afforestation or reforestation in the USA would be easily 
outweighed by the benefits of carbon sequestration. The 
present value (2015 to 2050) of projected annual carbon 
sequestration in US forests amounts to US$649 billion 

(Haight et  al. 2020). However, wildfires can reduce car-
bon sequestered in forests, not only by direct emissions 
but also by post-fire decomposition of killed biomass and 
sometimes negative impacts on net primary productiv-
ity post fire (Ghimire et al. 2012; Goetz et al. 2012; Meigs 
et al. 2009). Despite these short-term carbon losses, natu-
ral wildfire regimes are vital in maintaining many forest 
ecosystems (e.g., Agee and Lolley 2006; Whitlock et  al. 
2003). Indeed, widespread wildfire suppression in the 
twentieth century in the USA has been shown to increase 
fire severity (e.g., Allen et al. 2002).

Given the complex role that forests play in climate 
change, and the growing interest in implementing poli-
cies to reduce the severity and frequency of climate 
change impacts, including widespread wildfires, we 
sought to develop a method to easily evaluate instanta-
neous carbon releases during wildfires and their asso-
ciated economic cost. Estimation of potential carbon 
losses from wildfires would also contribute to evaluating 
the efficacy of wildfire mitigation and fuel management 
activities, as well as provide information for evaluat-
ing climate change mitigation efforts at broader scales. 
Although past research has evaluated tradeoffs involving 
fuel reduction and carbon (North and Hurteau 2011) and 
other ecosystem services (Schroder et al. 2016) by com-
paring short-term thinning and prescribed burning costs 
to long-term benefits associated with reducing burn 
severity, these previous efforts did not attempt to evalu-
ate specific economic values associated with such trade-
offs. While there has been extensive work on quantifying 
the release of carbon from wildfires (Seiler and Crutzen 
1980; Campbell et  al. 2007; Meigs et  al. 2009; French 
et  al. 2011 and references therein, Reddy et  al. 2015; 
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Global Fire Emissions Database 2020) and the potential 
for sequestration in forests (e.g., Haight et al. 2020; Hur-
teau & North 2008; Smith et  al. 2006), there have been 
few studies that quantify the economic cost of carbon 
lost instantaneously during wildfires. There is related 
work, such as Mills et al. (2015), for example, that used 
a dynamic global vegetation model to estimate and mon-
etize the impacts of climate change on terrestrial ecosys-
tem carbon storage.

The studies that focused on determining instantaneous 
carbon losses from wildfires include, for example, Camp-
bell et  al. (2007). They estimated carbon losses for the 
2002 Biscuit Fire, and this study provides a basis for the 
methods we develop here. However, past work relies on 
expensive resources like fieldwork (Campbell et al. 2007; 
Meigs et al. 2009) and lidar (e.g., Reddy et al. 2015), high-
lighting a need for carbon loss calculation methods that 
are relatively fast and less expensive but sufficiently reli-
able to be of value to policymakers and managers, par-
ticularly given the increasing severity of wildfire seasons.

Estimates of the amounts of carbon lost to wildfires 
can be combined with social cost of carbon estimates to 
describe the gross economic costs of carbon losses due 
to wildfires. The social cost of carbon (SCC) reflects 
the social damages associated with the adverse impacts 
resulting from carbon dioxide emissions on the global cli-
mate (Aldy et al. 2010). There is usually a range of SCC 
estimates given the uncertainty of climate change impacts 
and other underlying assumptions. The estimates used in 
policy analysis are agreed upon at the national level (Aldy 
et al. 2010).

We sought to describe and demonstrate an approach 
for estimating the economic cost of instantaneous carbon 
emissions due to wildfire in the Pacific Northwest using 
publicly available data from the USDA Forest Service 
(first described in Ohmann and Gregory (2002) and Wil-
son et al. (2013)). We used a standard approach to calcu-
late emissions developed by Seiler and Crutzen (1980) by 
estimating burned area, fuel load, and fuel consumption 
(French et al. 2011) using GIS. Unlike past work (Kasis-
chke et al. 1995; Meigs et al. 2009; Ito and Penner 2004), 
our method eschews fieldwork, expert-level interpreta-
tion of satellite data, and selection of empirical equations 
for biomass in favor of an established, freely available 
estimate of biomass within different carbon pools (Wil-
son et  al. 2013). We applied our approach to the Eagle 
Creek Fire (ECF) which burned 19,400 ha in 2017 in the 
Columbia River Gorge and near to the metropolitan area 
of Portland, Oregon. We validated our results using two 
different sources for estimating pre-burn carbon pools 
(Ohmann and Gregory 2002 and Wilson et  al. 2013), 
which, to our knowledge, is the first such comparison. We 
expect that our approach for estimating carbon emissions 

can be applied to other wildfires, as the required data is 
available for forests across the USA.

Estimating wildfire carbon emissions and cost
Estimating the cost from wildfire-related carbon emis-
sions relies on the validity and accuracy of pyrogenic 
carbon emissions estimates. However, obtaining reliable 
carbon emissions estimates is a challenge. Unlike data 
available from burn severity maps and debris flow hazard 
maps, data and maps describing wildfire emissions are 
not part of routine annual reporting for wildfires in the 
USA, except for estimates aggregated by county, such as 
the US EPA National Fire Emissions Inventory (which is 
reported every 3 years; EPA 2023). However, most esti-
mates of carbon emissions from wildfire do use a stand-
ard formula, developed by Seiler and Crutzen (1980):

where E is fire emissions, A is burned area, B is pre-fire 
biomass, and β is a fuel consumption factor, called an 
emission factor when describing the emission of a par-
ticular atmospheric compound (Urbanski 2014) or com-
bustion factor when describing the fraction of biomass 
or carbon consumed (Campbell et  al. 2007). This fuel 
consumption factor depends on burn severity, vegetation 
type, and fuel condition (e.g., fuel moisture) (French et al. 
2011). Despite the seeming simplicity of this equation, 
methods for estimating the individual parameters have 
varied widely.

