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Abstract 

Background  Predicting patterns of fire behavior and effects in frequent fire forests relies on an understanding 
of fine-scale spatial patterns of available fuels. Leaf litter is a significant canopy-derived fine fuel in fire-maintained 
forests. Litter dispersal is dependent on foliage production, stand structure, and wind direction, but the relative impor-
tance of these factors is unknown.

Results  Using a 10-year litterfall dataset collected within eighteen 4-ha longleaf pine (Pinus palustris Mill.) plots vary-
ing in canopy spatial pattern, we compared four spatially explicit models of annual needle litter dispersal: a model 
based only on basal area, an overstory abundance index (OAI) model, both isotropic and anisotropic litter kernel 
models, and a null model that assumed no spatial relationship. The best model was the anisotropic model (R2 = 0.656) 
that incorporated tree size, location, and prevailing wind direction, followed by the isotropic model (R2 = 0.612), basal 
area model (R2 = 0.488), OAI model (R2 = 0.416), and the null model (R2 = 0.08).

Conclusions  As with previous studies, the predictive capability of the litter models was robust when internally vali-
dated with a subset of the original dataset (R2 = 0.196–0.549); however, the models were less robust when challenged 
with an independent dataset (R2 = 0.122–0.319) from novel forest stands. Our model validation underscores the need 
for rigorous tests with independent, external datasets to confirm the validity of litter dispersal models. These models 
can be used in the application of prescribed fire to estimate fuel distribution and loading, as well as aid in the fine tun-
ing of fire behavior models to better understand fire outcomes across a range of forest canopy structures.
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Resumen 

Antecedentes  Predecir los patrones de comportamiento del fuego y sus efectos en incendios frecuentes de 
bosques se basa en el entendimiento de los patrones espaciales a escala fina de los combustibles disponibles. La 
broza de hojas (hojarasca) es un combustible fino significativo derivado del dosel arbóreo en bosques mantenidos 
por el fuego. La dispersión de esta hojarasca es dependiente de la producción de follaje, de la estructura del rodal, y 
de la dirección del viento, aunque la importancia relativa de estos factores es desconocida.

Resultados  Usando un conjunto de 10 años de datos de hojarasca coleccionada dentro de dieciocho parcelas de 
Pino de hoja larga (Pinus palustris Mill.) de 4 ha cada una, y que variaban en el patrón espacial de sus doseles, compar-
amos cuatro modelos explícitos de dispersión anual de hojarasca de acículas: un modelo basado solamente en el área 
basal, un modelo de índice de abundancia del dosel (OAI), tanto isotrópicos como anisotrópicos -modelo kernel de 
hojarasca-, y un modelo nulo que asumía ninguna relación espacial. El mejor modelo fue el anisotrópico (R2=0,656) 
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que incorporó el tamaño del árbol, ubicación, y dirección del viento predominante, seguido por el del área basal (R2 = 
0,488), el modelo OAI (R2 = 0,416), y el modelo nulo (R2 = 0,08).

Conclusiones  Como en estudios previos, la capacidad de predicción de los modelos de hojarasca fue robusto 
cuando fue validado internamente con un subconjunto de la base de datos original (R2 = 0,196–0,549); sin embargo, 
los modelos fueron menos robustos cuando fueron cotejados con un conjunto de datos independientes (R2 = 0,122–
0,319) derivados de doseles nuevos. Nuestra validación del modelo subestima la necesidad de pruebas rigurosas con 
conjuntos de datos independientes y externos, para poder validar los modelos de dispersión de hojarasca. Estos mod-
elos pueden ser usados en la aplicación de quemas prescriptas para estimar la distribución y carga del combustible, 
como también pueden ayudar en la calibración fina de modelos de comportamiento para entender mejor los efectos 
del fuego a través de un amplio rango de estructuras de doseles.

Background
Leaf litter dynamics shape multiple ecosystem processes 
including nutrient cycling, plant competition, heat and 
water transfer between the soil and the atmosphere, and 
fire characteristics (Facelli & Pickett 1991). The annual 
input of litterfall at any point on the forest floor is influ-
enced by the species, size, and location of surrounding 
trees, timing of peak litterfall, and wind speed and direc-
tion (Staelens et al. 2003; Jonard et al. 2006). Spatial pat-
terns of litter accrual and retention through time are 
also affected by decomposition, fire, and other agents of 
litter removal (Facelli & Pickett 1991). Leaf litter disper-
sal modeling is one approach to predicting the influence 
that leaf litter spatial patterns have on forest ecosystem 
processes.

Previous studies have developed spatially explicit 
models of leaf litter dispersal to predict the influence of 
forest composition and structure on litterfall patterns 
(Ferrari and Sugita 1996, Staelens et al. 2004, Jonard et al. 
2006, Bigelow and Canham 2015, Nickmans et  al. 2019, 
Sánchez-Lopez et  al. 2023). These studies use measure-
ments of tree size and location to predict litter input 
from individual trees. Species-specific factors influence 
the dispersal patterns of leaf litter such as leaf morphol-
ogy, surface area, weight, and other physical character-
istics. Thus, models of leaf litter dispersal vary among 
individual tree species (Ferrari and Sugita 1996). Ferrari 
and Sugita (1996) developed a spatially explicit isotropic 
model for leaf litterfall that combined an allometric 
equation for litter production and a negative exponen-
tial decay function for dispersal distance to characterize 
spatial patterns of leaf litter in hemlock-hardwood for-
ests. Staelens et al. (2003) extended litter dispersal func-
tions by including an anisotropic model that accounted 
for wind influence. Jonard et  al. (2006) and Nickmans 
et al. (2019) used a ballistic leaf litter dispersal model that 
included leaf release height and leaf fall velocity to pre-
dict litterfall patterns. These previous studies on litterfall 
modeling have focused on mixed hardwood forests and 
their role in nutrient cycling, but similar studies on leaf 

litter dispersal are lacking in pine-dominated forests, 
despite the role of pine needles as the primary fuel for 
maintaining fire in many pine forests (Hiers et  al. 2009; 
Loudermilk et al. 2011).

