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Abstract 

Background In the new era of large, high‑intensity wildfire events, new fire prevention and extinction strategies 
are emerging. Software that simulates fire behavior can play a leading role. In order for these simulators to provide 
reliable results, updated fuel model maps are required. Previous studies have shown that remote sensing is a use‑
ful tool for obtaining information about vegetation structures and types. However, remote sensing technologies 
have not been evaluated for operational purposes in Atlantic environments. In this study, we describe a methodol‑
ogy based on remote sensing data (Sentinel‑2 images and aerial point clouds) to obtain updated fuel model maps 
of an Atlantic area. These maps could be used directly in wildfire simulation software.

Results An automated methodology has been developed that allows for the efficient identification and mapping 
of fuel models in an Atlantic environment. It mainly consists of processing remote sensing data using supervised clas‑
sifications to obtain a map with the geographical distribution of the species in the study area and maps with the geo‑
graphical distribution of the structural characteristics of the forest covers. The relationships between the vegetation 
species and structures in the study area and the Rothermel fuel models were identified. These relationships enabled 
the generation of the final fuel model map by combining the different previously obtained maps. The resulting 
map provides essential information about the geographical distribution of fuels; 32.92% of the study area corre‑
sponds to models 4 and 7, which are the two models that tend to develop more dangerous behaviors. The accuracy 
of the final map is evaluated through validation of the maps that are used to obtain it. The user and producer accu‑
racy ranged between 70 and 100%.

Conclusion This paper describes an automated methodology for obtaining updated fuel model maps in Atlantic 
landscapes using remote sensing data. These maps are crucial in wildfire simulation, which supports the modern wild‑
fire suppression and prevention strategies. Sentinel‑2 is a global open access source, and LiDAR is an extensively used 
technology, meaning that the approach proposed in this study represents a step forward in the efficient transforma‑
tion of remote sensing data into operational tools for wildfire prevention.
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Resumen 

Antecedentes En la nueva era de grandes incendios de alta intensidad, están emergiendo nuevas estrategias de 
prevención y extinción. Los softwares que simulan el comportamiento del fuego, pueden jugar entonces un rol de 
liderazgo. Con el fin de que estos simuladores provean de resultados confiables, es un requisito básico el tener mapas 
actualizados de modelos de combustible. Estudios previos han mostrado que los sensores remotos son herramien‑
tas valiosas para obtener información sobre la estructura y tipos de vegetación. Sin embargo, las tecnologías de los 
sensores remotos no han sido aún evaluadas para propósitos operacionales en ambientes atlánticos. En este estudio, 
describimos una metodología basada en datos de sensores remotos (imágenes Sentinel‑2 y puntos de nubes aéreas) 
para obtener mapas de modelos de combustible de un área Atlántica. Estos mapas pueden ser usados directamente 
en los softwares de simuladores de incendios.

Resultados Una metodología automatizada ha sido desarrollada para permitir la identificación eficiente y el mapeo 
de modelos de combustible en un ambiente atlántico. Esta metodología consiste en procesar datos de sensores 
remotos usando clasificaciones supervisadas para generar un mapa con la distribución geográfica de las especies en 
el área de estudios, y mapas de distribución geográfica de las características estructurales de la cobertura forestal. Se 
identificaron luego las relaciones entre las especies vegetales y sus estructuras en el área de estudios y los modelos de 
combustibles de Rothermel. Estas relaciones permitieron generar un mapa final de combustibles mediante la combi‑
nación de los mapas obtenidos previamente. El mapa resultante provee de información esencial sobre la distribución 
de los combustibles; el 32,92% del área de estudios corresponde a los modelos 4 y 7, los cuales son los dos modelos 
que tienden a desarrollar los comportamientos más peligrosos. La exactitud del mapa final fue evaluada a través de la 
validación de los mapas usados para obtenerlo. La exactitud entre usuario y producto osciló entre 70% y 100%.

Conclusiones Este trabajo describe una metodología automatizada para obtener mapas actualizados de paisajes 
atlánticos usando datos de sensores remotos. Estos mapas son cruciales para la simulación de incendios, y sirven para 
generar estrategias de prevención y supresión. El Sentinel‑2 es una fuente global de acceso abierto, y LIDAR es una tec‑
nología usada extensivamente, lo que significa que esta aproximación propuesta representa un paso adelante para la 
transformación eficiente de datos de sensores remotos en herramientas operacionales para la prevención de incendios.

Background
Large wildfires are an increasingly frequent phenomenon 
around the globe (Tedim et  al. 2018; Linley et  al. 2022). 
The 2017 and 2022 wildfire seasons are examples of this 
trend (Nature, 2017; Rodrigues et al. 2023). In 2017, a total 
of 622,000 ha burned in Chile, Russia, the USA, Canada, 
Greenland, and the Mediterranean (Nature, 2017). Similar 
examples, such as the recent wildfires recorded in Cali-
fornia, have arisen in subsequent years (CalFire, 2023). 
The 2019/20 Australian wildfire season is another exam-
ple: the wildfires affected, either directly or indirectly, 
nearly 80% of Australian citizens (Biddle et al. 2020). These 
large wildfires have severe direct and indirect impacts on 
human lives, as pointed out by Nature (2017) and Tedim 
et al. (2018), but they also have significant ecological and 
socio-economic implications (Li et al. 2022; Taboada et al. 
2021; Wang et al. 2021a). According to different scientific 
records, these events represent a trend that is expected to 
continue in the future (Dong et  al. 2022; Senande-Rivera 
et al. 2022; Flannigan et al. 2013).

Multiple high-intensity wildfire events have demonstrated 
that traditional fire extinction and prevention strategies are 
insufficient for controlling large wildfires. (Moreira et al. 2020; 
Quílez et al. 2020; Dupuy et al. 2020). For example, the fire 

prevention infrastructures in Spain are currently still designed 
for low-intensity fires, e.g., underestimated firebreaks, (Quílez 
et  al. 2020). The need to renovate the traditional manage-
ment approaches is driving a search for new prevention and 
extinction strategies that would be effective in controlling 
these high-intensity wildfires (McWethy et al. 2019; Romero-
Vivó et  al. 2019; Quílez et  al. 2020). In the Mediterranean 
basin, where large wildfires pose a great threat to some for-
est ecosystems and human lives and assets, the concept of 
strategic management areas has been proposed to improve 
wildfire prevention (Costa Alcubierre et al. 2011; Royé et al. 
2019; Oliveira et al. 2018). For instance, in Spain, the recent 
law, Royal Decree-Law 15/2022, of August  1st, mandates the 
identification and design of annually updated strategic man-
agement areas throughout the country (RDL 15/2022).

Among the new approaches to wildfire prevention, sim-
ulation software is becoming paramount since it allows 
for the prediction of wildfire behavior in a certain area 
(Romero-Vivó et al. 2019; Quílez et al. 2020; Iglesias et al. 
2022). Wildfire simulation software uses several types of 
input data to determine the rate of spread, intensity, flame 
length, and affected area, among other variables. The input 
data mainly include weather conditions, topographic infor-
mation, and fuel models (Ellsworth et al. 2022; Rothermel 
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1983). Fuel models are sets of data that numerically describe 
the structure and composition of the surface organic mat-
ter with the potential to burn, leading to different wildland 
fire behaviors (Anderson 1982; Benali et  al. 2017). These 
fuel models are the primary input when it comes to the 
reliability of virtual simulations since fire behavior is highly 
dependent upon vegetation type and availability as well as 
on the horizontal and vertical distribution of biomass (Jain 
et al. 2020; Gale et al. 2021). Accurate and up-to-date fuel 
model maps of a study area are, thus, essential for effective 
wildfire prevention and the identification of strategic areas.

According to Simons et  al. (2013), most of the exist-
ing simulation software relies on Rothermel’s (1972) fire 
spread model and is updated by Albini (1976) using fuel 
models described by Anderson (1982) and Scott and Bur-
gan (2005). Traditionally, identifying the corresponding 
fuel model for the specific vegetation types present in an 
area has been done through field surveys (Anderson 1982; 
Arroyo et al. 2008). However, using field surveys to obtain 
updated fuel model maps for large areas can be arduous 
and potentially not cost-effective (Gale et al. 2021).

