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Abstract 

Background  Current assessments of the effects of climate change on future wildfire risk are based on either empiri‑
cal approaches or fire weather indices. No study has yet used process-based models over national scales to under‑
stand how and where will increases in climate aridity affect the likelihood of fire activity through changes in the mois‑
ture content of live (LFMC) and of dead (DFMC) fuels. Here, we used process-based models to forecast changes 
in LFMC and DFMC under the 21st century climatic conditions projected from moderate and high greenhouse gas 
emission scenarios (RCP4.5 and RCP8.5). Predictions were performed across broad productivity gradients in peninsular 
Spain to understand how productivity mediates the effects of climate change on fuel moisture dynamics.

Results  LFMC and DFMC were predicted to decline under the climatic conditions projected for the coming decades. 
Increases in the annual frequency of days with fuel moisture content below wildfire occurrence thresholds were 
predicted to extend fire season lengths by 20 days under RCP4.5 and by 50 days under RCP8.5. The effects of cli‑
mate change on LFMC and DFMC varied linearly and negatively with productivity (stronger fuel moisture decreases 
in least productive environments). Although we observed a significant mitigation effect from rising CO2 (via increases 
in water-use efficiency), it was not enough to offset LFMC declining trends induced by increased temperature 
and aridity.

Conclusions  We predicted that the warmer and more arid climatic conditions projected for the 21st century will lead 
to generalized declines in fuel moisture, lengthening fire seasons, and increasing wildfire danger. The use of process-
based models to forecast LFMC dynamics allowed the consideration of plant species capabilities to buffer climate 
change impacts. Significant increases in the fire season length predicted in the most productive environments, 
currently with large fire return intervals, would pose an increase of fire danger in major Spanish carbon sinks. Finally, 
the CO2 mitigation effect would not be enough to offset climate change-driven declines in seasonal LFMC levels.
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Resumen 

Antecedentes  Las determinaciones actuales sobre los efectos del Cambio Climático en el riesgo de incendios 
a futuro están basados en aproximaciones empíricas o en índices de peligro.  Ningún estudio hasta ahora ha usado 
modelos basados en procesos a escalas nacionales para entender cómo y cuándo los incrementos en la aridez del 
clima afectarán la posibilidad de la actividad del fuego a través de cambios en el contenido de humedad de combus‑
tibles vivos (LFMC) y muertos (DFMC).  Usamos en este caso modelos basados en procesos para predecir cambios en 

*Correspondence:
Rodrigo Balaguer‑Romano
rodrigo.balaguer@ccia.uned.es
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42408-023-00224-0&domain=pdf
http://orcid.org/0000-0003-2808-6777


Page 2 of 15Balaguer‑Romano et al. Fire Ecology           (2023) 19:65 

el LFMC y el DFMC bajo las condiciones pronosticadas para el siglo XXI de escenarios de emisiones de efecto inverna‑
dero que dan incrementos de moderados a altos (RCP4.5 and RCP8.5).  Las predicciones fueron realizadas a lo largo de 
gradientes muy amplios de productividad en la España peninsular para entender cómo la productividad interviene 
sobre los efectos del Cambio Climático en la dinámica de la humedad de los combustibles.

Resultados  Los resultados predijeron una declinación en los valores de LFMC y DFMC bajo las condiciones climáticas 
proyectadas para las próximas décadas. El incremento en la frecuencia de días con humedad del combustible por 
debajo de los umbrales de ocurrencia de incendios fue pronosticado como para extender la estación de fuegos por 
20 días bajo el escenario RCP4.5 y por 50 días bajo el escenario RCP8.5.  Los efectos del Cambio Climático sobre el 
LFMC y el DFMC varió lineal- y negativamente, con la productividad (una mayor disminución de la humedad del com‑
bustible en ambientes menos productivos).  Aunque observamos una mitigación significativa del efecto del aumento 
del CO2 (vía incrementos en la eficiencia en el uso del agua), éste no fue suficiente para compensar las tendencias 
declinantes en el LFMC inducida por el incremento de la temperatura y la aridez.