The role of vegetation as fuel is a major topic of research 
and management concern within fire-dependent ecosys-
tems (Hiers et al. 2020). The ecology of fuels is a concept 
that emphasizes feedbacks among fuels, fire behavior, 
and vegetation response (Mitchell et al. 2009). Vegetation 
serves as fuel and modifies fire behavior, and in turn, fire 
behavior affects plant response. A key component of this 
feedback cycle is the availability and distribution of fine 
fuels supplied by the forest canopy. Overstory conditions 
affect spatial patterns of fire behavior and subsequent fire 
effects impact the composition and structure of ground-
layer vegetation (Platt et  al. 2016), impacting processes 
such as plant mortality and germination (Wiggers et  al. 
2013). Management activities and disturbances routinely 
alter the density and configuration of overstory trees 
(Rutledge et  al. 2021; Cannon et  al. 2022), and thereby 
alter the availability and distribution of canopy-derived 
fuels such as leaf litter. It is important to know what level 
of canopy density is recommended for achieving restora-
tion and prescribed burning goals depending on the pre-
existing site conditions and forest type.

In longleaf pine (Pinus palustris Mill.) ecosystems, 
pine needles provide an important source of fine 
fuels from the canopy that influence fire behavior and 
effects (Mitchell et  al. 2006; Hiers et  al. 2009; O’Brien 
et  al. 2016). Although it is known that proximity to 
adult tree crowns can affect fuel loading and subse-
quent fire behavior in longleaf forests (Williamson and 
Black 1981; Rebertus et al. 1989; Grace and Platt 1995; 
O’Brien et  al. 2008; Whelan et  al. 2018), much less is 
known about how litter patterns vary at fine scales in 
spatially complex forest stands. Thus, an improved 
understanding of fuel availability and continuity across 
a range of overstory conditions can improve pre-
scribed fire application through forest management 
that maintains adequate litter fuel across the landscape. 
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In addition, pine needle litter accumulation from the 
canopy and decomposition in the litter layer occurs 
between fires (Sánchez-López et  al. 2023), and under-
standing the temporal as well as the spatial heterogene-
ity of litter patterns is salient to the management of fire 
dependent ecosystems.

In this study, our objectives were to parameterize and 
validate spatially explicit models of litterfall in longleaf 
pine-dominated forests. Specifically, we sought to under-
stand how leaf litter varies spatially with tree diameter, 
local tree neighborhood (i.e., tree location), and prevail-
ing wind direction. We expected individual-tree-based 
models to predict litterfall patterns better than area-
based models. In addition, we expected prevailing wind 
direction to influence leaf dispersal patterns. To evalu-
ate the predictive power of the models across a range of 
novel site conditions, we used an independently collected 
dataset that included litterfall from sites that varied by 
edaphic gradient and performed a second validation 
using a subset of the original dataset to compare model 
performance to the independently collected dataset.

Methods
Study approach
To predict the distribution of pine needle fuels, we 
used a 10-year litterfall dataset (2011–2020) collected 
from stem mapped plots that varied in spatial pattern. 
We predicted annual litterfall by fitting four neighbor-
hood models using data from plots with mapped trees 
of known diameter. We also included a null model (here-
after referred to as the interannual null model) which 
allowed litter amounts to vary annually but assumed no 
spatial relationship of trees as well as a simplified version 
of this model that excluded annual variability (hereafter 
referred to as the intercept-only null model). This allowed 
us to understand the relative contribution of spatial vari-
ability and interannual variability to litter production. 
Maximum likelihood estimates of model parameters 
were generated by simulated annealing, a global opti-
mization approach (Canham and Uriarte 2006). This 
approach allowed for spatially explicit prediction of nee-
dle fuel distribution based on overstory structure, using 
measurements of local stand density and the influence of 
individual tree characteristics. We used three independ-
ent datasets (hereafter referred to as external validation) 
collected from a separate study to evaluate the predictive 
power of the models. Previous studies validated models 
using only a subset of the original dataset without chal-
lenging it against an independently collected dataset. 
Thus, we also used this method, in addition to the exter-
nal validation, to allow comparison across studies (here-
after referred to as internal validation).

Study site
The study was conducted at the Jones Center at Ichau-
way in southwestern Georgia, an 11,000-ha research 
center located in the Gulf Coastal Plain physiographic 
province. Second-growth longleaf pine forests at this site 
occur primarily on upland, well-drained soils and have 
been actively managed since the 1930s with prescribed 
fire on 1–3  year fire return interval and selective har-
vesting mainly by individual-tree selection silviculture 
(McIntyre et  al. 2008). Frequent, low-intensity fire sup-
ports a savanna-like vegetation structure with a longleaf 
pine-dominated overstory and an understory dominated 
by grasses and a diverse array of woody and herbaceous  
species (Walker and Peet 1983; Drew et  al. 1998;  
Kirkman et  al. 2001). Summer daily average tempera-
tures range between 21–34 °C and winter temperatures 
range between 5–17  °C. Annual precipitation averages  
about 1310  mm (Goebel et  al. 1997). The region is  
subject to tropical air masses that originate in the Gulf 
of Mexico and cause frequent thunderstorms, high 
winds, and occasional tropical depressions such as  
hurricanes that can create significant canopy disturbance 
(Rutledge et al. 2021).