In recent decades, new remote sensing technologies 
have been developed that are providing useful data for fire 
ecology studies in general (Szpakowski and Jensen 2019) 
and for the characterization and mapping of fuels in par-
ticular (Wallace et al. 2022). Multispectral and optical data 
can be useful for obtaining geographic information about 
different types of vegetation in different places and eco-
systems (Erinjery et al. 2018; Zeng et al. 2020). For exam-
ple, Hościło and Lewandowska (2019) used Sentinel-2 
images to differentiate between forest types (coniferous 
and broadleaf) and between eight different tree species 
(oak, alder, birch, spruce, pine, beech, larch, and fir). Very 
high-resolution satellite images (from WorldView-3) were 
also used successfully to differentiate between species by 
Fang et  al. (2020). This capacity to distinguish between 
forest types or species is interesting from the forest-fire-
management point of view, since different species and 
types of forest exhibit different fire behavior when wild-
fires occur (Wang et al. 2021a, b). However, a limitation of 
multispectral data is that they do not allow for the detailed 
characterization of the structure of tree stands. For this 
purpose, SAR (Synthetic Aperture Radar) data and LiDAR 
(Light Detection And Ranging) data are being consid-
ered. Whereas the potential of SAR data has yet to be 
fully assessed, the capabilities of LiDAR data to study the 
structure of forests are well established and understood 
(Moran et al. 2018; Wiggins et al. 2019; Tello et al. 2018). 
For example, Jarron et al. (2020) assessed the capability of 
aerial LiDAR data to estimate sub-canopy attributes and 
developed a methodology to map these attributes.

In the field of forest fire management, there are also sev-
eral methodologies based on remote sensing techniques 

that have been presented in specialized scientific publi-
cations. Gale et  al. (2021) recently published a review of 
this topic. They highlighted the existence of two main 
approaches: using remote sensing data for the characteriza-
tion of different fuels and using remote sensing data in the 
automated identification of predefined fuel models. Of the 
studies analyzed, only 30% use the latter approach (Gale 
et al. 2021). Some examples are Domingo et al. (2020) and 
Huesca et al. (2019). They used remote sensing data to iden-
tify, at the pixel level, models included in the Prometheus 
fire model, a model that was developed specifically for  
Mediterranean ecosystems (Arroyo et  al. 2008). To be 
able to use the obtained fuel maps operationally in simu-
lation software, they designed a procedure to assimi-
late the Prometheus models to the Rothermel fuel 
models. Another example is the study of Marino et  al. 
(2016) which developed a fuel model map for the Canary 
Islands. They used ALS data and Landsat images to 
create the map, using the Canary Islands Fuel Model 
(CIFM), a local adaptation of the Rothermel fuel mod-
els (Marino et  al. 2016). Ferrer Palomino and Rodríguez 
y Silva (2021), used LiDAR data to characterize, identify,  
and map fuel models according to the UCO40 fuel models, 
thus adapting Scott and Burgan’s fuel models to a specific 
Mediterranean environment (Andalucía). An example of  
a different type of study is the work of Heisig et al. (2022) 
that, in central European forests, used remote sensing, field 
work, and modeling techniques to develop a customized 
fuel map that can be used with the FlamMap software.

An important consideration inferred from the Gale et al. 
(2021) review is that most of the studies that use remote 
sensing for fuel mapping focus on Mediterranean forests 
and woodlands. These kinds of studies, as is pointed out 
by Cardil et al. (2021), should be performed in a variety of 
different environments so that wildfire simulation software 
can be used for operational decision-making in a wider 
range of areas. For instance, Atlantic climates involve sin-
gularities that require specific analysis: vegetation grows 
faster than in a Mediterranean climate leading to a faster 
accumulation of large fuel loads which can lead to extreme 
fire behavior (Arellano et al. 2017).

Galicia is an area representative of an Atlantic climate. 
It is also one of the Spanish regions that is most prone to 
wildfires (de Diego et  al. 2021). Various efforts have been 
made to identify and characterize the most common fuel 
models in Galicia; the most prominent is the fuels photo-
guide published by Lourizán CIF (photo-guide from now 
on) (Arellano et  al. 2017). Other researchers have charac-
terized some fuel variables through remote sensing; some 
examples are Alonso-Rego et al. (2021), Alonso-Rego et al. 
(2020), Fidalgo-González et  al. (2019) and Arellano-Pérez 
et al. (2018). However, these methodologies do not result in 
a map with the distribution of fuel models; these maps are 
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needed to be used with simulation software to obtain reli-
able results about the behavior of wildfires in a certain area. 
In this sense, methodologies that produce updated fuel 
model maps for Atlantic landscapes are still needed.

In this study, we describe a remote-sensing-data-based 
methodology for obtaining an operational fuel model 
map for an Atlantic-vegetation-covered area in Galicia 
(Northwestern Spain). We used Sentinel-2 images and 
ALS (Aerial Laser Scanner) data.

Study area
This study was conducted in the region of Galicia, Spain. 
This region represents only 6% of the total surface area 
of Spain; however, it encompassed 22.51% of the total 
burned area in Spain between 2006 and 2015 (Ministerio 
de Agricultura, Pesca y Alimentación, 2019). This trend 
has continued in subsequent years (López-Rodriguez 
et  al. 2021; Xunta de Galicia, 2022) with several large 
wildfires and extensive burned areas being reported (Rod-
rigues et al. 2023; Xunta de Galicia, 2022). For this reason, 
improved wildfire prevention plans are needed. For this 
research, a pilot area was selected. It is shown in Fig. 1.

Galicia has an Atlantic climate (Royé et al. 2016). Accord-
ing to the most recent Spanish Forest Map, approximately 
69% of the area studied is covered by forest or shrub-
lands (MITECO, 2011). The main tree species present in 
the study area are Pinus pinaster Aiton, Pinus radiata D. 
Don, Eucalyptus globulus Labill., and Quercus robur L., 
along with riparian forest tree species (Alnus glutinosa 

L., Fraxinus excelsior L., and Salix spp. L. among others) 
(MITECO, 2011). The main shrubs in the area are Ulex 
europaeus L. and Erica spp. L. Obtaining fuel model maps 
through remote sensing is especially challenging in this 
region due to the rapid rates of vegetation growth (Arellano 
et  al. 2017), which, in conjunction with an active forestry 
sector, leads to highly dynamic land cover paradigms.

Materials
Satellite images
A time-series of Sentinel-2 images dating from the year 
2019 was used in this study. Sentinel-2 is a constellation 
of two satellites (Sentinel-2A and 2B), each equipped 
with a Multispectral Instrument (MSI) (European Space 
Agency, 2015). The MSIs can obtain multispectral images 
with 13 multispectral bands of different spatial resolu-
tions, ranging from 10 to 60 m. The specifications of the 
bands are presented in Table  1. Together, the satellites 
provide a revisit time of five days at the equator and two 
to three days at mid-latitudes.

Level-2A Sentinel-2 products were used. These prod-
ucts incorporate radiometric, geometric, and atmos-
pheric corrections (European Space Agency, 2023). A 
total of 12 images were used in this study, one image per 
month. The images were downloaded from the Coper-
nicus Open Access Hub (https:// scihub. coper nicus. eu/). 
For each month, the image with the least cloud cover was 
selected, with the stipulation that no image should have a 
cloud cover greater than 50%.

Fig. 1 Study area location

https://scihub.copernicus.eu/
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Airborne LiDAR data
The LiDAR data were acquired in November of 2019. The 
point clouds have a mean spatial resolution of 7.2 points/
m2. The structure of the data consists of 7786 1 km × 1 km 
tiles that cover a total area of 7426.35  km2 of coastal munic-
ipalities. The study area includes 378 tiles, corresponding to 
6 different municipalities. These 378 tiles cover 366.25  km2, 
which represents 1.2% of the total surface area of Galicia.

Reference data
Open-access high-resolution aerial orthorectified images 
were used as reference images for the land cover mapping 
verification process. They were obtained from the Span-
ish National Plan of Aerial Orthophotography, PNOA by 
its acronym in Spanish (MTMAU, 2023). In particular, two 
sets of images were used: (a) images obtained from pho-
togrammetric flights performed between the 30th of May 
and the 1st of September in 2017 (2017 PNOA); and (b) 
images obtained from photogrammetric flights performed 
between the 30th of May and the 1st of September in 2020 
(2020 PNOA). The 2017 PNOA images have a spatial reso-
lution of 0.25 m and a georeferencing mean square error 
of ≤ 0.5 m (MTMAU, 2023). The 2020 PNOA images have 
a spatial resolution of 0.15 m and a georeferencing mean 
square error of ≤ 0.20  m (MTMAU, 2023). Both sets of 
images include 4 bands (Red, Blue, Green, and NIR).

Fuel models and fuel situations
The fuel models that were used were the Rothermel fuel 
models; these are the models that were created by Rother-
mel (1972), updated by Albini (1976), and then summa-
rized by Anderson (1982). To become acquainted with the 

fuel situations that are present in the study area, a fuels 
photo-guide (Arellano et al. 2017) was used. Table 11 in 
Appendix 1 presents a detailed description of the Rother-
mel fuel models, one of the most commonly used fuel 
model sets in the world (Ascoli et al. 2015; Vacchiano and 
Ascoli 2015; Simons 2013).