Conclusiones  Predecimos que las condiciones climáticas hacia períodos más cálidos y áridos proyectados para el 
siglo 21, llevará a declinaciones en la humedad de los combustibles, alargando las estaciones de fuego e incremen‑
tado el riesgo de incendios.  El uso de los modelos basados en procesos para pronosticar la dinámica del LFMC, per‑
mite considerar las capacidades de las especies de plantas para compensar los impactos del Cambio Climático.  Los 
incrementos significativos en la duración de la temporada de incendios predicha para ambientes más productivos, 
actualmente con largos intervalos de retorno del fuego, va a producir un incremento en el riesgo de incendios en 
los mayores almacenes de carbono en España. Finalmente, el efecto de las mitigaciones de CO2 no va a ser suficiente 
para compensar las disminuciones en niveles de LFMC causados por el Cambio Climático.

Background
Water scarcity is projected to increase in Europe, among 
other parts of the world, as a result of climate change 
(IPCC 2021). In ecosystems where plant biomass (i.e., 
fuel) is abundant enough to sustain fire spread, fire activ-
ity is primarily constrained by fuel availability to burn, 
which is determined by the frequency and duration of hot 
and dry weather events (Boer et al. 2021). Consequently, 
climate change may increase wildfire risk and fire sea-
son length in many European regions, as fuel moisture 
declines below critical dryness thresholds for longer peri-
ods (Jolly et al. 2015, Resco de Dios et al. 2021, Carnicer 
et al. 2022). A key aspect for fire prevention and manage-
ment actions relies in understanding temporal and spatial 
moisture content variations of both dead and live fuels. 
Live fuel moisture content (LFMC) shows seasonal vari-
ations within and among plant species due to differences 
in anatomical and physiological traits that interact with 
environmental conditions (Balaguer-Romano et al. 2022). 
On the other hand, dead fuel moisture content (DFMC) 
shows daily scale variations as it responds rapidly to 
atmospheric changes in temperature and relative humid-
ity, especially in the case of fine fuels as leaves and twigs 
(Resco de Dios et al. 2015).

Although drought indices derived from fire weather 
and fire danger rating systems (McArthur 1966, Van 
Wagner 1987) were not developed to model fuel mois-
ture, they are nonetheless used to estimate LFMC and 
DFMC dynamics. As these indices are based on daily 
weather data which can be easily obtained, many studies 

assessing future wildfire risk by modeling fuel moisture 
dynamics under climate change projections are primar-
ily based on drought indices estimations (Rigo et al. 2018, 
Dupuy et al. 2020, Gannon and Steinberg 2021, Ellis et al. 
2022). But, while drought indices can reasonably assess 
future DFMC dynamics (Matthews 2014), they make sim-
plifying assumptions about how LFMC will change under 
a warming climate. That is, they usually infer LFMC from 
variations in weather conditions and, consequently, they 
ignore species-level physiological capabilities to adjust 
the moisture status of live tissues, potentially leading to 
future wildfire risk mispredictions.

One of the key physiological adjustments that may 
delay or prevent critical dryness transitions in live fuels 
arises from increasing atmospheric CO2 concentrations. 
Stomatal aperture often responds negatively to increas-
ing CO2 concentrations (Wullschleger et  al. 2002), and 
that may serve as a water conserving mechanism that 
enhances water use efficiency and thus LFMC. Other-
wise, future drier conditions may also alter the demand of 
living tissues relative to water and carbon fluxes, poten-
tially altering current fuel moisture dynamics (McDow-
ell et  al. 2022). There is a wide variety of physiological 
adjustments that interact with environmental conditions 
and understanding future variations in LFMC would 
benefit from process-based modeling in order to improve 
the biological realism of wildfire danger assessments.