Study design and data collection
For model parameterization, we used a litterfall data-
set collected from 108 traps distributed among eight-
een 4-hectare plots where overstory tree locations were 
known (Cannon et  al. 2022). Litter traps consisted of 
a 0.25m2 conical plastic mesh bag attached to a plas-
tic ring elevated 0.75  m from the ground. Overstory 
composition in the study plots was dominated by lon-
gleaf pine (~ 95%) with a minor component of oak spe-
cies (e.g., Quercus virginiana Mill. and Quercus falcata 
Michx.). Tree density ranged from 102 to 152 trees ha−1 
and mean basal area ranged from 13.3 to 16.2 m2 ha−1. 
Tree locations within plots also varied in spatial pat-
tern as they were part of a silvicultural experiment 
that employed three spatially distinct harvest methods, 
including individual-tree selection, group-selection, 
group-selection with reserves, and control treatments 
(Cannon et al. 2022). Selective harvest occurred within 
these plots in 2009 using the Stoddard-Neel approach 
of individual-tree selection (McIntyre et  al. 2008) and 
group-selection treatments aimed to have the same 
residual basal area as the individual-tree treatment 
which varied based on site conditions. In both group-
selection treatments three openings were installed that 
were ~ 0.20 ha in size. Stand surveys were conducted in 
2009, 2014, and 2019 wherein all trees ≥ 10 cm in diam-
eter at breast height (dbh) were inventoried, measured, 
mapped using a Nomad GPS with a Crescent A100 
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backpack antenna with a horizontal accuracy of < 0.6 m 
(Hemisphere GPS, Calgary, Canada). Stem maps were 
generated using data for tree dbh and spatial location 
of trees. Stem maps for years 2010, 2017, and 2018 were 
inferred based on post-disturbance information on tree 
mortality collected following initial forest treatment 
harvest in 2010, tornado damage in 2017, and Hur-
ricane Michael damage in 2018, respectively (Cannon 
et al. 2022), and we assumed no change between these 
dates to infer remaining years.

Leaf litter data collection began in summer 2010 (into 
2011) and ended in 2021, and annual litterfall meas-
urements were calculated from April to March of the 
following year, resulting in 10 years of annual litterfall 
data. To capture a gradient of canopy structure, litter 
traps were stratified under three classes of overstory 
abundance indices (OAI) that ranged from low (0–471), 
medium (472–1414), to high (1415–3359). OAI was 
calculated at the center of each 4 m grid cell using the 
formula:

where BA is the cross-sectional area (cm2) at breast 
height of each tree i (≥ 10  cm dbh) within 15  m of the 
center of each grid cell, and d is the distance to each tree 
(Whelan et  al. 2018). OAI is higher in locations with 
larger trees and when trees are nearer to the point of 
interest. Litterfall biomass was collected from litter traps 
approximately every 3  months and oven-dried at 70  °C 
for at least 48  h to a constant mass. Pine needles were 
sorted from other non-pine species and were assumed to 
originate from longleaf pine because of its dominance in 
the study plots (~ 95% density).

To assess how well the best spatial model performed 
in a new setting, we collected an independent valida-
tion dataset from 68 additional traps across 12 differ-
ent 0.25-hectare plots from years 2019–2021 (i.e., two 
years of litterfall data) using the previously described 
litter trap design and processing method. We estab-
lished these plots in stands that were also dominated 
by longleaf pine but varied by site edaphic condition 
hereafter referred to as xeric, intermediate, and mesic 
sites (n = 3 per edaphic condition). The mesic site was 
characterized by poorly-drained sandy loam over sandy 
clay loam with a water holding capacity of 40  cm per 
m of soil, the intermediate site was characterized by 
well-drained loamy sand over sandy loam with 28  cm 
per m of soil, and the xeric site was characterized by 
deep, sandy soils with a water holding capacity of 18 cm 
per m of soil (Goebel et al. 1997; Mitchell et al. 1999). 
Mean basal area ranged from 11.1 to 18.4 m2  ha−1 
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(Wiesner et al. 2020). We inventoried all longleaf pine 
trees ≥ 10  cm dbh within the validation plots in the 
summer of 2021 and mapped tree locations relative to 
previously mapped litter collection traps using a Tru-
Pulse 360° laser rangefinder.

Model descriptions
To predict field-measured annual litterfall, we developed 
four spatially explicit models of litterfall with increas-
ing complexity, a spatially null model that accounted 
for interannual variability in litter production, and an 
intercept-only version of this model to assess the relative 
contribution of year-to-year variability. Starting with the 
simplest model, the intercept-only null model estimated a 
parameter (ε) for the mean litterfall at any point of inter-
est (litter trap) across all years, assuming no spatial rela-
tionship to the surrounding trees. We also constructed a 
model which included a different parameter (αy) estimate 
for each year (y) of the 10-year data collection to account 
for annual differences in litter production (interannual 
null model). However, we did not measure variables that 
may have accounted for these differences because this 
study primarily concerned spatial variability in litter dis-
persal rather than temporal variability.

We defined two area-based models based on stand 
density: a basal area model (Eq.  1) which predicted leaf 
litterfall (LLFi) at a point of interest representing a litter 
trap (i) based on the basal area of n trees within a speci-
fied radius r:

where ay is a litter production scaling parameter with 
separate estimates for each of the 10 years of calibration 
data to account for interannual variation, BAir is the basal 
area (m2 ha−1) within radius r (m), and ε is an intercept 
parameter. We also defined a model based on OAI (Eq. 2) 
which predicts litter fall based on individual tree size and 
distance from a point of interest i.

where α y is an annual litter production scaling param-
eter, β and γ are scaling parameters, distij represents the 
distance from the ith point to the jth tree for all n trees, 
and ε is an intercept parameter.