The photo-guide presents a set of real fuel situations in 
the study area, obtained from destructive field sampling. 
It offers sample graphic representations of the most rep-
resentative fuel situations that exist in Galicia. For each 
fuel situation, it includes quantitative data about the 
structure of the vegetation. It includes information about 
dominant species, mean vegetation heights, and fuel 
loads, as well as representative photographs. Addition-
ally, it provides an estimation of fire behavior in each fuel 
situation, including information such as the estimated 
speed of propagation and flame lengths for different wind 
speeds and terrain slopes under a dead fuel humidity sce-
nario that represents low to moderate risk in Galicia. The 
data from this fuel photo-guide was obtained through 
destructive field sampling at the Lourizán CIF (a forestry 
research station). Table 12 in Appendix 2 summarizes the 
photo-guide fuel situations present in the study area.

Methodology
The methodology aims to create an automated process that 
uses remote sensing data to generate a complete, objective 
fuel map that can be used with wildfire behavior simula-
tion software. The Rothermel fuel models were selected 
for this purpose since they are the most commonly used 
in simulation software (Simons et al. 2013). Furthermroe, 
they are mostly used in the study area and in the whole 
country since they are the models currently used in the 
Forest Map of Spain elaboration (MITECO, 2011). How-
ever, the Rothermel models are qualitative, and they were 
developed for a climate that is quite different from that of 
the study area. Therefore, the relationships between the 
vegetation types and structures in the study area and the 
Rothermel models cannot be derived systematically. The 
fuels photo-guide was used for this purpose. It includes the 
most common vegetation types in Galicia, classified into 
fuel situations that are characterized according to qualita-
tive and quantitative parameters. These parameters could 
potentially be estimated for the study area using remote 
sensing data. Additionally, the guide provides wildfire 
behavior data for each fuel situation, facilitating the iden-
tification of the relationship between the fuels photo-guide 
and the Rothermel fuel models. This process allows for the 
objective and systematic mapping of Rothermel fuel mod-
els using remote sensing data from the study area.

The methodology consists of four main steps: (1) identi-
fication of the vegetation types in the study area using Sen-
tinel-2 images; (2) characterization of the vegetation height 

Table 1 Sentinel‑2 specifications

Band Central 
wavelength 
(nm)

Bandwidth 
(nm)

Spatial 
resolution 
(m)

B01 – Coastal aerosol 443 20 60

B02 – Blue 490 65 10

B03 – Green 560 35 10

B04 – Red 665 30 10

B05 – Near infrared (NIR) 705 15 20

B06 – NIR 740 15 20

B07 – NIR 783 20 20

B08 – NIR 842 115 10

B8A – NIR narrow 865 20 20

B09 – Water vapor 945 20 60

10 – Shortwave infrared 
(SWIR) (cirrus)

1375 30 60

B11 – SWIR 1610 90 20

B12 – SWIR 2190 180 20
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(Canopy Height Model, CHM) and structure (LiDAR met-
rics) for the study area using ALS data; (3) identification 
of the correspondences between the fuel situations in the 
photo-guide, the Rothermel fuel models, and the remote 
sensing data; (4) mapping of Rothermel fuel models. An 
overview of the method is shown in Fig. 2.

Land cover mapping
According to the fuels photo-guide, the principal variable 
that determines the assignment of a fuel situation to a 
specific plot or forest stand is its dominant species. Sen-
tinel-2 images were used to obtain a land cover map of 
the study area specifying the principal species and groups 

of species. The target classes were defined by considering 
the vegetation in the study area, the aim of the study, and 
the authors’ previous experience in multispectral classifi-
cation. These classes are detailed in Table 2. The map was 
created following the methodology described in Alonso 
et al. (2021), which optimizes forest-oriented land cover 
mapping in Galicia. First, the images were downloaded 
and pre-processed to mask out the cloudy pixels from 
each image. This step was performed by applying the 
cloud mask provided by the Sentinel-2 Level-2A product.

Next, training data were collected through the photoin-
terpretation of 2017 and 2020 PNOA images to perform a 
supervised classification. Polygons for each target class were 

manually delineated over the entire study region. Then, a 
supervised classification was performed for each image in 
the time series. This time series consisted of 12 images, one 
per month, spanning the whole year of 2019. This selection 
of images was performed in such a way as to consider the 
entire phenological period for the vegetation in the multi-
spectral analysis. According to Alonso et  al. (2021), this 
optimizes the multi-temporal approach in Galicia. The 
supervised classifications mentioned above were performed 
using the random forest algorithm (Breiman 2001). This 
step was performed using the “randomForest” R package 
(Liaw and Wiener 2002, R Core team, 2022) with the default 
configuration parameters, as indicated in the methodology 
section of Alonso et al. (2021). The Sentinel-2 bands used in 
this step were the B02, B03, B04, B05, B06, B07, B08, B8A, 
B11, and B12 bands. All bands were resampled at 5 m using 
nearest neighborhood interpolation. This resampling was 

Fig. 2 Overview of the method

Table 2 Legend of the land cover map created using Sentinel‑2 
images

Class Description

Eucalyptus sp. Adult individuals and young masses of Eucalyptus 
globulus

Conifers Adult individuals and young masses of conifers 
(mainly Pinus pinaster, Pinus radiata)

Broadleaves Adult individuals and young masses of hard‑
woods (mainly Quercus robur and riparian 
species)

Crops and pastures Crops or land covered by non‑woody vegetation

Shrubs Areas of shrubs (mainly Ulex and Cytisus genera 
and ericaceae family)

Rocky areas Land covered by rocks and very small shrubs 
or non‑anthropogenic, non‑vegetated areas

Anthropic Built‑up areas

Water Bodies of water, both marine and continental
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performed to adapt the spatial resolution of the multispec-
tral bands of Sentinel-2 to the spatial resolution that can be 
obtained from LiDAR data. Thus, it is possible to combine 
the two types of data while at the same time maintaining 
the details provided by LiDAR data, whose spatial resolu-
tion can be higher than the spatial resolution of Sentinel-2. 
Once single-date classifications were obtained, they were 
aggregated by plurality voting (Lewiński et  al. 2017). The 
study by Alonso et al. (2021) indicates that this is the aggre-
gation method that best fits the study area, as it reports high 
accuracy metrics and outperforms other methods in terms 
of computation time. It consists of selecting as the final class 
for a pixel the most common class from among all of the 
classes detected in the single-date classifications.

Structural characterization of vegetation
According to the fuels photo-guide, the assignment of a 
fuel to a certain area is determined not only by the species 
present in that area but also by the height and structure 
of the vegetation. LiDAR data were used to characterize 
the vegetation height in the study area and to generate an 
estimation of the forest structure. The process consisted 
of two main steps: the first one, which includes noise 
removal, height noise removal, classification, and normali-
zation, is oriented at preparing the data. The second step 
is the data processing; it includes canopy height modeling, 
computation of statistics, and rasterization.

LiDAR data pre‑processing
The first step of the LiDAR data pre-processing is noise 
removal, that is, the elimination of isolated points. This was 
performed using the “lasnoise” tool in the LAStools software 
(Isenburg 2021). Afterwards, the LiDAR data were classified 
into two classes: ground points and non-ground points. This 
was done with the “lasground” tool from the LAStools soft-
ware (Isenburg 2021). In order to optimize the performance 
of the tool, the configuration of the parameters of the las-
ground tool was determined through systematic tests in a 
representative subset of points from the point cloud of the 
study area. Several extreme and intermediate values were 
tested for each of the parameters. In each test, only one 
parameter was modified to clearly evaluate any gain or loss 
in efficiency. The optimal classification was considered to be 
the one in which there were no points classified as ground 
points above points classified as non-ground points or vice 
versa. This step was necessary for the subsequent normali-
zation of the point cloud. The normalization transforms 
the z coordinates. These coordinates, which originally rep-
resented the altitude of each point above the Earth’s refer-
ence surface (according to the official vertical Datum), after 
normalization, represent the height of each point above the 
ground. The normalization algorithm applied consisted of a 
nearest neighborhood (KNN) interpolation with an inverse 

distance weighting (IDW). It was implemented using the 
“lidR” package in the R software (Roussel and Auty 2021; 
Roussel et al. 2020, R Core Team, 2022).

The final pre-processing step was the vegetation height 
segmentation. Ground points and aerial noise were 
removed so that the data processing could focus solely on 
the vegetation points. For this step, all points below 0.5 m 
and above 60 m were removed from the point cloud.

LiDAR data processing
To estimate vegetation height and obtain information 
about the vertical structure of stands, several statistics 
were obtained from the normalized point cloud. Each 
statistic was represented as a raster layer to facilitate its 
individual analysis, its interpretation using the reference 
images and its comparison with the other statistics.