Estimating burned area
Estimating burned area depends on fire detection and 
post-fire burned area assessments based on remote sens-
ing products—particularly MODIS (Urbanski et al. 2009) 
and Landsat (Key and Benson 2006), though individual 
fires may have perimeter information from field mapping 
or infrared detection. Active fire detection through daily-
resolution MODIS data has been used in national and 
global estimates of total area burned and is vital for fore-
casting emissions and related air quality (e.g., Urbanski 
et  al. 2009). Post-fire analysis comparing pre- and post-
fire maps of the Normalized Burn Ratio (NBR) enable 
not only the measurement of total area burned but also 
assessment of fire severity (Key and Benson 2006). Such 
maps of fire severity serve as input data for both post-fire 
calculations of total emissions or carbon loss like ours 
(Campbell et al. 2007; Meigs et al. 2009) as well as assess-
ments of post-fire hazards like debris flows (e.g., Cannon 
et al. 2009).

Estimating biomass
Past estimates of biomass often have relied on detailed 
measurements of vegetation plots such as those 

(1)E = A × B× β
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developed by the USDA Forest Service’s Forest Inven-
tory and Analysis (FIA) program (Bechtold and Scott 
2005; e.g., Campbell et al. 2007; Meigs et al. 2009). These 
plot-level observations provide data for computing bio-
mass estimates using species-specific or vegetation-spe-
cific allometric equations that relate tree size to biomass 
(Means et al. 1994). Typically, these approaches are com-
bined with dNBR-based maps of burn severity to scale up 
to an entire fire perimeter (e.g., Campbell et al. 2007).

Other studies have estimated biomass by combining 
several remote-sensing products, such as the normalized 
vegetation difference index (NDVI) and some form of 
forest classification, and then converting these measure-
ments to biomass using field-based empirical equations 
from the literature (Kasischke et al. 1995; Ito and Penner 
2004). A primary shortcoming of these reflectance-based 
remote sensing approaches is the difficulty in estimat-
ing specific characteristics of the ground layer, which in 
many cases may be both the most carbon-rich and most 
easily combusted component of forests (French et  al. 
2004; Meigs et al. 2009; de Groot et al. 2009). Lidar has 
become a much-used alternative to passive remote sens-
ing, as lidar has been shown to correlate closely with field 
measurements of plot-level forest structure (Lefsky et al. 
1999; Lim et  al. 2003; Erdody and Moskal 2010). How-
ever, lidar is limited by data availability and cost (Hudak 
et  al. 2008), though the cost is comparable to extensive 
field data collection efforts (Hummel et al. 2011).

Increasingly, estimates of biomass at regional and 
national scales are developed using spatial prediction 
models, including gradient nearest neighbor imputa-
tion, linear models, classification and regression trees, 
and universal kriging geostatistical methods (Ohmann 
and Gregory 2002; Pierce et  al. 2009; LEMMA 2022). 
These models use FIA plot data on canopy structure, 
species density, and tree size (Bechtold and Scott 2005) 
to estimate empirical relationships between these data 
and other environmental variables, including land own-
ership, climate, topography, and satellite imagery (e.g., 
from Landsat or MODIS). The resulting models are then 
used to predict vegetation characteristics over larger 
areas (Ohmann and Gregory 2002; Wilson et  al. 2013). 
The incorporation of satellite imagery enables frequent 
updates as new imagery becomes available, thus facili-
tating assessments of forest management, for example 
(Ohmann et al. 2012). An advantage of plot-based predic-
tive models over purely satellite-derived data is that these 
models can estimate biomass for individual vegetation 
class or carbon pools (i.e., downed and standing dead 
wood, live trees, understory, etc.), enabling a more accu-
rate representation of the combustion that occurs in for-
est fires (Campbell et al. 2007; Weise and Wright 2014). 
Gradient nearest neighbor maps have been routinely 

used as the input for landscape-level forest modeling 
(Houtman et al. 2013; Spies et al. 2007), to examine the 
effect of land ownership on burn severity (Zald and Dunn 
2018), and to quantify contemporary forest conditions in 
studies of historical fire patterns (Hagmann et al. 2019).

Combustion and emission
The final component of the Seiler and Crutzen (1980) 
equation requires an estimate of how much biomass is 
consumed during a fire, i.e., a combustion factor. The 
combustion factor captures how much biomass is con-
sumed during a wildfire, while the related emission fac-
tors describe what proportion of a particular chemical is 
emitted for a given amount of pre-burn biomass (Urban-
ski 2014). Methods of estimating combustion include pre- 
and post-fire field measurements of plot characteristics 
(Campbell et al. 2007; Meigs et al. 2009) and combination 
of field data with satellite estimates of forest canopy (Ito 
and Penner 2004). Emissions can be measured directly 
from the ground (Mühle et al. 2007; Phuleria et al. 2005) 
or from aircraft (May et al. 2014). Emission estimates at 
global or continental scales typically use combustion 
or emission factors related to biome type (Akagi, et  al. 
2011 and references therein), but these should be applied 
with great caution due to documented variability within 
biomes (van Leeuwen et al. 2014). At the scale of an indi-
vidual fire, separating carbon consumption by carbon 
pool type is preferable when possible because the physi-
cal processes of fire depend hugely on forest structure 
and differences in combustibility between carbon pools 
(e.g., Hurteau and North 2008). Hence, we relied on com-
bustion factors used by Campbell et  al. (2007), whose 
work focused on a similar biome. We then use this calcu-
lation as a basis to estimate the economic loss due to lost 
forest carbon stock from all pools.