We included two individual-tree-based models based 
on previous studies in mixed hardwood stands (Fer-
rari and Sugita 1996; Staelens et al. 2003). These models 
incorporated the influence of individual tree size and 
location to determine how their combined litter pro-
duction and dispersal kernels contributed to predicted 

(1)LLFi = αy
n

r=1
BAir + ε

(2)LLFi = αy

[

∑n

j=1

BA
β
j

dist
γ
ij

]

+ ε
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litterfall at a point of interest. The first individual-tree 
model (hereafter referred to as isotropic model) assumed 
isotropic leaf dispersal and consisted of an allometric 
function to represent foliage biomass production in the 
model. The allometric function (Eq.  3) predicts foliar 
production based on tree diameter (dbh in cm):

where α and β are scaling parameters that affect foliar lit-
ter production with increasing tree size and δ attenuates 
the rate of foliage biomass increase as dbh increases. The 
litter dispersal kernel component incorporates an expo-
nential decay function (4)

where N is a normalizing parameter that ensures the 
spatial kernel integrates to one, γ is a parameter that 
determines the dispersal kernel shape, and distij rep-
resents distance from the ith trap to the jith tree. Data 
from a study on litter dispersal in isolated trees validated 
that a negative exponential function is appropriate for 
characterizing leaf litterfall patterns from trees (Ferrari 
and Sugita 1996). Combining these model components 
results in the following isotropic model (Eq. 5):

We combined α and 1/N into a single parameter (αy) to 
simplify parameter estimation, ε is an intercept param-
eter, and the γ2/2π term integrates the distance-based 
function to calculate total biomass (following Ferrari and 
Sugita 1996). The second individual-tree model (here-
after referred to as the anisotropic model (Eq.  6) is a 
modification of Eq.  5 that incorporates the influence of 
prevailing wind direction (Staelens et al. 2003).

where the additional parameter γ’ modifies dispersal dis-
tance due to the effects of wind. The variable θ(in radi-
ans) represents the angle clockwise from north, from 
location i to source tree j, and the term θij − θ

d
 accounts 

for the difference between the angle of tree j and point 
i and the relative wind direction ( θd in radians). The 
term cos(θij − θ

d
 ) is positive when downwind of a tree of 

interest and negative in upwind locations, which slightly 
increases and decreases litter, respectively. Parameter 
γ determines the shape of the litterfall curve. We also 
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combined a and 1/N into a single parameter (αy) for the 
anisotropic model.

Parameter estimation and model comparison
We estimated parameters for litter dispersal models 
using the simulated annealing function in the likelihood 
package (Murphy 2015) in R 4.0.3 (R Core Team 2013). 
Simulated annealing is a global optimization search 
algorithm that attempts to find the global maximum of 
the likelihood surface produced by all possible values of 
the given model parameters being estimated. We used a 
maximum number of iterations of 10,000 and reported 
upper and lower parameter support intervals. We com-
pared model fit using the corrected Akaike information 
criterion (AICc) as well as the coefficient of determina-
tion (R2) from the linear regression of predicted litterfall 
versus observed litterfall (Anderson and Burnham 2002).

Model validation
We used an independently collected validation dataset to 
evaluate the predictive power of the models in novel lon-
gleaf pine stands that varied across a gradient of edaphic 
conditions. To evaluate model performance, we used a 
linear regression analysis, using the observed litterfall 
values as the predictor variable and the predicted litter-
fall values from the validation dataset as the response 
variable. We used the coefficient of determination (R2) 
to compare the performance of the different models with 
the validation data. We also obtained daily wind direction 
data over the study period from an onsite environmen-
tal monitoring station to validate the anisotropic model 
parameter estimate for prevailing wind direction (New-
ton GA, JWJERC, Hoogenboom et al. 1991).

Because previous studies on litter dispersal used only 
internal validation, we also used a subset of the original 
calibration dataset (108 traps) for comparison with previ-
ous studies which did not use an independent validation 
dataset. We re-trained the models with a random selec-

tion of two-thirds of the data from  the litter traps  (72 
traps; n = 720)  across the 10-year period and used the 
remaining one-third (36 traps; n = 360) of litter trap data 
to validate the models. This internal validation allowed 
comparison of model performance to similar studies.

Results
Model fit comparison
Overall model fit increased with model complexity. The 
two individual-tree models characterized by isotropic 
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and anisotropic litter dispersal had the highest R2 and 
lowest AICc values (Table  1). The anisotropic model 
had the best fit compared to measured litter trap data 
(R2 = 0.656), while the isotropic model was comparable 
in performance (R2 = 0.612). The basal area model per-
formed moderately well (R2 = 0.488), followed by the 
OAI model (R2 = 0.416). As expected, all spatially explicit 
models explained more variation in litterfall than the spa-
tially independent null models. Annual variability in lit-
terfall production accounted for about ~ 10% of variation 
in litterfall predictions for the interannual null model 
(R2 = 0.099) relative to the intercept-only null model 
(R2 = 0.016).

To demonstrate how models can be used to predict the 
spatial patterns of litter, we generated heat maps depict-
ing the model predictions of litterfall based on stem map 
data (Fig. 1). Spatial configuration of canopy trees drives 
the availability of litter in the understory at fine scales, 
and within the 4-hectare area shown. Litterfall var-
ies from 95 to 360 g  m−2 for all models except the OAI 
model which ranged from 135  g  m−2 to an unrealistic 
42.6 kg m−2.

Leaf litter production and dispersal pattern
Over the 10-year study period, mean annual litter pro-
duction (g m−2) varied by a factor of greater than 1.5. 

Individual year estimates of the parameter for scaling lit-
ter production (α) varied by a factor of 1.3 to 1.7 among 
the models. The trends in annual litter production are 
similar for mean annual litter production and α param-
eter estimates, indicating an effect of temporal variability 
on model parameter estimates (Fig. 2).

The two individual-tree models included an allo-
metric litter production function as well as a negative 
exponential decay dispersal function. The isotropic and 
anisotropic models predicted similar litterfall at diameter 
sizes < 30 cm, whereas predictions differed by about 5% at 
stem diameters ≥ 60 cm (Fig. 3a). For trees up to 60 cm 
in diameter, the isotropic model predicted that > 80% of 
litterfall occurs within 15 m of the source tree (Fig. 3b).