First, a canopy height model (CHM) was obtained. The 
CHM is a raster layer where the digital value of each pixel 
corresponds with the height of the vegetation at that pixel. 
The vegetation height is estimated as the maximum value of 
the z-coordinate, selected from among all the points within 
the vertical prism defined by the pixel’s contour. These val-
ues were obtained using the “LidR” package available in the R 
software (Roussel and Auty 2021; Roussel et al. 2020, R Core 
Team, 2022). The CHM was produced using a 5-m pixel size.

Additionally, a set of 36 statistics were calculated from 
the point clouds. Each of the statistics was computed 
using the normalized values of the z-coordinates of the 
points; meaning that they ought to provide an approxima-
tion of the vertical structure of the point cloud. They were 
obtained and rasterized using the “LidR” package available 
in the R software (Roussel and Auty 2021; Roussel et  al. 
2020, R Core Team, 2022). A raster layer with a spatial reso-
lution of 5 m was obtained for each metric. The complete 
list of metrics is detailed in Table 3. A detailed explanation 
of the metric “Cumulative percentage of returns in the  Xth 
layer,” can be found in Woods et al. (2008). To obtain these 
layers, the maximum height of the LiDAR data was divided 
into 10 intervals. The cumulative percentage of LiDAR 
returns was calculated for each interval. The final interval 
was excluded as the cumulative percentage of points in this 
interval is always equal to 1. Further information on the 
rest of the metrics can be found in Roussel and Auty (2021).

Finally, horizontal sections were obtained to evaluate the 
number of points at different levels and the vertical conti-
nuity of the vegetation. Specifically, 7 vertical sections were 
considered. The height thresholds of the sections are sum-
marized in Table 4. It should be noted that the first thresh-
old, 0.5 m, was fixed for the purpose of discarding points at 
ground level. The last threshold, 12 m, was established since 
points above that value correspond to high stand canopy. 
These statistics were transformed into raster layers with a 
spatial resolution of 5 m. In these layers, the digital value of 
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each pixel corresponds to the number of points within the 
prism defined by the cell contour and the minimum and 
maximum z values for the section in question. The rasters 
were obtained by using the “counter” switch that is available 
in the “lasgrid” tool in LAStools (Isenburg 2021).

Identification of relationships between photo‑guide fuel 
situations and fuel models
As previously mentioned, the photo-guide presents a set 
of real fuel situations in the study area. It provides data 
about fire behavior for each of the situations. Therefore, 
it was possible to identify relationships between these 
situations and the fuel models of Rothermel (1972) which 
were updated by Anderson (1982). In this way, the fuel 
models that are present in the study area could be estab-
lished. These relationships were identified as follows:

For fuel situations where the main species was a grass-
land species, models 1, 2, and 3 (Rothermel 1972; Anderson 
1982) were considered as possible correspondences. For 
each grassland situation, the photo-guide provides the fol-
lowing parameters: the main species, the fuel load, and the 
weighted height. These parameters were compared with 
the parameters provided for each fuel model. In this way, 
a relationship was identified between each grassland fuel 
situation and the most closely corresponding fuel model.

For fuel situations where the major species was a shrub 
species, models 4, 5, 6, and 7 (Rothermel 1972; Anderson 
1982) were considered to be the possible correspondences. 
Firstly, the parameters provided in the photo-guide for 
each situation were analyzed: shrub species, fuel loads, and 
weighted heights. These parameters were compared with 
the corresponding parameters of the different potential 
fuel models. Thus, a first link was established between each 
fuel situation and the most similar fuel model. In order 

to evaluate the correctness of these links and confirm or 
discard the correspondence, the fire behavior of each 
fuel situation was evaluated to see if it was indeed analo-
gous to the fire behavior of the corresponding fuel model. 
For this purpose, fire behavior charts were created for 
each potential fuel model with the VisualFuego software 
(LABIF-UCO, 2019). The charts were built using the same 
meteorological and topographical variables that were used 
to develop the photo-guide. They were then compared 
with the fire behavior charts provided in the photo-guide 
for the different corresponding fuel situations. In this way, 
the similarity between each fuel situation and its linked 
fuel model was confirmed. Where there were no conclu-
sive similarities, the principal of caution was followed: the 
fuel model representing the worst-case scenario, in terms 
of fire behavior, was adopted. Where shrub fuel models did 
not correspond with any shrub fuel situations, in terms of 
fuel loads and heights or fire behavior, the fuel model was 
discarded.

Figure 3 shows an example of one of the charts provided 
by the photo-guide and one of the charts created in Visual-
Fuego (LABIF-UCO, 2019) from the fuel model data. The 
rate of spread for the fuel situation in the photo-guide with 
a 40% slope is quite similar to the rate of spread for the fuel 
model with a 40% slope (The 40% slope is a parameter con-
figured by the user).

For fuel situations where the main species is a tree spe-
cies, the identification of correspondences was performed 
similarly. In this case, the fuel models considered were 
4, 5, 6, 7, 8, 9, 10, and 11. First, the parameters of interest 
provided in the photo-guide relating to each fuel situation 
were analyzed: weighted tree height, weighted understory 
heights, and dead fuel load–dead understory load, slash, 
and litter loads. These parameters were compared with the 

Table 3 Metrics obtained from the normalized LiDAR point clouds

ID Metric ID Metric ID Metric ID Metric

B1 Maximum B10 10th Percentile B19 55th Percentile B28 Cumulative percentage of returns in the 1st layer

B2 Mean B11 15th Percentile B20 60th Percentile B29 Cumulative percentage of returns in the 2nd layer

B3 Standard deviation B12 20th Percentile B21 65th Percentile B30 Cumulative percentage of returns in the 3rd layer

B4 Skewness B13 25th Percentile B22 70th Percentile B31 Cumulative percentage of returns in the 4th layer

B5 Kurtosis B14 30th Percentile B23 75th Percentile B32 Cumulative percentage of returns in the 5th layer

B6 Entropy B15 35th Percentile B24 80th Percentile B33 Cumulative percentage of returns in the 6th layer

B7 Percentage of returns above the mean B16 40th Percentile B25 85th Percentile B34 Cumulative percentage of returns in the 7th layer

B8 Percentage of returns above 2 B17 45th Percentile B26 90th Percentile B35 Cumulative percentage of returns in the 8th layer

B9 5th Percentile B18 50th Percentile B27 95th Percentile B36 Cumulative percentage of returns in the 9th layer

Table 4 Height thresholds of the horizontal sections of the point cloud in meters

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

0.5–2 m 2–4 m 4–6 m 6–8 m 8–10 m 10–12 m  > 12 m
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corresponding parameters of the fuel models, and the cor-
respondences were established between each situation and 
the most similar model. To ensure correspondence between 
model and situation, fire behavior charts were generated for 
the fuel models. These charts were compared with those 
provided in the photo-guide for each fuel situation. Thus, 
each fuel situation was definitively assigned to the fuel 
model with the most similar behavior. Where there were no 
conclusive similarities, the principle of caution was followed 
as in the case of shrubs. Where a tree fuel model did not 
correspond with any tree fuel situation in terms of fuel loads 
and heights or fire behavior, the fuel model was discarded.

An extra fuel model, fuel model 0, was added to assign 
to areas that did not correspond with any particular fuel 
model, typically built-up areas or bodies of water.

These charts were compared with those provided in the 
photo-guide for each fuel situation (Table 5).

Identification of correspondences between fuel models 
and remote sensing classes
Once the fuel models in the study area were identified, 
the correspondences between them and the land cover 
classes from remote sensing data could be identified.

The rocky area class from the land cover map was 
assigned to Rothermel fuel model 1. According to the 
Rothermel descriptions, fuel model 1 is driven by fine, 

dry, low grasslands with a light shrub load. Rocky areas 
correspond to areas mainly covered by rocks, but they 
usually include patches of scattered grasslands and 
shrubs. Therefore, as a principle of caution, rocky areas 
were included in fuel model 1. This particular landscape 

Fig. 3 Example of the identification of the relationship between a fuel situation and a fuel model. The red boxes denote the rate of spread data (in 
m/min). a Chart of the fire behavior of fuel situation Ea‑05 from the photo‑guide. b Chart of the fire behavior of Rothermel fuel model 4 obtained 
with VisualFuego (LABIF‑UCO, 2019). c Table showing the results of the calculations performed in VisualFuego (LABIF‑UCO, 2019) for Rothermel fuel 
model 4

Table 5 Relationships identified between the fuel situations 
from the photo‑guide and the Rothermel fuel models

Lourizán CIF fuels photo‑guide Rothermel model

‑ 0

‑ 1

Pl‑01, Pl‑02, Pa‑01, Pa‑04 2

‑ 3

Ea‑05, Es‑01, Pt‑05, Pt‑06, Pt‑07, Ue‑05, Ue‑08, 
Ue‑10, Ub‑02, Ub‑04, Cs‑01, Cs‑03

4

Eu‑01, Eu‑05, Eu‑06, Pt‑01, Ue‑01, Ue‑02, Ub‑03 5

‑ 6

PpMB‑02, PpL‑04, PpL‑09, EgL‑08, QrL‑04 7

‑ 8

‑ 9

PpF‑03, PpF‑05, PpF‑06, EgL‑05, EgL‑06, EgF‑03, 
EgF‑05, QrF‑02, QrF‑04, BaL‑01

10

‑ 11

‑ 12

‑ 13
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was not identified in the fuels photo-guide; therefore, this 
correspondence could not be cross-referenced.