Climate shapes global fire distribution as it constrains 
the amount and timing of plant available water which, 
in turn, drives biomass production and fuel dryness, 
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the main conditions for wildfire occurrence (Boer et  al. 
2021). Fire activity varies unimodally across productiv-
ity/aridity gradients, reaching peak values at intermedi-
ate productivity levels and decreasing towards extremes. 
Arid ecosystems may not have biomass high enough to 
sustain a fire, while very mesic ecosystems may be too 
wet to sustain fires (Pausas and Ribeiro 2013). Climate 
change is expected to shift this fire maximum towards 
more productive ecosystems as climate aridity increases 
the frequency and intensity of droughts and fuel drying 
events. Even forested ecosystems with large fire return 
intervals, currently associated with high fuel moisture 
contents, may dry out periodically and be subject to large 
wildfire events in the coming decades (Resco de Dios 
et al. 2021, Ellis et al. 2022). Whether this switch is likely 
to occur, depends on the extent to which increasing cli-
mate aridity affects fuel moisture dynamics. But current 
Land Surface Models and Fire-enabled Dynamic Global 
Vegetation Models (Hantson et  al. 2016, Rabin et  al. 
2017, Teckentrup et al. 2019) cannot yet fully account all 
relevant climate-vegetation-fire interactions.

General Circulation Models (GCMs), which repre-
sent the major climate system components and their 
interactions (Taylor et  al. 2012), together with future 
greenhouse gas emission and socioeconomic scenarios, 
as the Representative Concentration Pathways (RCPs; 
Moss et  al. 2010), are the main tools to simulate future 
climates (Rodríguez and Gutiérrez 2018). Several pro-
jections of future wildfire risk under climate change con-
ditions have been conducted using different GCM and 
RCP, concluding that increased climate aridity would 
lead to fuel moisture declines and, consequently, to fire 
seasons lengthening and fire activity increasing during 
the 21st century (Matthews et  al. 2011, An et  al. 2015, 
Abatzoglou, et  al. 2019, Varela et  al. 2019, Dupuy et  al. 
2020, Fargeon et al. 2020, Gao et al. 2021, Ma et al. 2021, 
Vilar et al. 2021, Ellis et al. 2022, Jones et al. 2022). It is 
important to highlight that even relatively minimum fuel 
moisture decreases can result in disproportional area 
burned increases, as the relationship between fuel mois-
ture and fire activity is exponential (Resco de Dios et al. 
2022). However, besides the importance of the accurate 
characterization of fuel moisture dynamics under climate 
change, no study has so far provided future LFMC esti-
mates using process-based models for a wide range of 
species and sites distributed across broad climatic and 
productivity gradients.

Climate-driven fire activity increases have been pro-
jected worldwide and have become a major concern in 
southern Europe (Dupuy et  al. 2020). In the last dec-
ades, rural land abandonment (Gelabert et  al. 2022) 
together with fire suppression strategies (Stephens et al. 
2018) have promoted the increase of forest cover that 

accumulates huge fuel loads with large spatial connec-
tivity (Resco de Dios et al. 2021). Spain is representative 
of these changes within southern Europe, with forested 
land surface increasing by 33% in the last three decades 
(FAO 2020). More frequent and intense drought events 
(IPPC 2021), as well as increases in competition for 
water resources in these densely forested areas, are lead-
ing to earlier and longer fire seasons (Vilar et  al. 2021). 
The recent extreme 2022 wildfire season, which has led 
to abnormally high burned area values in the region, 
has been related to record-breaking values of fuel dry-
ness (Rodrigues et  al. 2023). In this context, the early 
warming capacity of wildfire danger would benefit from 
modeling fuel moisture dynamics under a process-based 
perspective.