Wind direction influenced predicted litterfall dispersal 
patterns upwind and downwind of source trees. The ani-
sotropic model predicted litterfall was concentrated within 
10  m on the upwind side and within 20  m of the down-
wind side of a 30 cm diameter tree (Fig. 4a), demonstrating 
the directional influence of wind on litter dispersal. The 
estimated prevailing wind direction θd was between 5.376 
and 5.772 radians corresponding to 308° to 331° which is 
between the prevailing wind direction which oscillates 
from ~ 225° to 20° between July and January (peak needle 
cast) (Fig. 4b), resulting in litterfall concentration slightly 
to the southeast of individual trees (Fig. 5).

Table 1  Model fit of intercept-only and interannual null models and four spatially explicit leaf litter dispersal models in longleaf pine 
forests in southwestern Georgia, USA from 2011–2020. The optimal parameter estimates are shown with 95% support intervals (in 
parentheses) except for the annual intercept model where the range across the 10-year period is shown. Parameters are defined in the 
methods section. R2: adjusted R2 for the model, k: number of model parameters, � AICc: corrected Akaike information criterion. A “- “ 
indicates that the model does not include the parameter denoted in the column

Parameter Litter models

Intercept only Annual intercept Basal area OAI Isotropic Anisotropic

αy - 0.1908
(0.1392–0.2405)

0.0062
(0.0028–0.0096)

0.5739
(0.1892–0.8561)

0.3817
(0.2506–0.5146)

0.1428
(0.0979–0.1897)

β - - - 0.3114
(0.2989–0.3389)

0.9709
(0.9612–0.9709)

1.1617
(1.1617–1.1617)

r - - 8.349
(8.349–8.600)

- -

γ - - - 1.8926
(1.8926–1.9116)

0.1969
(0.1832–0.2088)

0.2566
(0.2437–0.2642)

γ’ - - - - - 0.0966
(0.0927–0.1038)

δ - - - - 0.0000
(0.0000–0.0012)

0.0000
(0.0000–0.0006)

θd - - - - - 5.659
(5.376–5.772)

ε 0.1915
(0.1838–0.1991)

- 0.1153
(0.1130–0.1242)

0.0861
(0.0783–0.0897)

0.0670
(0.0596–0.0695)

0.0694
(0.0659–0.0749)

R2 0.016 0.099 0.488 0.416 0.612 0.656

k 2 11 13 14 15 17

ΔAICc 736.53 681.14 276.86 373.66 82.11 0



Page 7 of 16Blaydes et al. Fire Ecology           (2023) 19:56 	

Although the basal area model was only the third 
best model based on AIC, we present further results 
from this model to allow for litter prediction when only 
stand level data rather than individual tree data is avail-
able. For the basal area model, Fig. 6 describes the lit-
terfall amount shed with increasing basal area around a 
point of interest at a set neighborhood radius of 8.3 m. 
Litterfall increased by approximately 0.00621 kg m−2 as 
basal area increased by one unit (m2 ha−1), based on the 
median α value, but this coefficient varied from 0.0028 
to 0.0096 over the 10-year study period.

Model validation
Predictive capability varied greatly among the models 
when tested against the independently collected, exter-
nal validation dataset (Table  2; R2 = 0.122–0.319). For 
all models, the regression line deviated significantly 
from the 1:1 line, often overpredicting litterfall, espe-
cially at litterfall amounts < 0.1  kg  m−2 (Fig.  7). The iso-
tropic model performed best on independently derived 
data (R2 = 0.319). The second best-performing model 
was the anisotropic model (R2 = 0.242). Both the iso-
tropic and anisotropic models overpredicted litterfall 

Fig. 1  Example litterfall predictions for four spatially explicit litter models within a 200 × 200 m study plot. Predictions are shown with a 2 m 
resolution for basal area, OAI, isotropic, and anisotropic models. The locations of longleaf pine trees ≥ 10 cm are indicated with grey circles. 
Values > 0.363 kg m−2 are truncated in the OAI model for clarity and a 30-m buffer was clipped from each side to reduce edge effects. We used 
the mean α from each model to represent an average year
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values at values < 0.3  kg  m−2  yr−1. The basal area and 
OAI models performed poorly in comparison to the 
individual-tree models (R2 = 0.122 and R2 = 0.129, respec-
tively) when applied to an independently collected data-
set. The basal area model overpredicted litterfall at 
values < 0.2 kg m−2 yr−1 and the OAI model had the high-
est root mean square error and underpredicted litterfall 

at all levels of litter production. Site edaphic condition 
showed a marked difference in litterfall amounts and 
accuracy of model predictions among sites (Table 2). In 
particular, all models performed poorly in the xeric site, 
and model performance was best in the mesic site.

Because many existing studies do not validate models 
with an independent dataset, we used internal validation 

Fig. 2  Study-wide annual litterfall from 2011 to 2020 calculated from 108 total 0.25 m2 litter traps among eighteen 4-ha research plots. 
Disturbances from prescribed fire, tornado, and hurricane are shown. Error bars represent two standard errors of the mean. Note that sampling 
for a nominal year spans into April of the following year

Fig. 3  Comparison of (A) isotropic and anisotropic litter kernel models as a function of tree diameter of individual tree (cm); B individual-tree leaf 
litter dispersal predicted by an isotropic model as a function of distance (m) from the source tree at three tree size classes. Models use the mean α 
parameter to represent an average year
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Fig. 4  Predictions of leaf litter dispersal from anisotropic model as a function of distance from a source tree (dbh = 30 cm) in the upwind 
and downwind directions using a mean value of α parameter to represent an average year; b frequency distribution of daily wind direction for all 
months from 2011–2021. The red arrow indicates the parameter estimate for θd = 5.66 radians (324.3°)