The social cost of carbon
Economists often rely on use of the Social Cost of Car-
bon (SCC) when evaluating the public costs and ben-
efits implications of policy and management actions that 
influence mitigation of climate change through carbon 
storage (e.g., EPA 2022; Parisa et al. 2022). The SCC is the 
present value (i.e., today’s value) of monetized damages 
experienced by society associated with an additional ton 
of carbon dioxide emissions released into the atmosphere 
(Haight et al. 2020). The SCC helps to describe the social 
cost or benefits, from a societal perspective, of increas-
ing or decreasing greenhouse gas emissions. For example, 
the SCC can be used to estimate the economic cost to 
society of carbon lost due to a wildfire, as well as the eco-
nomic benefit of additional carbon sequestration gained 
by reafforestation. SCC estimates thus enable policy-
makers to evaluate the collective social costs and social 
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benefits of climate change mitigation programs generally 
by describing the value of stored carbon gained or lost by 
mitigation programs or wildfires, for example. This is dis-
tinctly different from the private benefits or costs an indi-
vidual private landowner, for example, might experience 
from, say, participation or not in a policy or program 
(e.g., cap and trade) designed to induce carbon storage on 
private land (computing such private benefits and costs 
is beyond the scope of our analysis). The SCC generally 
increases with time as it is assumed that the incremen-
tal damage from an additional ton of emissions increases 
as physical and economic systems become more stressed 
in response to greater climatic change and because gross 
domestic product (GDP) is growing over time and many 
damage categories are modeled as proportional to gross 
GDP (Interagency Working Group 2016).

The SCC is usually determined through integrated 
assessment models (IAM) (Nordhaus 2013) that bring 
together climate science and economics. First, future 
emissions are predicted based on population, economic 
growth, and technology which are then translated into 
climate responses such as temperature increases and sea 
level rise. These climate scenarios are agreed upon by the 
IPCC (IPCC 2021). With this information, likely damages 
from the emissions to agricultural productivity, human 
health, and property, as well as ecosystem services, at 
spatial scales ranging from regional to global (Haight 
et  al. 2020) can be assessed. Future damages are con-
verted into present-day value. The SCC is then derived 
for a given year of a defined time horizon by re-running 
the IAM and marginally increasing the emissions and 
determining the change in damages from the baseline. 
Specifically, discounting is the process by which costs 
(and benefits) spread over current and future years can 
be compared. The need for discounting arises as the rate 
of return to capital is positive. This means society needs 
to invest less than $1 today to obtain $1 of benefits in the 
future (National Academies of Sciences, Engineering, 
and Medicine 2017). Put differently, receiving $1 in the 
future is worth less than receiving $1 today. Equivalently, 
damages that occur in the future are worth less in today’s 
money than comparable damages are today. Discount 
rates between 0 and 7% have been applied and discussed 
in the academic literature and policy contexts (Carleton 
and Greenstone 2021; Nordhaus 2013a).

To address uncertainty underlying SCC estimates, the 
US government tasked an Interagency Working Group 
with developing a transparent and economically rigorous 
way to value reductions in CO2 emissions resulting from 
federal programs (Greenstone et  al. 2013; Haight et  al. 
2020). To reflect the uncertainty inherent to the SCC, 
three IAMs were considered, as well as different dis-
count rates and emissions scenarios, in addition to other 

parameters (Interagency Working Group 2021). Cur-
rently, the US applies discount rates of 2.5%, 3%, and 5%, 
resulting in a SCC of $14, $51, and $76 per metric ton of 
CO2 (2020 USD) respectively. Those estimates are based 
on median damages as estimated by the IAM. In addi-
tion, there is a SCC ($152) based on a 3% discount rate 
given the 95th percentile of the damage estimates (Inter-
agency Working Group 2016). It is possible that the dis-
count rate for analysis in federal projects will be lowered 
as the Biden administration (2021 - present) revises the 
estimates based on scientific advances which may result 
in a higher SCC (Interagency Working Group 2021).

Methods
Study area
Our study area is the area that was burned by the 2017 
Eagle Creek Fire, located in the Columbia River Gorge 
east of Portland, Oregon. The Eagle Creek Fire occurred 
on the Oregon side of the Columbia River Gorge, with 
the smaller Archer Mountain Fire on the Washington 
side started by embers that crossed the river. The fire 
was started when an individual ignited fireworks on 
September 2 during a moderate drought (US Drought 
Monitor; Svoboda et al. 2002). The area consumed by the 
fire was a mix of Western Hemlock and Douglas forest 
(Ruefenacht et al. 2008). The fire burned for nearly three 
months across 19,4000 ha of forest, with varying degrees 
of burn severity within the fire perimeter (Fig. 1). It was 
declared completely contained by November 30, with 
some embers still burning in certain areas (USDA Forest 
Service 2018).

Calculating carbon losses
We followed the approach used by Campbell et al. (2007) 
to estimate carbon losses. The Campbell et  al. (2007 
approach was adapted from that described by Seiler and 
Crutzen (1980) to estimate carbon emissions released 
from the 2002 Biscuit Fire in Southern Oregon using 
pre- and post-fire measurements of vegetation size and 
remotely sensed burn severity maps. Following Campbell 
et al. (2007), carbon loss is calculated as:

where PC = mass of pyrogenic carbon loss, i = burn sever-
ity classification, j = carbon pool type, A = area affected 
by burn severity class, D = pre-burn carbon (fuel) density 
in mass per unit area, and CF = combustion factor. We 
implemented this equation in GIS using the workflow 
shown in Fig. 2. We describe the data sources and estima-
tion of each of these components in turn.