The crops and pasture class covers grassland and crop 
areas in the study area. This class was assigned to Rother-
mel fuel model 2 since, according to the fuels photo-
guide and the previously mentioned analysis, it presents 
a fire behavior typical of this model.

The shrubs class corresponds to shrubs fuel models. 
Models 4 and 5 can be differentiated by establishing a 
height threshold according to the Rothermel fuel models 
height and load parameters (Anderson 1982); the thresh-
old was fixed at 1 m.

Tree-covered vegetation classes included in the land 
cover map corresponded to the tree fuel models con-
templated. Rothermel fuel model 7 is associated to very 
flammable shrub species with heights of less than 2 m or 
pine stands such as those found in the state of Florida. 
However, according to the analysis of the fuels photo-
guide, diverse tree stands in the study area can present 
fire behaviors similar to the behavior described for this 
Rothermel fuel model. Since the main characteristic of 
these stands is that they present vertical continuity, fuel 
model 7 was assigned to areas covered by trees that pre-
sented a continuous vertical structure. On the other hand, 
areas covered by trees with a discontinuous vertical struc-
ture were associated with Rothermel fuel model 10. A 
stand was considered discontinuous when the crown base 
height was at least twice the height of the understory.

Fuel models 8 and 9 were not classified in this study 
since none of the behaviors of the fuel situations present 
in the photo-guide corresponded to these models.

Finally, areas potentially covered by significant amounts of 
slash were assigned to Rothermel fuel model 12. Rothermel 
fuel models 11 and 13 were not used since they were not 
found in the study area.

Once the fuel models in the study area were identified, the 
correspondences between them and the land cover classes 
from remote sensing data could be identified (Table 6).

Mapping of Rothermel fuel models
Once the correspondences between the remote sensing 
data and the fuel models were defined, the next step was 
the generation of a map for each Rothermel fuel model. 
Different models required different procedures, which 
are described below. The final step was the integration of 
all of the models into a single Rothermel fuel model map.

a) Models 0, 1, and 2.

These three fuel models were obtained by establishing 
a direct correspondence between the model and some of 
the classes from the land cover map. Specifically, all pix-
els classified as Anthropogenic areas and bodies of water 

in the land cover map were assigned to fuel model 0. Pix-
els corresponding to Rocky areas were assigned to fuel 
model 1 and Crops and pastures were assigned to fuel 
model 2.

b) Models 4 and 5.

These models were identified through the land cover 
map and the LiDAR-derived CHM. Models 4 and 5 corre-
sponded with shrubs: model 4 with tall shrubs and model 
5 with short shrubs. Therefore, all the pixels depicting 
shrubs in the land cover map were classified as model 4 or 
5. Furthermore, shrub pixels with a CHM value of greater 
than or equal to 1  m were reclassified as fuel model 4. 
Shrub pixels with a CHM of less than 1 m were reclassified 
as fuel model 5. This procedure was performed using the 
“raster” R package (Hijmans 2021, R Core Team, 2022).

c) Models 7, 10 and 12.

Models 7 and 10 corresponded with areas covered by 
trees, with and without continuous vertical structures, 
respectively. First, all the pixels depicting trees (Eucalyp-
tus sp., conifers, and broadleaves) on the land cover map 
were selected.

Once the tree-covered portions of the study area were 
identified in the land cover map, the vertical continu-
ity of the vegetation in these zones was evaluated. LiDAR 
metrics were needed for this purpose. Since the vertical 
structure of vegetation is a complex parameter, it cannot 
be identified by simply establishing threshold values, as 
was possible for vegetation height, for example. The auto-
mated identification of Rothermel fuel models 7 and 10 
was performed through supervised classification. Train-
ing and verification areas were defined for this purpose. A 
set of 90, 25 m × 25 m regular polygons, was designed and 
distributed across the previously identified tree-covered 
areas. Half of the polygons represented model 7, and the 

Table 6 Fuel model correspondences between the fuels photo‑
guide, the Rothermel fuel models, and the remote sensing land 
cover classes

Rothermel model Remote sensing classes

1 Rocky areas

2 Crops and pastures

4 Shrubs greater than 1 m in height

5 Shrubs less than 1 m in height

7 Forest areas with continuous vertical structure

10 Forest areas with discontinuous vertical structure

12 Litter and other forestry remnants

0 Anthropogenic areas, bodies of water
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other half represented model 10. The identification of fuel 
models in these polygons was carried through visual inter-
pretation of the point clouds. In order to systematize this 
visual analysis; the 7 horizontal raster layers containing 
the total number of points per pixel, obtained as described 
in the “LiDAR data processing” section, were used in this 
process. Pixels where all 7 raster layers had a high num-
ber of points were considered to correspond to stands with 
vertical continuity and therefore assigned to fuel model 7. 
Conversely, pixels where the upper and lower layers pre-
sented a much greater number of points than the inter-
mediate layers were considered to correspond to stands 
with vertical discontinuity, and therefore assigned to fuel 
model 10. Also, to make this step more objective, vertical 
sections of the point clouds were generated for the training 
area polygons. These sections were used to verify that the 
parameter defined to distinguish discontinuity was met. It 
was thus confirmed that in the fuel model 10 training poly-
gons, the crown base height was twice or more the height 
of the understory, whereas in the fuel model 7 training pol-
ygons this difference in height was shorter or nonexistent. 
The combination of the vertical and horizontal sections of 
the point clouds allowed for efficient photointerpretation 
of the samples of point clouds. The 90 regular polygons 
were randomly divided into training and verification data. 
A total of 60 polygons were used as training areas, encom-
passing a total of 1500 pixels. The other 30 polygons were 
kept aside for posterior validation.

Once the training data were obtained, the supervised 
classification was performed. This was performed using 
the machine learning algorithm Random Forest (Breiman 
2001); it was applied using the “randomForest” package in 
R (Liaw and Wiener 2002, R Core Team, 2022) with the 
pre-defined configuration parameters. The predictor vari-
ables used in the implementation of the Random Forest 
predictive model were the 36 metric rasters obtained from 
the LiDAR point cloud (see the “LiDAR data processing” 
section). As a result, the Random Forest algorithm cre-
ates a model that can be applied to each individual pixel in 
the study area to predict its corresponding class, or in this 
case, its fuel model. Afterwards, the model was applied 
to the selected pixels (pixels representing tree-related 
classes), resulting in a fuel model map showing fuel mod-
els 7 and 10. The importance of the different variables, 
based on their mean decrease in Gini, was also calculated 
(Breiman and Cutler 2022) to identify which variables 
were the most vital in predicting the fuel model.

Fuel model 12 is associated to recently harvested areas. 
All pixels with tree land cover (either Eucalyptus sp., 
Conifers or Broadleaves) on the land cover map but that 
have no data in the LiDAR metrics layers were assigned to 
this model. As explained previously, the land cover map 
is obtained by assigning to each pixel the most frequently 

detected land cover throughout the year in question (in 
this case, 2019); harvested areas are therefore classified 
as a tree-related cover. However, since the LiDAR point-
cloud was obtained in November of 2019, areas where 
harvest events had taken place prior to the flight did not 
present enough returns to calculate the statistics due to 
the absence of trees or any other vertical structure.

Fuel model map validation
The final map was verified through the validation of the 
maps that are used to generate it and field observations. 
The land cover map, which provides the geographical dis-
tribution of the types of vegetation in the study area, was 
cross-verified through a sample of 400 points. They were 
distributed throughout the study area following a strati-
fied random approach. The ground truth of these points 
was obtained through the photointerpretation of 2017 
and 2020 PNOA images. Sentinel-2 images were used to 
provide supporting information, to address which PNOA 
image should ultimately be used to assign the land cover 
class. For example, if the 2017 PNOA image shows an area 
covered by conifer trees and the 2020 PNOA image shows 
that that same area is now covered by shrubs, Sentinel-2 
images were used to confirm when the harvesting event 
took place, allowing us to determine if the land cover class 
for the year 2019 should be “Shrubs” or “Conifers”. A con-
fusion matrix was then constructed and accuracy metrics 
were calculated. The accuracy metrics calculated were: 
the Overall Accuracy (OA), the Producer’s accuracy (PA), 
User’s Accuracy (UA), and Kappa Index.