Fig. 5  Simulated litterfall predicted for an isolated 30 cm dbh longleaf tree (located at origin), in all directions using the anisotropic model 
for estimated wind direction θd = 5.66 (324.3°) and the mean α parameter to represent an average year. Output resolution is 0.5 m



Page 10 of 16Blaydes et al. Fire Ecology           (2023) 19:56 

to allow for comparison with other studies. Results of 
internal validation appeared to have much better fit than 
suggested by external validation using the novel dataset 
(Table  3; R2 = 0.196–0.549). All models were significant 
when challenged with the internal validation dataset. 
Additionally, the anisotropic model performed the best 
in this internal validation and the OAI model performed 
the worst (Table 3; Fig. S1).

Discussion
This study supports three major findings on leaf lit-
ter dispersal in longleaf pine forests: (1) leaf litter was 
best predicted by individual-tree-based models using 

an exponential decay function, (2) mean annual litter-
fall production by plot varied by a factor of ~ 1.5 over a 
10-year span, and (3) incorporating dispersal distances 
as an exponential decay function was more important 
for model performance than prevailing wind direction. 
This is the first known study to utilize a 10-year data-
set to parameterize models of pine needle dispersal. In 
addition, we evaluated models using an external, inde-
pendently collected dataset as well as a subset of the 
original calibration dataset. Models performed more 
poorly when challenged with a novel dataset than when 
challenged with a subset of the original data. Although 
most litter dispersal studies use only internal validation, 
our study highlights that validation of litter models may 
require external datasets to verify the predictive capa-
bility of litter dispersal models in novel forest stands.

Model fit and validation
Incorporating the influence of individual trees greatly 
improved model fit. This modeling approach accounted 
for the complexity due to leaf litter contribution of 
individual trees based on tree location and size. How-
ever, the basal area model was surprisingly well-fit to 

Fig. 6  Annual leaf litterfall as predicted by basal area within radius of 8.35 m. Dashed lines show basal area model for a range of values of α 
representing annual variability in litter production (see Table 1). Dark line and equation correspond to mean value of the α parameter to represent 
an average year

Table 2  Comparison of coefficient of determination (R2) for 
regressions of observed litterfall from the validation dataset 
versus model predictions of litterfall in longleaf forests in 
southwestern Georgia, USA. P values ≥ 0.05 indicated by “- “

Basal Area OAI Isotropic Anisotropic

Overall 0.122 0.129 0.319 0.242

Xeric - - - -

Intermediate 0.153 - 0.196 -

Mesic - 0.179 0.148 0.117
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the calibration data. Compared to the best-fit model 
(anisotropic) that explained 66% of the variation in lit-
terfall, the basal area model explained only 17% less 
of the variation in litterfall. Since stem maps are often 
not available for forest stands, this model can be more 
broadly useful for predicting longleaf pine litter disper-
sal as it requires basal area within a specified radius, 
rather than individual tree data from a stem map. This 

would be more relevant to spatially uniform forests 
such as even-aged pine plantations. Conversely, the 
individual-tree models may be more useful for predict-
ing litterfall in uneven-aged stands with more complex 
canopy structure. However, given the growing availabil-
ity of lidar datasets and algorithms for tree segmenta-
tion (Silva et  al. 2016; Blackburn et  al. 2021; Whelan 
et al. 2023), individual tree-based litter prediction mod-
els will likely increase in utility. The OAI model had 
relatively low explanatory power and large over-predic-
tions in litter. As seen in Fig. 1, the OAI model predicts 
unrealistically high litterfall at short distances from 
trees, and low litterfall elsewhere. This is likely because 
the model structure imposes an inverse relationship 
between litterfall and distance. Although it is useful as 
a competition index (Bigelow and Canham 2015), OAI 
may have less utility for modeling litterfall.

Regardless of whether internal or external validation 
was used, the isotropic and anisotropic models always 
provided the best predictions of litterfall. We expected 

Fig. 7  Comparison of regressions for predicted needle litterfall vs. observed litterfall of the external validation data. Observed data are of three 
different longleaf pine forest sites varying along an edaphic gradient (xeric, intermediate, and mesic) in southwestern Georgia, USA from years 
2019–2021. The dashed line represents a 1:1 relationship

Table 3  Comparison of coefficient of determination (R2) for the 
model performance in initial calibration, internal, and external 
validation tests from litterfall data collected from longleaf pine 
forests in southwestern Georgia, USA. The best model in each 
category is indicated in bold

Basal area OAI Isotropic Anisotropic

Calibration 0.488 0.416 0.612 0.656
Internal Validation 0.484 0.196 0.510 0.549
External Validation 0.122 0.129 0.319 0.242
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that the internal and external validation data sets would 
rank models consistently, but this was not the case 
(Table 3). Although the anisotropic model predicted lit-
terfall comparably well to the isotropic model, it did not 
perform as well with the external validation data as it did 
with the calibration data. The anisotropic model may not 
have predicted as well with the external dataset because 
the unmeasured factors that contribute to the influence 
of wind influence during peak litterfall months could 
have deviated from our calibration dataset study sites. 
For instance, canopy structure has an effect on the influ-
ence of wind flows (Finnigan 2000; Pimont et  al. 2011), 
and the model may not have been able to account for 
considering the wide range of canopy spatial configura-
tions across the three edaphic categories of our external 
validation dataset. Future modeling studies in longleaf 
pine forests could take a ballistic approach like Jonard 
et al. (2006) that considers wind speed and release height 
to refine the model for wider applicability in model forest 
types.