(2)PC =

n

i=lj=l
Ai(Dij · CFij)
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Burn severity classification
To determine the spatial distribution of above-ground 
burn severity within the Eagle Creek Fire perimeter, we 
used data from the Monitoring Trends in Burn Sever-
ity (MTBS) program—a joint effort of the US Geologi-
cal Survey and USDA Forest Service (https://www.mtbs.
gov/). MTBS (2017) data relies on satellite imagery from 
before and after a fire to index burn zones with dNBR 
and apply thresholds that delineate severity classes. We 
used 4 of the 5 standardized burn severity categories 
used by the MTBS program in our study: unburned/very 
low burn, low burn, moderate burn, and high burn. We 
left out increased greenness because this comprised only 

6 ha of the 19,400 perimeter of the fire. We used a map of 
soil burn severity from the USDA Forest Sevices’s Burned 
Area Emergency Response (BAER) team. Those soil burn 
severity maps are available for most fires greater than 
5000 ha across the US since the year 2000 (https://​fsapps.​
nwcg.​gov/​baer/).

Carbon pool type and carbon content
When a wildfire occurs, not all material in the forest 
combusts in equal proportion, particularly in lower burn 
severity areas (Weise and Wright 2014). By breaking 
down the composition of a forest into specific fuel types, 
or carbon pools, the individual pools of carbon can be 

Fig. 1  The Eagle Creek Fire. a Burn perimeter underlain by lidar elevation, b overall burn severity map from Monitoring Trends in Burn Severity 
(MTBS), and c soil burn severity map from Burned Area Emergency Response (BAER). In b and c, green indicates unburned areas, blue indicates low 
burn severity, yellow moderate, and red high

https://fsapps.nwcg.gov/baer/
https://fsapps.nwcg.gov/baer/
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assigned the combustion factor corresponding with that 
fuel type (Campbell et  al. 2007; Meigs et  al. 2009). We 
used a total of six carbon pools to calculate carbon loss: 
standing dead wood (snags), downed dead wood, litter 
and duff, live trees, and understory. We used a national 
map of forest carbon stocks broken down by carbon pool 
(Wilson et  al. 2013), selected for its broad applicability, 
that is derived from MODIS imagery, imputation mod-
eling, and FIA plot data to estimate the carbon stock of 
the fire perimeter pre-fire (Fig. 3). We resampled the car-
bon pool raster (250 m pixels) to match the resolution of 
our burn severity maps (30 m pixels) using nearest neigh-
bor interpolation, thereby preserving the information 
encoded in the burn severity maps. We then calculated 
the total pre-burn carbon in each carbon pool and burn 
severity class (Fig. 2 and Table 1).

Combustion factors
We used a modified version of the combustion factors 
used by Campbell et  al. (2007), because the forest they 
studied has a similar biomass composition to the Eagle 
Creek Fire. We expect combustion factors to depend 
both on vegetation species and on fuel moisture at the 
time of the fire. About 53% of the area of the Biscuit Fire 
was composed of mixed western Hemlock and Douglas 
Fir (the same as the Eagle Creek Fire); another 24% was 
composed of Douglas fir and other secondary species, 
and the final 23% was other forest types (Fig. S2; Rue-
fenacht et al. 2008; Campbell et al. 2007), Though south-
ern Oregon is typically drier than northwest Oregon, 

30-year normal precipitation values for the two locations 
are quite similar, including estimates for annual, Janu-
ary, and July data. In fact, January precipitation is lower 
on average for the Eagle Creek Fire perimeter than for 
the Biscuit Fire perimeter (PRISM (2006), Supplemental 
Table 1).

An exact application of the combustion factors in 
the Campbell et  al. (2007) study requires detailed field 
measurements that we do not have and are rarely avail-
able pre- and post-burn. Hence, we implemented an 
intermediate strategy whereby we used the carbon pools 
defined in existing datasets (Wilson et  al. 2013; Ohm-
ann and Gregory 2002; Bechtholdt and Scott 2005) and 
combined carbon pools of Campbell et al. (2007) where 
our data are insufficient (see details of pool combination 
in Table  2). Specifically, we lack the data to (1) distin-
guish between parts of the tree (bole, branches, etc.), (2) 
separate live trees by size, and (3) discriminate between 
small hardwoods and grasses. To distinguish between 
the parts of the tree and account for the distribution of 
tree sizes within the live trees category, we used two dif-
ferent methods: (1) estimating the distribution of carbon 
between parts of the tree using pre-burn estimates from 
Campbell et al. (2007) (their Table 3) and (2) estimating 
these parameters from TreeMap, a dataset that predicts a 
representative FIA plot for each 30 m × 30 m pixel in the 
landscape based on environmental variables (Riley et al. 
2021). TreeMap is limited in that the associated TREE 
table measures of dry biomass contain only the bole 
and the treetop (Campbell et al. 2007; Riley et al. 2021). 

Fig. 2  Conceptual workflow for GIS calculation of total pyrogenic carbon emissions. See supplemental figure 1 for technical workflow 
including tool names and input and output data
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Estimates including the whole live tree (bole, branch, 
bark, foliage) require the application of allometric equa-
tions or the use of the Forest Vegetation Simulator soft-
ware from the US Forest Service (USDA Forest Service, 
2023), which we consider beyond the scope of this work. 
As a result,our results from TreeMap that estimate com-
bustion factors based on only the bole and branch of live 

trees are likely to be underestimates (see Supplemental 
text). We used pre-burn estimates from Campbell et  al. 
(2007) to create a weighted combustion factor for stand-
ing and downed dead wood and calculated the under-
story combustion factor as the average of the “grasses” 
and “small hardwoods” category from Campbell et  al. 
(2007).