The map representing the structure of tree covers (the 
map with Models 7 and 10 obtained through the clas-
sification of LiDAR-derived statistics) was validated 
through a cross-verification procedure. In this case, the 
verification dataset comprised of 30 regular polygons. A 
confusion matrix was then obtained and accuracy met-
rics were calculated. The accuracy metrics that were 
calculated are the same as the ones that were used to 
validate the land cover map.

Finally, all the models identified in the study area were 
evaluated visually through in  situ observations along 
a track. An experienced operator in wildfire behavior 
evaluated the compatibility of current situations with the 
mapped fuel models.

Results
Land cover mapping
The land cover map obtained is presented in Fig.  4. 
Table 7, presents a summary of the areas occupied by each 
land cover class. The cross-verification of the map resulted 
in high accuracy metrics: an Overall Accuracy of 90%, a 
Kappa Index of 0.88, and a UA and a PA of between 80 and 
100% (except in the case of the PA for shrubs, which was 
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lower: 70%). These results are detailed in Table  8, which 
shows the obtained confusion matrix. It should be noted 
that cloudy pixels include areas permanently covered by 
the Sentinel-cloud cover. This includes areas permanently 
covered by clouds as well as some anthropic areas with 
very reflective materials such as metallic roofs.

Structure of vegetation
A detailed example of the CHM is presented in Fig.  5. 
This figure helps visualize the coherence of the CHM. 

Lower values are obtained for shrub areas and higher 
ones for Eucalyptus spp. and conifers.

Examples of the horizontal slices obtained and the num-
ber of points in each slice are presented in Figs. 6 and 7. Each 
example includes a vertical section of the LiDAR point cloud 
for the selected stand to provide additional context and aid 
in the comprehension of the examples. Figure 6 corresponds 
to a tree stand with vertical continuity while Fig.  7 corre-
sponds to a stand with a discontinuous vertical structure. 
Both figures aid in understanding the relationship between 

Fig. 4 Land cover map of the whole study area
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the number of points in the successive slices and the vertical 
continuity of the stand. Of particular interest are the lower 
slices (the 2–4-m and 6–8-m slices): Fig.  6 presents more 
points in these slices than Fig. 7.

Examples of the set of statistics obtained for fuel mod-
els 7 and 10 are presented in Figs. 8 and 9, respectively. 
Together, the two figures illustrate how entropy and the 
percentage of points in the intermediate layers (the 4th to 
6th layers) reflect the vertical structure of the stand. The 
fuel model 7 stand reports higher values for all of these 
metrics than the fuel model 10 stand.

Correspondences with Rothermel fuel models
Field work enabled confirmation that rocky areas corre-
sponded to Rothermel fuel model 1. These soils include 

Table 7 Area occupied by each land cover class in the land 
cover map obtained

Land cover Area (ha) Percentage (%)

Clouds 41.05 0.14

Eucalyptus sp. 4531.21 14.92

Conifers 4976.25 16.39

Broadleaves trees 2425.26 7.99

Crops and pastures 9240.79 30.43

Shrubs 3959.37 13.04

Rocky areas 3525.40 11.61

Anthropic 962.67 3.17

Water 704.10 2.32

Table 8 Confusion matrix of land cover classification

Euc Eucalyptus sp, Con Conifers, Bro Broadleaves, Cro Crops and pastures, Shru Shrubs, Rock Rocky areas, Ant Anthropogenic areas, Wat Water, T Total, UA User’s 
Accuracy, PA Producer´s Accuracy, OA Overall Accuracy, KI Kappa Index

Ground Truth

Euc Con Bro Cro Shru Rock Ant Wat T UA (%)

Classification Euc 49 1 0 0 0 0 0 0 50 98

Con 5 43 0 0 2 0 0 0 50 86

Bro 2 1 40 0 7 0 0 0 50 80

Cro 0 0 0 45 5 0 0 0 50 90

Shru 1 3 0 0 46 0 0 0 50 92

Rock 0 0 0 0 6 40 4 0 50 80

Ant 0 0 0 0 0 3 45 2 50 90

Wat 0 0 0 0 0 0 0 50 50 100

T 57 48 40 45 60 43 49 52 OA (%)
PA (%) 86 86 100 100 70 93 92 96 OA (%) 90

KI 0.88

Fig. 5 Detailed view of the CHM in a forest stand (left) and the corresponding PNOA image 2020 (MTMAU, 2023) (right)
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rocky areas, but also rocky areas partially covered by 
grass or very small shrubs (see Fig. 10a).

In relation to Rothermel fuel model 2, field work con-
firmed that Crops and pastures in the study area do not 
usually exceed 1 m in height (see Fig. 10b). Furthermore, 
there is an absence of large grain crops that would lead 
to fire behavior characteristic of Rothermel fuel model 3.

The shrubs in the study area were assigned to Rother-
mel fuel models 4 and 5, tall ones and short ones 

respectively. The most common shrubs in the study 
area are Ulex spp., Cytisus spp., and Erica spp. Forest 
areas that are covered predominantly by Cytisus spp. 
have mainly been assigned to fuel model 4 (see Fig. 10c), 
while Erica spp. have been assigned to fuel model 5 (see 
Fig. 10d). Ulex spp. can be found in both models 4 and 5.

In this study, Rothermel fuel model 7 was assigned to 
areas covered by trees with a continuous vertical struc-
ture. These areas are mostly dense young eucalyptus 

Fig. 6 Raster layers representing the number of points in three different horizontal sections of the LiDAR point cloud in a forest stand 
that corresponds to fuel model 7; the corresponding vertical section of the LiDAR point cloud for the stand is shown on the right

Fig. 7 Raster layers representing the number of points in three different horizontal sections of the LiDAR point cloud in a forest stand 
that corresponds to fuel model 10; the corresponding vertical section of the LiDAR point cloud in the stand is shown on the right

Fig. 8 Example of the main predictive LiDAR variables in a forest stand corresponding to fuel model 7. The variables are shown in order 
of importance according to their mean decrease in Gini: a entropy, b cumulative percentage of returns in the 5th layer, c cumulative percentage 
of returns in the 6th layer, d cumulative percentage of returns in the 4th layer. As additional context, e shows the corresponding continuous vertical 
section of the LiDAR point cloud
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or conifer plantations and stands with mixed species. 
Broadleaves are included in this category when they are 
found alongside shrubs or ferns. Figure  10e shows an 
example of this model.

Conversely, fuel model 10 was assigned to areas cov-
ered by trees with a discontinuous vertical structure. 
These areas mainly correspond to single-species planta-
tions where silviculture actions are commonly or periodi-
cally performed. They are usually eucalyptus or conifer 
plantations or broadleaf stands without a shrub layer. Fig-
ure 10f shows an example of this model.

Fuel model 12 was assigned to areas that were identi-
fied as harvested areas with forest harvesting residues. 
An example of this model can be seen in Fig. 10g.

Fuel model mapping
Figure  11 shows the fuel model map obtained for the 
study area. Table 9 shows a summary of the areas occu-
pied by each fuel. Since a high percentage of the area is 
covered by agricultural land, fuel model 2 is one of the 
most predominant models in the study area. Regard-
ing forest-land-related fuel models, the map highlights 
a greater presence of models 4 and 7 than of 5 and 10. 
Additionally, fuel models 7 and 10 do not present a 
mosaic structure but rather, they tend to be concentrated. 
For example, there is a greater presence of fuel model 10 
in the southeast than in the northeast where fuel model 
7 prevails among the forested areas. Additionally, when 
this map is compared with the land cover map it is evi-
dent that fuel model 10 is more often associated with 
areas covered by conifers than areas covered by broad-
leaves or eucalyptus.

The accuracies of the fuel model map for models 0, 1, 
and 2 are directly related to the accuracy of the land cover 
classes used for assigning the models. The accuracy of the 
fuel model map for fuel models 3, 4, and 12 is also related 

to the accuracy of the land cover classes used for assign-
ing the models as well as to the precision of the CHM. 
The accuracy for fuel models 7 and 10 is related to the 
land cover classes used for assigning the models as well 
as to the performance of the random forest model built 
for mapping the models. The performance of the random 
forest model is presented in Table  10, which shows the 
confusion matrix performed and the accuracy metrics 
obtained. The accuracy metrics calculated were all quite 
close to 100%, and the Kappa Index was 0.9771.

Figure 12 shows a comparison of variables in terms of 
their importance, and their mean decrease in Gini, for 
constructing the model. The four most valuable bands in 
order of importance were entropy followed by the cumu-
lative percentage of returns in the  5th,  6th, and  4th layers. 
All these variables are tied closely to the vertical distribu-
tion of the points in the point cloud, therefore they were 
able to capture and reflect the vertical continuity or dis-
continuity of the forest stand.