We externally validated our model with multiple data-
sets because we expected differences in forest structure 
and primary productivity across an edaphic gradient to 
influence litterfall. Mitchell et al. (1999) found that over-
story annual net primary productivity was significantly 
higher in mesic than xeric sites, largely due to greater 
density of overstory trees in mesic sites. Sheffield et  al. 
(2003) found that at the individual tree level, needles 
were longer in mesic than in more xeric sites. Stand level 
characteristics that differ between soil moisture regimes 
are more likely to contribute to differences in litterfall 
predictions.

This study found that incorporating wind direction 
modestly improved litterfall predictions by explaining 
an additional 4% of variation in litterfall, but the impor-
tance of wind influence varies among other studies. No 
other pine-based studies that evaluated the influence 
of prevailing wind direction could be compared to our 
results. However, previous studies tested the influence of 
wind direction in hardwood forests and found an effect 
of wind on prevailing dispersal direction (Staelens et al. 
2003; Jonard et  al. 2006; Bigelow and Canham 2015; 
Nickmans et  al. 2019). One study modeling leaf dis-
persal of basswood (Tilia americana L.), yellow birch 
(Betula alleghaniensis Britton.), eastern hemlock (Tsuga 
canadensis L.), and sugar maple (Acer saccharum Marsh.) 
trees did not detect a strong influence of wind direction 
on litterfall (Ferrari and Sugita 1996). However, this may 
have been due to the closed canopy nature of the stands 
studied, whereas the influence of wind may have been 
more important in the open structure of the longleaf pine 
woodlands in this study. In more closed canopy longleaf 

pine stands, the effect of wind may be less important. 
Leaf characteristics such as morphology and litterfall tim-
ing can also determine the influence of wind on disper-
sal (Staelens et al. 2003; Jonard et al. 2006). For instance, 
needle size in longleaf pine may be of significance com-
pared to other species with smaller needles. The influ-
ence of wind on leaf dispersal in pine-based studies may 
differ from deciduous hardwood studies because their 
canopies retain foliage year-round, which may diminish 
the influence of wind in peak litterfall months. The incor-
poration of wind in the anisotropic model explained only 
4% more variation in litterfall than the isotropic model, 
and the fitted parameter of wind direction θd was inter-
mediate between the prevailing wind direction of sum-
mer (June–August) and autumn (September-December). 
Determining prevailing wind from nearby weather sta-
tions is fairly easy and may improve models more sub-
stantially in sites with consistent wind direction during 
peak periods of litterfall.

The results of this study shed light on the relevant 
radius of litterfall shedding around a tree of interest. We 
estimated that the relevant radius of leaf shedding (r) of 
the basal area model was 8.35  m. In the isotropic and 
anisotropic dispersal models, relevant distances of lit-
terfall deposition ranged from 10–20  m depending on 
wind direction. These estimates span a range of litterfall 
influence slightly higher than the basal area model, but 
the majority of litter is concentrated within the first 10 m 
when modeled at the individual tree level. Staelens et al. 
(2004) found that cumulative basal area and leaf litterfall 
(Q. rubra, Q. robur, and B. pendula) were highly corre-
lated at a radius of about 12–18  m around litter traps. 
Another study, Ferrari and Sugita (1996), found that the 
average radius within which 90% of leaf litter falls to a 
trap is 17.1  m. The smaller relevant radius we observed 
is comparable to findings from other studies that have 
documented the extent of longleaf pine needle cast in 
relation to individual trees and gap edges. For example, 
O’Brien et  al. (2008) found that needle loading into a 
canopy gap greatly diminishes by about 8–12 m. A study 
by Bigelow and Whelan (2019) attributed lower fire tem-
perature and less hardwood topkill to diminishing needle 
availability, as predicted by a neighborhood model that 
estimated there was a marked decrease in time over 60° C 
about 10 m from 30 cm adult longleaf pine trees. Another 
study by Rebertus et  al. (1989) demonstrated that the 
influence of longleaf pine crowns on turkey oak (Quercus 
laevis Walt.) survival extended about 4  m beyond the 
crown edges. The range of variability among studies for 
the relevant litterfall radius of longleaf pine is broad, and 
this study supports a mechanistic basis to estimate this 
value.
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Sources of litterfall variability
We found high interannual variability in leaf litter pro-
duction across the 10 years of litterfall data, as indicated 
by a wide range of αy parameter estimates (Table  1). 
Other comparable studies found low interannual variabil-
ity in litter production, but these were also conducted in 
forests dominated by deciduous trees (Ferrari and Sugita 
1996; Staelens et  al. 2003; Jonard et  al. 2006). Though 
we did not measure variables that may account for tem-
poral variability in litterfall, there are multiple explana-
tions for the variability across the study period. Factors 
such as weather patterns and site conditions affect needle 
biomass production and timing of shedding (Hennessey 
et al. 1992). For instance, Hennessey et al. (1992), found 
that differences in annual litterfall patterns in a loblolly 
pine stand over a 5-year period varied with growing 
season precipitation, site water balance, and the occur-
rence of drought. Gresham (1982) found an effect of a 
hurricane causing an irregularly high increase in annual 
longleaf pine litterfall. Sheffield et  al. (2003) found that 
needle life span varied by 8–24  months (15  months on 
average) in a mature longleaf forest, suggesting that nee-
dle fall timing can be highly variable. Incorporating cli-
mate parameters such as growing season precipitation or 
annual precipitation to estimate litter production could 
further enhance the predictive power of these models 
and improve performance with novel datasets.