Here, we sought to test the general hypothesis that cli-
mate change will cause increasing fuel dryness and, con-
sequently, increasing fire season length, across Spain’s 
forest regions during the 21st century. We also hypoth-
esize that climate change effects over fuel dryness will 
depend on vegetation productivity and that enhanced 
water use efficiency derived from increased CO2 effects 
will not fully compensate for changes in temperature and 
precipitation. We use different GCM projections dur-
ing the 21st century under different RCPs (RCP4.5 and 
RCP8.5) as inputs for LFMC and DFMC process-based 
models (Resco de Dios et  al. 2015, Balaguer-Romano 
et al. 2022). We then address LFMC and DFMC dynamics 
and analyze subsequent changes in fire season length by 
assessing the number of days per year with values below 
fuel dryness thresholds. We then study how changes in 
fuel moisture and fire season length vary across gradi-
ents of net primary productivity (NPP), to assess whether 
changes in the potential fire season will be amplified or 
reduced across productivity gradients. Finally, we ana-
lyze CO2 effects on LFMC dynamics to test the hypoth-
esis that increasing CO2 concentrations will enhance the 
water-use efficiency of the vegetation, thus counteracting 
the negative effects of the increases in water stress due 
to more frequent and intense water scarcity under global 
warming. Overall, this represents the first effort to pre-
dict fuel moisture dynamics under climate change over 
broad climate and productivity gradients using process-
based models.

Materials and methods
Study sites
We predicted live and dead fuel moisture content 
variation across many of the contrasting climates and 
ecoregions of peninsular Spain (Fig. 1). Study site loca-
tions correspond with plots from the Third National 
Forest Inventory of Spain (Alberdi et  al. 2016), and 
they are monospecific stands of six broadleaf species 
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(Fagus sylvatica L., Quercus ilex L., Quercus suber 
L., Quercus robur L., Quercus pyrenaica Willd., or 
Quercus faginea Lam) and of six conifer species (Pinus 
halepensis Mill., Pinus nigra Arnold., Pinus sylvestris 
L., Pinus pinea L., Pinus pinaster Ait., or Pinus unci-
nata Ramond.), selecting three plots per species which 
result in 36 study sites (Table S1, Fig. S1). Study sites 
selection was carried out ensuring that they covered 
the distribution range of each species (from the least 
and most productive sites, as well as intermediate), 
and ensuring that they covered a North-South gradi-
ent across peninsular Spain. Across the study sites, 

mean annual air temperature varied from 10 to 18 °C 
(Fig. 1a, Table S1) and mean annual precipitation from 
375 to 2200 mm (Fig.  1b, Table S1). Vegetation types 
and ecoregions ranged from xeric sclerophyll or Medi-
terranean pine forests to the more mesic Cantabrian 
forests, dominated by temperate deciduous broad-leaf 
species, or high mountain conifer forests (Fig. 1c). We 
used an existing MODIS product (MOD17A3HGF, 
Running and Zhao 2019) with a spatial resolution of 
500 m as the estimate of mean annual net primary pro-
ductivity (kg  C  m−2) between 2010 and 2020. Long-
term average annual productivity of study sites ranged 

Fig. 1  Location of our study sites (black dots) and main bioclimatic properties: a mean annual air temperature (°C), b mean annual precipitation 
(mm), c ecoregions, d mean annual net primary productivity (kg C m−2) between 2010 and 2020. Ecoregion delimitations were obtained from WWF 
(Dinerstein et al. 2017) and they indicate Cantabrian mixed Forests (1); Pyrenees conifer and mixed forests (2); Northwest Iberian Montane Forests 
(3); Northeast Spain Mediterranean forests (4); Iberian conifer forests (5); Iberian sclerophyllous and semi-deciduous forests (6); Southwest Iberian 
Mediterranean sclerophyllous and mixed forests (7); Southeast Iberian shrubs and woodlands (8). Meteorological data is from Chazarra Bernabé 
et al. (2018) and mean annual net primary productivity values are from Running & Zhao (2019)
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from 3870 to 15,031 kg C m−2, showing a strong south-
north productivity gradient (Fig. 1d, Table S1).