Fig. 3  Total pre-burn carbon stock in the Eagle Creek Fire burn area taken from Wilson et al. (2013)

Table 1  Pre-burn carbon in each carbon pool separated by burn severity. Note that the majority of pre-burn carbon was stored in live 
trees

Pre-burn carbon (Mg)

Total live tree Understory Standing dead 
wood

Downed dead 
wood

Litter and duff Soil Total

High 1,420,930 18,906 90,305 166,411 236,498 274,363 2,207,413

Moderate 938,630 12,084 59,652 107,156 152,304 549,582 1,819,409

Low 1,143,969 15,246 69,716 132,525 189,041 491,169 2,041,666

Very low 640,541 8913 37,755 76,270 110,770 465,106 1,339,354

Total 4,144,069 55,149 257,429 482,362 688,614 1,780,220 7,407,841

Table 2  Combustion factors by burn severity derived from median values of Campbell et al. (2007). Live tree, standing dead wood, 
and dead woodcombustion factors are a weighted average based on pre-burn biomass distribution in the Biscuit Fire of 2002 (Table 4 
of Campbell et al. 2007). Understory combustion factor is the average of “grasses” and weighted average value for “small hardwoods”; 
litter and duff combustion factor is the average of “litter” and “duff” (Campbell et al. 2007)

Combustion factors

Total live tree Understory Standing dead 
wood

Downed dead 
wood

Litter and duff Soil

High 0.11 0.93 0.27 0.35 0.99 0.05

Moderate 0.05 0.81 0.24 0.24 0.76 0.01

Low 0.01 0.60 0.01 0.21 0.81 0.01

Very low 0.00 0.42 0.00 0.23 0.67 0.00
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Uncertainty analysis
We quantified three sources of uncertainty in our estima-
tion of carbon loss: the choice of pre-burn carbon data 
(including the impact of spatial resolution), the choice of 
combustion factors, and the mapping of burn severity. 
To test the effect of pre-burn carbon data source on our 
estimate, we recalculated emissions using another map of 
carbon stock, focused on the Pacific Northwest region, 
that uses Landsat data (30  m resolution) rather than 
MODIS data (250  m resolution) as input to a gradient 
nearest neighbor model (along with FIA plot data, envi-
ronmental variables, etc.; LEMMA 2022; Ohmann and 
Gregory 2002), with data from the year before the fire. 
This map only reports live tree, downed dead tree, and 
standing dead tree carbon pools, so we used our original 
MODIS data to characterize carbon contained in litter 
and duff, soil (including roots), and understory layers. To 
assess the sensitivity of our analysis to combustion fac-
tors, we followed Michalek et  al. (2000) and performed 
our calculations with combustion factors ± 10% of the 
values we chose for each carbon pool (Table 3). Although 
the sensitivity to burn severity is harder to quantify 
because burn severity is categorical, we conducted an 
experiment whereby we shifted burn severity classifi-
cations by one category in either direction. (e.g., from 
severe to moderate or from moderate to severe).

Economic methods
We estimated the economic value of carbon lost by apply-
ing the current US administration’s SCC estimates (as of 
2022) using 5%, 3%, and 2.5% discount rates. In addition, 
there exists a SCC estimate based on a 3% discount rate 
which is applied to the 95th percentile of climate change 
damages as modeled by IAM. This represents a worst-
case scenario (Interagency Working Group 2021). Using 
different discount rates reflects the uncertainty under-
lying the SCC estimates. We used the SCC based on an 
emission release in 2020 (in 2020 USD) as the 2020 emis-
sion year is the first available data year from the Intera-
gency Working Group and 2020 was the closest year to 
the actual emission year 2017. The respective SCC values 
per metric ton of CO2 were $14, $51, $76, and $152. In 

a final step, we multiplied our solid carbon mass with 
44/12 to obtain the CO2E (EPA 2022) and then used the 
latter with the four SCC estimates respectively to calcu-
late the economic cost of the Eagle Creek Fire.

Results
We estimated the total carbon consumed by the Eagle 
Creek Fire to be 1.02 Tg (total range: 0.46 Tg to 1.94 Tg) 
(Table 4). We found the low and high end of this range 
by combining the lowest possible burn severities with 
the lowest possible combustion factors and highest 
burn severities with highest combustion factors (using 
the ± 0.1 approach of Michalek et al. (2000) as described 
above; Table  3). The central estimate using weighted 
combustion factors for each pixel based on TreeMap 
(Riley et al. 2021; see Supplemental text) is 0.83 Tg. This 
lower value reflects a lower average combustion factor 
for live trees compared to the combustion factors esti-
mated from Campbell et al. (2007) (0.01 vs. 0.11). Using 
the finer-resolution Landsat-based data (Ohmann and 
Gregory 2002; LEMMA 2022), we found the total carbon 
released by the Eagle Creek Fire to be 1.02 Tg, identical to 
the central estimate using the MODIS-based data (Wil-
son et al. 2013). The Wilson et al. (2013) dataset predicts 
more carbon in the live tree pool than the LEMMA data 
(LEMMA 2022); the LEMMA data predicts more carbon 
in the two dead wood pools than the Wilson et al. (2013) 
data. Because the magnitude of these differences is simi-
lar, they cancel out in the final carbon consumption esti-
mate. Unsurprisingly, most of the estimated emissions 
were from high burn severity areas (Fig. 4). At high burn 
severities, litter/duff and live trees are the top two con-
tributors to emissions, whereas at lower burn severities, 
litter/duff dominates. Though much of the carbon in live 
trees is retained, even at high burn severity (combus-
tion factor of 0.11; Table  2), because live trees are the 
dominant carbon pool in this forest type (Table  1), the 
total carbon lost at high severities is still relatively high. 
In contrast, the litter/duff pool is a main contributor 
because of high combustion factors, ranging from 0.99 at 
high severity to 0.67 at very low severity (Table 2).