There are additional tree characteristics that could be 
incorporated to improve the individual-tree models. For 
instance, tree height was not considered in this study, 
which can limit the ability to predict litterfall dispersal 
on sites with heterogenous tree sizes (Jonard et al. 2006), 
but can be modeled (Loudermilk et al. 2011). Other stud-
ies used a ballistic model to predict litterfall, (Jonard 
et al. 2006; Nickmans et al. 2019), and this approach that 
incorporates tree height, leaf velocity, and wind speed 
may be of interest for future studies in longleaf needle 
dispersal. Furthermore, crown architecture can affect 
foliage biomass production and dispersal distance. There-
fore, including a variable such as crown volume or live 
crown ratio may improve future models. Sánchez-Lopez 
et  al. (2023) used litter data from clip plots and crown 
attribute data via airborne laser scanning to predict litter 
biomass accumulation. They successfully modeled local 
fuel heterogeneity with this approach, which incorpo-
rated litter decomposition as well as litter consumption 
during prescribed fire. Though our study also predicts 
litter biomass production, we did not include parameters 
for litter removal from the fuelbed. Nevertheless, the 
predictions of explicit litter inputs are useful for under-
standing contributions of leaf litter to nutrient cycles and 

fuel beds. Litter dispersal should be closely related to leaf 
area, so direct or indirect measures of leaf area of indi-
vidual trees could improve models further.

The relationship between tree size, age, and needle pro-
duction could be further explored in old-growth longleaf 
pine forests, as this study took place in second-growth 
forests that are about 80–100 years old. Adding parame-
ter δ, which determines the decline in litter production as 
tree dbh increases, approached zero in both the isotropic 
and anisotropic models, and thus did not contribute to 
the allometric relationship between dbh and annual lit-
terfall (Eq.  3). This finding was similar to Staelens et  al. 
(2003), likely because there were not many large trees 
(Ruark 1987). This study could be expanded in old 
growth longleaf to see if there is a significant reduction in 
foliage production in much larger, older trees (i.e., δ > 0). 
Repeated studies in forests across a wider range of stand 
structures can improve the robustness of individual-tree 
litter dispersal modeling.

Conclusion and management implications
Spatially explicit models of leaf litterfall can improve 
our understanding and practice of fire-dependent eco-
system management. In frequently burned ecosystems, 
fuel distribution varies at fine scales resulting in vari-
able fire effects at fine scales (Loudermilk et  al. 2018). 
Therefore, it is important to understand how leaf lit-
ter fuels affect fire at fine scales, and particularly bio-
physical fire effects such as fire-induced plant mortality 
(O’Brien et  al. 2018). The ability to predict the spatial 
pattern and quantity of leaf litter fuels could contribute 
to existing models of fire behavior such as QUIC-fire 
(Linn et al. 2020) as well as next generation fire behav-
ior models that are currently under development. In 
addition, terrestrial LIDAR (Light Detection and Rang-
ing) technology can decrease the time spent on acquir-
ing accurate tree data to model litter dispersal (Dassot 
et  al. 2011). Information on litter abundance can also 
be useful for modeling ecosystem processes such as 
mortality from fire. For example, spatially explicit mod-
els of growth, competition, and mortality have been 
developed for longleaf pine ecosystems that require 
information of fuel accumulation of pine litter to esti-
mate fire intensity and resulting tree mortality but 
currently are based on coarser empirical models (Lou-
dermilk et  al. 2011). In addition, litter dispersal mod-
els could be useful for understanding spatial patterns 
of other species found to have fire intensity, duration, 
and flammability comparable to longleaf pine needles 
such as turkey oak (Quercus laevis Walt.) and post oak 
(Quercus stellata Wangenh.) (Kane et  al. 2008). Leaf 
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litter models can also be used to better understand the 
effects of forest tree species shifts on litter composition. 
The positive feedback cycle known as mesophication 
whereby fire-tolerant species with highly flammable 
litter are replaced by fire-sensitive, shade-tolerant spe-
cies (Nowacki and Abrams 2008; Alexander et al. 2021) 
results in a dampening effect on fire behavior in for-
merly fire-prone ecosystems (Kreye et al. 2018). Under-
standing the impacts of these compositional shifts on 
leaf litter patterns can be assisted by these dispersal 
models. Besides fire, other ecosystem processes such as 
carbon and nitrogen and other nutrients are linked to 
leaf litter production and deposition (Bigelow and Can-
ham 2015; Liu et al. 2009).The models of litter deposi-
tion explored here can be incorporated into spatially 
explicit models of ecosystem succession which consider 
litter input and decomposition (e.g., Landis-II NECN 
extension; Scheller et  al. 2011) to improve predictions 
and understanding of nutrient cycling.

An overall advantage of these models is that they 
can provide predictions of litterfall patterns at various 
scales from a patch in the forest to the landscape level. 
In the context of prescribed fire, these models may help 
predict continuity of fuels in conjunction with other 
models (Pimont et al. 2011; Bigelow and Whelan 2019). 
Effective fuels management is critical for fire-depend-
ent plant and wildlife species and the ecosystems they 
inhabit, as well as for human recreation and aesthetic 
purposes. Predicting needle litter deposition based on 
canopy structure is not only applicable to the effective 
management of prescribed fire, but also for sustain-
able harvesting of timber and pine straw. For instance, 
these models may be useful to land managers inter-
ested in pine straw production from longleaf pine and 
other pine species, particularly in stands where com-
position and structure are not uniform, but a straw 
harvest is desired. These models also inform manage-
ment decisions regarding the density of adult trees to 
maintain while harvesting timber to sustain sufficient 
pine litter in the fuelbed. Indeed, all these models could 
potentially converge under a homogenous overstory 
canopy with homogenous litter dispersal. We expect 
this may occur in pine or other planted stands, where 
simpler models may suffice. However, many ecologi-
cal forestry approaches in longleaf pine aim for more 
complex structure (Cannon et al. 2022). In these cases, 
models that incorporate spatial information on trees 
can improve predictions substantially as our results 
support. The use of these and future litter dispersal 
models holds potential for understanding and predict-
ing prescribed fire and other management outcomes in 
longleaf pine forests as well as other frequently burned 
forest ecosystems.
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