Discussion
The described methodology uses remote sensing data to 
obtain an updated operational fuel model map for an area 
characterized by an Atlantic climate. The map is com-
patible with most fire behavior simulation software that 
uses Rothermel’s rate of spread equation (Simons et  al. 
2013). The methodology includes the definition of objec-
tive criteria for systematically associating the Rother-
mel fuel models to the types of vegetation present in the 
study area. This is not a simple task since the Rothermel 
Models were described for a different climate region 
with quite different vegetation types and structures. This 
adaptation could lead to a standardized way of mapping 
fuel models in this area. Automating this process makes 
it more objective and less dependent on the criteria of 
each individual technician.

Fig. 9 Example of the main predictive LiDAR variables in a forest stand corresponding to fuel model 10. The variables are shown in order 
of importance according to their mean decrease in Gini: a entropy, b cumulative percentage of returns in the 5th layer, c cumulative percentage 
of returns in the 6th layer, d cumulative percentage of returns in the 4th layer. As additional context, e shows the corresponding discontinuous 
vertical section of the LiDAR point cloud
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These types of adaptations are not needed when the 
fuel model classification is available for the study area 
(Huesca et al. 2019; Domingo et al. 2020), as was the case 
in Marino et al. (2016) for the Canary Islands and in Fer-
rer Palomino and Rodríguez y Silva, (2021) for Andalucía. 
Various efforts are being made to establish the fire spread 
equations for Galicia (Arellano et al. 2017). Until they are 
completed and made ready for use in wildfire simulation 
software, the 40 fuel models of Scott and Burgan (2005) 
or the fuel models developed by Portuguese fire behav-
ior researchers (Fernandes et  al. 2009; Fernandes and 

Loureiro 2022) could be an interesting alternative. Both 
of them include several wooded classes that could help 
to better describe the varying conditions of the stands in 
the study area and their wildfire behavior. The usefulness 
of the Sentinel-2 images together with LiDAR data in 
the detection and mapping of these fuel models could be 
explored by taking this study as a starting point.

In the present study, the land cover classification of 
the study area separates tree stands into three different 
classes, whereas the fuel model classification divides the 
three different classes of tree stands into only two fuel 

Fig. 10 Graphic examples of the defined fuel models. a Fuel model 1: Rocky areas with low grass. b Fuel model 2: areas with crops. c Fuel model 
4: high shrub areas. d Fuel model 5: low shrub areas. e Fuel model 7: tree‑covered areas with continuous vertical structure. f Fuel Model 10: 
tree‑covered areas with discontinuous vertical structure. g Fuel model 12: harvested areas
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models: models 7 and 10. It may be noted that, although 
they are represented by only two fuel models, these three 
tree classes may present slightly different behavior in 
the face of wildfires (Arellano et al. 2017). Consequently, 
this distinction has been made to ensure the maximum 
potential benefit be derived from remote sensing capa-
bilities in the future in the event that different fire spread 
equations should be developed for each tree class.

The proposed methodology is similar to the approach 
taken by Marino et al. (2016). The study of Marino et al. 

also uses a land cover map derived from satellite imagery 
(Landsat-8) and ALS data to subsequently build a deci-
sion tree to obtain fuel models. However, the method-
ology they used to create the land cover map was quite 
different from the method used in this study. Like in this 
study, they performed a random forest-supervised classi-
fication, but rather than using the digital values of spec-
tral bands, like in the present study, they used spectral 
indices. Neither do they rely on multi-temporal data. The 
overall accuracy of the land cover of the present study is 

Fig. 11 Fuel model map of the study area



Page 18 of 25Solares‑Canal et al. Fire Ecology           (2023) 19:61 

higher (9 percentage points higher) than the OA obtained 
by Marino et al. (2016). They remarked that the reliabil-
ity of these kinds of methodologies is highly dependent 
upon the accuracy of the land cover maps (Marino et al. 
2016). However, since the target land cover map classes 
in this study greatly differ from those used by Marino 
et al. (2016), a comparison of the accuracies obtained in 
the two studies might not be fully appropriate.

The most remarkable difference in relation to previous 
studies is the procedure used for discriminating areas 
with vertical continuity from those with vertical discon-
tinuity. Marino et  al. (2016) and studies relying on Pro-
metheus models (Arroyo et al. 2008; Huesca et al. 2019; 
Domingo et  al. 2020) fix thresholds for height and per-
centages of points in the point clouds. However, the spe-
cific threshold values to be designated are dependent on 
the LiDAR density, occlusions, and the type of species 
present (García-Cimarras et  al. 2022). As a result, the 
replicability of the method might be compromised when 
it is applied in different contexts. In this case, stands are 
differentiated through a random forest classification, 
whose results do not depend on local parameters. Fur-
thermore, studies that rely on the Prometheus system 
depend greatly on the study of the canopy cover (Arroyo 
et  al. 2008). This type of analysis is not feasible when 
using a 5 × 5-m pixel.

Field work is still commonly used in operational and 
scientific work to identify fuel models visually (Arroyo 

et  al. 2008). However certain conditions (e.g., weather, 
stand location, and conditions) prevent operators from 
performing in  situ observations. When forest fuels of 
vast areas are to be mapped, the execution of field work 
may compromise affordability and time efficiency. For 
example, the methods presented by Ferrer Palomino and 
Rodríguez y Silva (2021) or Heisig et  al. (2022) might 
be difficult to apply on a broader scale since they are 
designed for pilot areas or for local conditions and there-
fore the models developed cannot easily be extrapolated 
to other conditions (Huesca et al. 2019; Ferrer Palomino 
and Rodríguez y Silva, 2021; Heisig et al. 2022).

In this study, the identification of fuel models in the 
study area is carried out through the photo-guide that 
includes the fuel situations in the area. The proposed 
methodology produces a fuel model map for large areas 
through remote sensing, minimizing field work. The mul-
tispectral data allow for the identification of species and 
the LiDAR data provide points that penetrate the canopy, 
bouncing off the vegetation or tree trunks that are under 
the canopy. Thus, these data allow for the analysis of the 
vertical structure of the understory and of forest masses. 
Since field work is not needed, the method ought to be 
easily applied in the rest of Galicia or in areas with simi-
lar conditions.

Another significant advantage of our proposed meth-
odology is that it produces a map with a spatial resolution 
of 5 m. This is thanks to the LiDAR data, which allows for 

Table 9 Area occupied by each fuel model

Fuel model Remote sensing description Area (ha) Percentage (%)

Model 0 Anthropogenic areas, water bodies 1708.86 5.63

Model 1 Rocky areas 3525.33 11.61

Model 2 Crops and pastures 9240.84 30.43

Model 4 High shrubs 2818.49 9.28

Model 5 Low shrubs 1140.10 3.75

Model 7 Tree‑covered areas with continuous vertical structure 7179.21 23.64

Model 10 Tree‑covered areas with discontinuous vertical structure 4322.20 14.23

Model 12 Harvested areas 431.59 1.42

Table 10 Confusion matrix for fuel models 7 and 10. The numbers are the number of pixels analyzed

Ground truth

Fuel model 7 Fuel model 10 TOTAL UA (%)

Classification Fuel model 7 750 17 767 98

Fuel model 10 0 717 717 100

TOTAL 750 734 1484 OA (%)
PA (%) 100 98 OA (%) 98

KI 0.977
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the characterization of the vertical arrangement of veg-
etation at this resolution. In contrast, Huesca et al. (2019) 
produced a map at 30  m, Marino et  al. (2016) at 25  m 
and Domingo et al. (2020) at 10 m. According to Taneja 
et  al. (2021), different spatial resolutions of fuel models 
provide different results in fire simulations. They found 
that when using a fuel model map with higher resolu-
tions in simulation, better prevention strategies might be 
established. Nevertheless, spatial resolution is limited by 
the resolution of the ALS data. The commented studies 
used point clouds with a density of 0.5 pts/m2 and 1 pt/
m2 (Huesca et al. 2019; Marino et al. 2016; Domingo et al. 
2020), while the ALS resolution for this study was much 
greater: 7.2 pts/m2.

Although this methodology is presented as a meth-
odology for obtaining updated operational fuel model 
maps, its dependence upon LiDAR data could mean 
that its updatability is compromised. Therefore, between 
one LiDAR data update and the next, it may be neces-
sary to update the fuel model map using open-access 
satellite imagery as was done, for example, by DeCastro 
et al. (2022). A methodology that may prove valuable for 
this task is the methodology developed by Alonso et  al. 

(2021) for detecting forest disturbances. However, this 
methodology would be insufficient for detecting changes 
between models that differ solely in the vertical structure 
of the vegetation (i.e., it can’t differentiate between model 
7 and model 10), as this differentiation has thus far only 
been accomplished with LiDAR data. Having updated 
fuel model maps is of the utmost importance, and it 
would be advisable to increase the frequency at which 
open-access ALS data is updated in Spain (currently it is 
updated every 7 to 11 years (MTMAU, 2023). Addition-
ally, it is worth exploring in detail for how long model 12 
can indeed be assigned to describe an area since harvest-
ing slash is never permanent.