Table 3  Uncertainty in carbon emission calculations due to combustion factors, burn severity, and a different choice of input carbon 
dataset

Uncertainty type Lower bound Central estimate Upper bound

Combustion factor (±0.1) 0.65 Tg 1.02 Tg 1.7 Tg

Burn severity (step up/down) 0.66 Tg 1.02 Tg 1.2 Tg

Alternate dataset (Ohmann and Gregory 2002) N/A 1.02 Tg N/A

TreeMap (Riley et al. 2021) N/A 0.83 Tg N/A

Outer bounds (low/low, high/high) 0.46 Tg 1.02 Tg 1.9 Tg
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Using the central estimate of carbon lost (1.01 Tg) and 
combining it with the SCC based on a 3% discount rate 
results in an estimated economic cost of carbon emis-
sions of US$187.2 mil (2020 $). Figure 5 shows how that 
cost is distributed among different burn severities and 
carbon pools. High burn severity areas have the highest 
contribution to the cost.

Figure 6 shows estimates of the economic cost of stored 
carbon losses for different per unit values of the SCC 
Supplemental Table 4 provides the underlying data. The 
estimates range from US$23.6 million to US$1059 mil-
lion (2020 dollars). The large spread in value estimates is 
largely due to the difference in discount rates assumed for 
each of the per unit SCC values assumed for each esti-
mate. Using the 2.5% discount rate gives us a central eco-
nomic cost of US$278.9 million, while the 5% discount 
rate results in costs of US$23.6 million, resulting in about 
a fivefold difference between the total cost estimates. The 

lower the discount rate, the higher the value of future 
damages from climate change. Using the 95th percentile 
of damages at a discount rate of 3% provides the highest 
cost estimate of US$1059.9 million, reflecting a worst-
case scenario in terms of estimated costs. We opt to use 
the 3% discount rate as the central value for estimating 
the economic cost as it is the central value used by the 
Interagency Working Group (2021). This implies a total 
economic cost of US$187.2 million.

Discussion
Methodology and uncertainty
We modified combustion factors from the Campbell 
et  al. (2007) for evaluating costs resulting from the 
Eagle Creek Fire, because the granularity of their analy-
sis enabled us to assess the impact of different pre-burn 
carbon pools on total carbon loss. As discussed above, 
forest type and precipitation for the two locations are 

Table 4  Carbon lost by burn severity and vegetation type. The two greatest contributors to carbon emissions are live trees and litter 
and duff

Carbon loss (Mg)

Total live tree Understory Standing dead 
wood

Downed dead 
wood

Litter and duff Soil Total

High 155,061 17,535 24,540 57,604 234,133 13,718 502,591

Moderate 47,183 9744 14,342 25,454 115,751 5496 217,970

Low 6310 9019 546 27,552 153,123 4912 201,462

Very low 0 3699 0 17,597 74,216 0 95,511

Sum (Mg) 208,554 39,996 39,428 128,206 577,224 24,126 1,017,534

Fig. 4  Total carbon consumed by the Eagle Creek Fire. Red shows areas of high carbon loss and blue shows areas of low carbon loss. Note 
that areas of high carbon loss correspond to high burn severity as shown in Fig. 1 and/or areas of high pre-burn carbon as shown in Fig. 3



Page 11 of 17Sweeney et al. Fire Ecology           (2023) 19:55 	

relatively similar. Hence, while this comparison is 
imperfect, we are comfortable using the Biscuit Fire as 
a basis for our work.

Our uncertainty analysis of combustion factors (e.g., 
Michalek, et  al. 2000) yielded an upper estimate of car-
bon emissions that is nearly 50% higher than our cen-
tral estimate and a lower bound that is also about 50% 
lower. In contrast to the scale of our uncertainty esti-
mates, Michalek et al. (2000) found a ± 4% difference. This 

disparate impact occurs because Michalek et  al. (2000) 
did not vary combustion factors for their calculations of 
belowground carbon loss (from roots and soil organic 
matter), which was the majority of the carbon lost in 
their study.

Our burn severity experiment yielded an asymmetric 
range of estimates, with the lower bound being about 
50% lower than our central estimate and the upper bound 
about 9% higher. This asymmetry is due to the limited 

Fig. 5  Economic value of carbon lost by burn severity (x-axis) and vegetation type (color) for the central scenario (1.02 Tg of carbon lost, 3% 
discount rate). While understory does combust at very low burn severity, the total contribution to carbon loss is small enough that it is not visible 
on this graph

Fig. 6  Economic cost (central scenario, 1.02 Tg) by discount rate, 5%, 3%, 2.5%, and 3% (95th percentile of damages)
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categories of burn severity. That is, high burn severity 
cannot become higher and unburned and very low burn 
severity cannot become lower. Because a large area of the 
Eagle Creek Fire was classified by MTBS as high sever-
ity, increasing burn severity across the fire area yields less 
change in emissions than decreasing the burn severity.

Despite the difference in methodology and year of the 
gradient nearest neighbor data we used (Ohmann and 
Gregory 2002; LEMMA 2022), our carbon emissions 
estimate was very close to our estimate using the Wilson 
et  al. (2013) data. Although this finding may stem from 
the fact that we used the same data for three of the car-
bon pools (understory, litter and duff, and soil), the live 
tree carbon pool, which is unique to each datasets, is a 
primary contributor to both pre-burn carbon stocks 
and ultimate emissions. Estimates for carbon lost from 
live trees are similar for both datasets: 0.209 Tg for Wil-
son et al. (2013) and 0.186 Tg for Ohmann and Gregory 
(2002) (Table  4 and Table S2). This suggests that lower 
resolution data, such as that from Wilson et  al. (2013), 
can provide reliable results for carbon analysis at this 
scale of analysis. While updated data for the US are 
recently available based on MODIS data from 2014 to 
2018 (Wilson et al. 2018), we do not believe our estimates 
would change substantially, as shown by how similar our 
results calculated with Wilson et  al. (2013) data (repre-
senting 2002–2008) are with GNN data from 2016. We 
are also concerned that the fire itself would impact the 
pre-burn carbon data, as the imputation is based on 
remote sensing data (which is impacted by forest fire).