Climate projections
Daily precipitation and daily maximum and minimum 
air temperature projections from 2010 to 2100 were 
obtained from the Euro-CORDEX adjusted grid at 0.11° 
resolution (Kotlarski et  al. 2014). We selected four dif-
ferent Global Climate Models (GCM) coupled within 
Regional Climate Models (RCM), maximizing model 
spread for relevant variables and avoiding duplications 
in order to reduce model prediction biases (Table S2, 
Rodríguez and Gutiérrez 2018). The selected GCMs have 
been evaluated over Western Europe and exhibit signifi-
cant differences in predictions of summer temperature 
and precipitation (Table S2, McSweeney et  al. 2015). 
We considered both moderate and high greenhouse gas 
emission scenarios (RCPs 4.5 and 8.5) for each GCM. We 
performed projections bias corrections using standard 
methods based on daily mean bias for temperature and 
quantile mapping for precipitation (Ruffault et al. 2014). 
We use data from the Spanish Meteorological Agency 
(AEMET) from 2010 to 2020 as reference observational 
data for GCM projections bias correction and all analyses 
were performed using the R package meteoland (De 
Cáceres et  al. 2018). Statistical means of GCM climate 
projections across all study sites showed that, from 2010 
to 2100, mean annual temperature is expected to increase 
by 1.5 °C (min = 0.7 °C, max = 2.15 °C) under RCP4.5 
and by 4 °C (min = 3.2 °C, max = 5.7 °C) under RCP8.5, 
while mean annual precipitation is expected to decrease 
by 100 mm (min = 87 mm, max = 119 mm) under 
RCP4.5 and by 150 mm (min = 134 mm, max = 182 mm) 
under RCP8.5 (Fig. S2). Relative humidity, incoming solar 
radiation, and potential evapotranspiration were daily 
predicted using meteoland (De Cáceres et  al. 2018). 
Relative humidity was estimated assuming that dew point 
temperature equals the minimum temperature. Potential 
solar radiation was estimated from latitude, slope, and 
aspect, and incoming solar radiation was then obtained 
following Thornton and Running (1999). Projections of 
annual atmospheric CO2 concentration were obtained 
for each RCP scenario from Meinshausen et al. (2011).

LFMC modeling
Daily variations in species-level LFMC were predicted 
following Balaguer-Romano et al. (2022). This process-
based model was calibrated and validated with 2512 
LFMC data measured from 37 plant species belonging 
to different functional types, collected between 1996 
and 2017 from contrasting climate locations across 
peninsular Spain. The approach combines MEDFATE, 

a water balance model for the estimation of species-
specific daily pre-dawn water potential (Ψpd), and 
an empirical relationship between Ψpd and LFMC, 
established following Nolan et  al. (2018). MEDFATE 
is implemented in an R package, which uses soil, veg-
etation, and meteorological data to estimate soil water 
balance and plant water relations (De Cáceres et  al. 
2015, 2021). The model estimates daily plant transpira-
tion and photosynthesis rates. Stomatal regulation of 
gas exchange is simulated at sub-daily steps involving 
detailed calculations of hydraulics, leaf energy balance, 
and photosynthesis based on Sperry et al. (2017). This 
approach predicts the trajectory of stomatal responses 
to changes in the environment across time by con-
sidering that at any given instant the stomatal aper-
ture adjusts to maximize the instantaneous difference 
between photosynthetic gain and hydraulic cost.