Bearing in mind the high-risk fire regime in this region, 
the map produced allows for an in-depth study of the fuel 
model distributions and patterns in the study area. This 
map may also be useful for stakeholders in the area to 
enhance fire prevention using new strategies based on the 
use of fire behavior simulation software (Simons 2013; 
Romero-Vivó et al. 2019; Moreira et al. 2020; Quílez et al. 
2020; Iglesias et  al. 2022). Additionally, and in terms of 
fire prevention, this would help these stakeholders fulfill 
the new legal requirements set forth by the Spanish gov-
ernment (RDL 15/2022).

Fig. 12 Plot of the mean decrease in Gini for each variable
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Conclusion
This study allowed for the creation of an updated fuel 
model map for an Atlantic landscape using remote sens-
ing. The fuel map obtained is adapted to the Rothermel 
fuel models and therefore it can be used operationally 
with diverse fire simulation software. Additionally, it was 
based specifically on the fuel types present in the study 
area and could serve as the basis for future fuel models 
designed explicitly for this environment. These would aid 
in the future replicability of the methodology and mark 
a step towards mapping customized fuel models. Future 
studies might explore the development of these fuel 
model maps with other types of fuel classifications such 

as the Scot and Burgan fuel models or the fuel models 
developed by Portuguese fire behavior researchers. This 
might enable the differentiation between stands with the 
same vegetation class.

The availability of these maps will allow stakeholders 
in this region to make a shift towards better suppres-
sion and fuel management actions and to address the 
new phenomena of ever-worsening fire scenarios. This is 
thanks to better, more up-to-date fuel maps for use with 
fire behavior simulation software. Additionally, these 
maps would also allow stakeholders to fulfill the legal 
requirements aimed at fire prevention that are set forth 
by the Spanish government. 

Appendix 1

Table 11 Description of Rothermel (Rothermel 1972; Anderson 1982) fuel models considered to be present in the study area

Fuel group Code Height (m) Fuel load (ton/ha) Qualitative characteristics

Pastures 1 0.3 1–2 Dry, short grass that covers the ground. 
Shrubs or trees covering less than 1/3 
of the surface

2 0.3– < 1 5–10 Grassy areas with shrubs or sparse 
trees that cover between 1/3 and 2/3 
of the surface

3  > 1 4–6 Thick, tall grass (over 1 m). Typical 
of savannas. Grain fields are representa‑
tive of this model

Shrubs 4 1–2 25–35 Dense shrubs or young trees. Horizontal 
and vertical continuity. Abundance 
of woody fuel

5  < 1 5–8 Dense, young shrubland

6  > 1 10–15 Shrubland similar to model 5 with rem‑
nants of broadleaf plants

7  < 2 10–15 Shrubland of highly flammable species 
less than 2 m tall or the underbrush 
of pine forests

Trees 8 10–12 Leaf litter in dense conifer or broadleaf 
forests (leaf litter forming a compact 
layer of less than 5 cm)

9 10–12 Leaf litter in dense conifer or broad‑
leaf forests, differing from model 
8 in that it forms a spongy, loosely 
compact, lofty layer with a great deal 
of air in between the leaves. It is made 
up of long needles

10 30–35 Naturally occurring woody debris, 
including large fallen wood due 
to storms, intense pests, or exces‑
sive forest maturity, with herbaceous 
vegetation and shrubbery growing 
among the woody debris

11 30–35 Lightly wooded or cleared forest 
with light debris (less than 7.5 cm 
in diameter), silvicultural or harvesting 
treatments, forming a loose, low‑lying 
layer (about 30 cm high)
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Fuel group Code Height (m) Fuel load (ton/ha) Qualitative characteristics

Trees 12 50–80 Predominance of debris over trees, 
heavier than in model 11, forming 
a continuous layer of greater height (up 
to 60 cm). More than half of the leaves 
are attached to the branches with‑
out being completely dry

Forest Harvesting Residues 13 100–150 Large accumulations of heavy, bulky 
waste or harvesting waste (diame‑
ter > 7.5 cm) covering the entire ground

Appendix 2

Table 12 Description of Lourizán CIF (Arellano et al. 2017) fuel situations detected in the study area

Fuel group Code Species Average height (m) Fuel load (mg/ha)

Pastures PI‑01 Pseudarrhenatherum longifolium; 
Agrostis curtisii

0.22 7.3

PI‑02 Pseudarrhenatherum longifolium; Ulex 
europaeus

0.5 13.2

Pa‑01 Pteridium aquilinum 0.76 3.56

Pa‑02 Pteridium aquilinum 0.67 5.41

Shrubs Eu‑01 Erica umbellata; Pterospartum triden-
tatum

0.37 10.04

Eu‑05 Erica umbellata; Pterospartum triden-
tatum; Ulex breoganii

0.65 18.83

Eu‑06 Erica umbellata; Pterospartum triden-
tatum; Ulex breoganii

0.86 30.2

Pt‑01 Pterospartum tridentatum; Erica 
umbellata

0.65 14.1

Ue‑01 Ulex europaeus; Erica umbellata 0.42 15.61

Ue‑02 Ulex europaeus 0.67 18.52

Ub‑03 Ulex breoganii 0.41 27.08

Ea‑05 Erica australis; Ulex europaeus 3.26 18.9

Es‑01 Erica scoparia; Ulex breoganii 1.03 16.15

Pt‑05 Pterospartum tridentatum; Ulex 
europaeus

1.5 26.96

Pt‑06 Pterospartum tridentatum 1.51 28.53

Pt‑07 Pterospartum tridentatum; Pteridium 
aquilinum

1.95 35.48

Ue‑05 Ulex europaeus; Pteridium aquilinum 3 21.63

Ue‑08 Ulex europaeus 2.01 23.31

Ue‑10 Ulex europaeus 1.5 28.05

Ub‑02 Ulex breoganii 1.27 20.27

Ub‑04 Ulex breoganii; Pteridium aquilinum 1.37 33.41

Cs‑01 Cytisus scoparius; Pteridium aquilinum; 
Rubus ulmifolius

2.48 14.41

Cs‑03 Cytisus scoparius 4.17 21.89
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Fuel group Code Species Average height (m) Fuel load (mg/ha)

Trees (Deciduous and evergreen trees) PpMB‑02 Pinus pinaster (Monte Bravo); Under‑
story: Erica umbellata; Ulex europaeus

0.5 13.62

PpL‑04 Pinus pinaster (Latizal); Understory: 
Ulex breoganii; Pteridium aquilinum

0.81 2.1

PpL‑09 Pinus pinaster (Latizal); Understory: 
Ulex europaeus; Daboecia cantabrica

1.21 12.34

EgB‑02 Eucalyptus globulus (Monte bravo); 
Understory: Brotes E. globulus; 
Pteridium aquilinum, Ulex europaeus

1.31 1.17

EgL‑08 Eucalyptus globulus (Latizal); Under‑
story: Acacia melanoxylon

3.84 12.11

QrL‑04 Quercus robur (Latizal); Understory: 
Rubus ulmifolius, Pteridium aquilinum

0.53 2.8

PpF‑06 Pinus pinaster (Fustal); Understory: 
Pterospartum tridentatum, Erica 
umbellata

0.4 7.18

PpF‑05 Pinus pinaster (Fustal); Understory: 
Pteridium aquilinum

1.1 4.3

EgL‑03 Eucalyptus globulus (Latizal); Under‑
story: Pteridium aquilinum, Ulex 
breoganii

0.78 4.5

QrF‑02 Quercus robur (Fustal); Understory: 
Pteridium aquilinum, Robus ulmifolius

0.28 1.66

QrF‑04 Quercus robur (Fustal); Understory: 
Ruscus aculeatus, Hedera helix

0.55 4.02

BaL‑01 Betula alba (Latizal); Understory: 
Pteridium aquilinum, Erica arborea

0.68 1.18

EgL‑09 Eucalyptus globulus (Latizal); Under‑
story: Ulex europaeus, Pteridium 
aquilinum

1.14 12.84

PpF‑03 Pinus pinaster (Fustal); Understory: 
Pteridium aquilinum

0.71 1.59

PpF‑05 Pinus pinaster (Fustal); Understory: 
Pteridium aquilinum

1.1 4.3

EgL‑06 Eucalyptus globulus (Latizal); Under‑
story: Erica cinérea, Erica umbellata

0.42 10.41

EgF‑03 Eucalyptus globulus (Fustal); Under‑
story: Pteridium aquilinum

0.7 8.37

EgF‑05 Eucalyptus globulus (Fustal); Under‑
story: Ulex micranthus, Daboecia 
cantabrica, Calluna vulgaris

0.43 11.64
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