Estimating weighted live tree combustion factors using 
biomass estimates from TreeMap (Riley et al. 2021; Sup-
plemental text) yielded a lower emission total than our 
other methods. As noted above, this dataset does not 
include bark or foliage, which may constitute around 
15–20% of total tree biomass and are also highly combus-
tible (Campbell et al. 2007). Hence, we consider the aver-
age live tree combustion factor (0.01) and the resulting 
carbon release calculation (0.83 Tg) as an underestimate.

One way to check our estimate is through the EPA fire 
emissions inventory, which is aggregated by county every 
three years (EPA 2023). In 2017, the Eagle Creek Fire 
was the only major fire in Multnomah County and Hood 
County, Oregon, and can hence be considered the pri-
mary “event” source in the National Emissions Inventory 
(EPA 2023). The EPA estimates that 4,611,136.525 tons of 
CO2 (equivalent to 1.3 Tg of carbon) were released from 
event sources in these two counties in 2017, very close to 
our central estimate of 1.01 Tg carbon lost in the Eagle 
Creek Fire.

We acknowledge that our analysis relies significantly 
on our choice of SCC estimate and that use of a different 
SCC estimate could lead to a different set of results. We 

chose an SCC estimate that others have used in previous 
analyses of carbon storage (Haight et  al. 2020). There is 
significant uncertainty in our economic estimates due to 
the differences in the SCC values used, arising from the 
differing discount rates assumed for each SCC value. The 
highest estimate (worst case scenario, 3% discount rate, 
95% percentile of damages) is nearly 300% higher than 
the central estimate; the lowest estimates (5% discount 
rate) is only 30% of the central estimate. The SCC uncer-
tainty is greater than the uncertainty from the carbon 
estimates where the sensitivity analysis did not show a 
divergence of more than 50% from the central estimates. 
In reality, the lowest and highest economic estimates 
can be considered as boundary conditions when explor-
ing plausible climate change scenarios. Most economic 
studies on climate change impacts use a SCC based on 
the 50% percentile of modeled climate change damages 
(rather than 95th percentile) and use a 3% discount rate 
(as we do here) or apply lower discount rates (e.g., Haight 
et al. 2020; Dittrich et al. 2019). Discount rates of 3% or 
lower (which lead to higher damages) reflect the uncer-
tainty of a distant future where climate change impacts 
may cause significant damages of which we are not aware 
yet (Weitzman 1998). We therefore follow the existing lit-
erature by applying the 3% discount rate to determine our 
central value (US$187.2 million). For comparison, Bat-
ker et al. (2013) estimated the economic value of carbon 
lost from the 2013 Rim Fire, California, which burned 
about twice as much area than the Eagle Creek Fire to be 
between USD$100 to USD$792 million (depending on 
the SCC applied).

The role of fire in ecosystem function and the importance 
of scale
In performing the calculations detailed in this paper, 
we are not advocating for fire suppression or elimina-
tion as a strategy for combating climate change. Past 
work (e.g., Allen et al. 2002) has highlighted the disas-
trous effects of twentieth century suppression on fire 
severity and size. Indeed, fire is an important part of 
many ecosystems in the western US and elsewhere (e.g., 
Whitlock et  al. 2003), and the restoration of natural 
fire regimes in these ecosystems will also restore car-
bon cycling. Our estimate considers a short temporal 
and spatial scale relative to longer ecosystem processes; 
other authors have noted that ecosystems with natural 
fire regimes have a net zero carbon balance if consid-
ered over larger scales (Loehmann et al. 2014). Never-
theless, even if fire regimes are restored, anthropogenic 
climate change is likely to increase fire occurrence and 
severity through increased aridity, leading to increased 
instantaneous emissions (Abatzoglou and Williams 
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2016). Applicability of our method to examining other 
fires.

The method we described for estimating the economic 
costs of carbon losses resulting from a wildfire can be 
easily applied to similar computations for other wildfires 
in the USA. The MTBS Burn Severity maps are available 
for fires greater than 250 ha (MTBS). BAER maps are typ-
ically available for fires greater than 5000–10,000 ha that 
occurred on public land. Large fires that burn across fed-
eral, private, state, and tribal land may also be assessed by 
interagency BAER teams (e.g., the Okanagan Fire Com-
plex; Nelson 2009). Similarly, FIA data is available for all 
public and private lands in the USA. In Oregon, for exam-
ple, the majority of wildfires occur on public land (Grand 
et al. 2018). Where fire occurs on private land, landown-
ers may be willing to share information about the compo-
sition of their forests. While regionally-specific empirical 
combustion factors like those used here are rare, models 
such as CONSUME (Prichard et al. 2006) can be used to 
predict fuel consumption and resulting emissions based 
on fuel condition estimates (Urbanski 2011). Future work 
developing reliable combustion factors for other regions 
of the USA and the world would facilitate more robust 
computations for wildfires occurring in other regions.

In addition, we relied on carbon pool data that uses 
several variables (including MODIS satellite data) to 
model biomass across different carbon pools. As wildfires 
in the western US increase in number, size, and sever-
ity (Haugo et al. 2019), they also are increasingly occur-
ring in recently burned locations. A recent example is 
the North Complex Fire in 2021 that burned adjacent 
to the Camp Fire of 2018 in northern California. In such 
cases, older gradient nearest neighbor data would not be 
adequate to represent pre-burn carbon pools if the area 
had not recovered completely to pre-burn conditions 
before the second fire. Instead, a thorough investigation 
of reburned areas would require consideration of the ini-
tial combustion of different carbon pools and how those 
carbon pools recover post-burn.

Emission totals in a regional context
Applying our findings to a regional or national context 
requires viewing our emissions estimates in the context 
of other events. Campbell et al. (2007) estimated that the 
81,000 ha Biscuit Fire had 3.5–4.4 Tg C emissions, which 
is about two to nine times higher than our estimate of 
0.46–1.94 Tg C. This comparison makes sense given the 
relative size of the two events; the Eagle Creek Fire cov-
ered about ¼ of the area of the Biscuit Fire.

Another way to contextualize our estimate is to com-
pare it to total emissions for the state of Oregon (Meigs 
et  al. 2009). In 2017, the Oregon Department of Envi-
ronmental Quality estimated Oregon’s total carbon 

emissions as 64–65 Tg CO2 equivalent (https://​www.​
oregon.​gov/​energy/​energy-​oregon/​pages/​green​house-​
gas-​snaps​hot.​aspx). Hence, the Eagle Creek Fire equates 
roughly to 1.5% of non-fire state emissions. Assuming 
that emissions are roughly proportional to area burned 
(based on our comparison with the Biscuit Fire), in a his-
torically destructive fire year, such as 2020 when 4451 
km2 in Oregon burned (State of Oregon 2021), we might 
expect wildfire emissions to be up to 50% of non-wildfire 
greenhouse gas emissions for the state.

Economic implications and policy applications
Forests can contribute to climate change mitigation by 
sequestering carbon. In the Pacific Northwest, however, 
forests are increasingly impacted by wildfires which 
release carbon which is part of a negative feedback effect. 
Specifically, climate change aggravates the occurrence of 
wildfires, and more wildfires contribute to a worsening 
of climate change impacts. For the Eagle Creek Fire, we 
found the central estimate of economic losses from the 
carbon released to be US$187.2 million (2020 dollars). 
The Eagle Creek Fire (194 km2) was smaller than many 
recent fires, such as the Camp Fire in California (2018) 
which burned 619 km2 and the Santiam Fire in Oregon 
(2020) which burned 1627 km2. Nevertheless, despite the 
moderate size of the ECF, an estimated US$187.2 million 
worth of carbon was lost. Economic figures like these 
help to shed light on the true societal costs brought about 
by increasing wildfires.

Having carbon estimates for single wildfires can help to 
contextualize the importance of emissions from forests 
relative to emissions from other sources in the USA. For 
example, the value of annual CO2 emissions of a typical 
passenger vehicle amount to about $219 (2020 dollars 
(EPA 2022), and the average household in the USA pro-
duces $2446 (2020 dollars) worth of emissions per year 
(applying the central SCC) (U.S. Department of Com-
merce Economics and Statistics Administration  2010). 
Comparable numbers such as these help to illustrate 
the sheer magnitude of carbon lost in dollar terms from 
just a medium sized wildfire such as the Eagle Creek Fire 
($187.2 million). Comparing the Eagle Creek Fire car-
bon emissions with those of the entire residential sector 
which accounts for 6% of total US emissions, this picture 
changes: emissions from the residential sector in 2019 
amounted to $18.1 billion (2020 dollars). Or put differ-
ently, the Eagle Creek Fire, a single medium-sized wildfire 
in the state of Oregon, produced about 0.4% of the emis-
sions of the entire US residential sector. Comparisons like 
these emphasize that wildfire emissions are significant, 
especially when looking at entire wildfire seasons relative 
to a single wildfire as we do here.

https://www.oregon.gov/energy/energy-oregon/pages/greenhouse-gas-snapshot.aspx
https://www.oregon.gov/energy/energy-oregon/pages/greenhouse-gas-snapshot.aspx
https://www.oregon.gov/energy/energy-oregon/pages/greenhouse-gas-snapshot.aspx
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Wildfires are inevitable and an important part of most 
ecosystems in the western US, yet their potential instan-
taneous contribution to greenhouse gas emissions are 
policy-relevant considerations when devising mitiga-
tion strategies for addressing climate change. For exam-
ple, economic loss estimates such as those developed 
here can be applied in cost-benefit analyses to evaluate 
potential mitigation measures, by comparing the ben-
efits of reducing carbon emissions to the potential costs 
associated with implementing policies and programs to 
induce greater carbon sequestration in forests. Haight 
et al. (2020), for example, estimated an average cost to the 
Federal government of $477 per acre to conduct refor-
estation in the western US, similar to how tree-planting 
has been accomplished under the USDA Conservation 
Reserve Program. At such a per acre cost, the total cost 
of reforesting the entire burned area of the Eagle Creek 
Fire would be a fraction of the total value of stored car-
bon emitted by the fire and would accelerate the pro-
cess of ensuring that the landscape once again provides 
a carbon sink of similar magnitude in the future. More 
ambitious would be to actually conduct formal cost-ben-
efit analysis on various forest management approaches to 
addressing wildfire. Conducing formal cost-benefit analy-
sis of forest management prescriptions to reduce wildfire 
risk is fraught with many challenges as noted by Kline 
(2004). As such, conducting a formal cost-benefit analy-
sis of alternative forest management approaches was well 
beyond the scope of our analysis and our objective.

Carbon loss estimates can also help to inform wildfire 
management policy decisions, which often center around 
the magnitude of wildfire suppression costs as well as 
damage to homes and other structures. Estimates of the 
potential economic costs associated with carbon emis-
sions help to provide a more complete picture of the true 
economic costs of wildfires, thus facilitating a more com-
plete picture of the potential benefits of wildfire manage-
ment efforts. Using the approach we have outlined here 
of evaluating the economic costs associated with carbon 
emissions from wildfires, it is likely feasible to develop 
an annual report of carbon emissions from wildfires on 
a state or even regional level (e.g., western US) to aid in 
monitoring changes in national forest carbon stocks from 
year to year. Such monitoring would support both wild-
fire policy and management as well as climate change 
mitigation efforts by providing up to date information on 
the status of carbon stores in the US.

Conclusions
We present an easily replicable method using publicly 
available data to estimate the economic cost of the 
carbon emissions from a single wildfire. Our results 

demonstrate an additional cost of wildfire that is rarely 
included in economic analysis. Future work using 
the methods presented here could support local and 
regional wildfire policy management by tracking annual 
economic costs of wildfire.
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