We used soil and vegetation data inputs following 
previously published protocols (Balaguer-Romano et al. 
2022). In short, the soil was divided into four layers 
(0–10 cm, 10–20 cm, 20–60 cm, and 60–100 cm deep), 
and data inputs regarding bulk density, the percentage 
of clay, sand, organic matter, and rock fragment con-
tent were extracted for our plot locations from the Soil 
Grids System at 250 m resolution (Hengl et  al. 2017). 
Vegetation data inputs were species identity, tree den-
sity, shrub cover, plant height, tree diameter at breast 
height, and plant rooting depth. All data except root-
ing depth were obtained for the selected plots from the 
Third National Forest Inventory of Spain (Alberdi et al. 
2016). Rooting depth, classified as the depth at which 
cumulative 50% (Z50) and 95% (Z95) of fine roots 
occur, was set at 20 cm and 100 cm for tree species 
and at 10 cm and 20 cm for shrub species as previously 
discussed (Balaguer-Romano et  al. 2022). MEDFATE 
also includes a set of species-specific plant traits cov-
ering plant size, plant phenology and anatomy charac-
teristics, and shrub and tree allometric coefficients to 
predict plant biomass, foliage and small twigs tissue 
moisture, light extinction, transpiration, and photo-
synthesis (De Cáceres et al. 2021). We used the default 
package values (ver. 2.7.3) for each selected species. 
Following Balaguer-Romano et al. (2022), soil and vege-
tation data inputs were used along with meteorological 
projections to estimate daily species-specific Ψpd values 
and corresponding daily LFMC for all study sites. To do 
this we applied Eq. (1):

Finally, we ran a second round of simulations for each 
species (Table S1), considering a stable atmospheric CO2 
concentration of 386 ppm (2000–2020 mean) in order to 

(1)LFMC = 91.87− 31.12 log10(−�pd)
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quantify the potential mitigatory effect of CO2 on LFMC 
dynamics.

DFMC modeling
Daily minimum DFMC values were predicted from VPD 
in each study site by applying Eq. (2) derived from the 
process-based model developed by Resco de Dios et  al. 
(2015):

where DFMC0 and DFMC1 represent the minimum and 
maximum moisture content values, respectively, and m is 
the rate of change in DFMC with VPD. Values for DFMC0 
(6.79), DFMC1 (27.43), and m (1.05) were obtained from 
(Nolan et al. 2016a), and the Resco de Dios et al. (2015) 
DFMC model that has been previously used and vali-
dated in Spain (Resco de Dios et al. 2022). Daily VPD val-
ues were estimated using the plantecophys R package 
(Duursma 2015) from daily minimum relative humidity 
and daily maximum air temperature previously obtained 
from meteorological projections, which leads to the low-
est DFMC daily value (Resco de Dios et al. 2015). 

Data analyses
Live and dead fuel moisture content were analyzed over 
three decadal time periods, ranging from 2010 to 2020, 
from 2040 to 2050, and from 2090 to 2100. Fuel mois-
ture values predicted under each GCM were aggregated 
into a single daily mean. To analyze fuel moisture con-
tent dynamics, we predicted LFMC and DFMC summer 
mean (from June 21st to September 21st) for each year, 
as this period concentrates the bulk of the fire activity in 
peninsular Spain (Resco de Dios et al. 2022). To account 
for a potential lengthening of fuel-drying events under 
global warming, we also estimated the lengths of the fire 
season and low fuel moisture period, as the total num-
ber of days per year (days  year−1) when predicted fuel 
moisture content values fell below wildfire occurrence 
thresholds. LFMC typically ranges between 40 and 150% 
during the fire season for key woody plant species in pen-
insular Spain (Nolan et al. 2018, Balaguer-Romano et al. 
2022) while DFMC variation ranges between 4 and 30% 
(Matthews 2014, Nolan et al. 2016b). Here, we followed 
previous publications that had established the minimum, 
critical, and extreme threshold values of fuel moisture 
content associated with fire activity in the Mediterranean 
and temperate broadleaf and mixed forest ecoregions at 
120, 100, and 80% for LFMC and at 12, 10, and 8% for 
DFMC, respectively (Nolan et al. 2016b, Boer et al. 2017, 
Ma et al. 2021, Ellis et al. 2022, Resco de Dios et al. 2022). 
The minimum fuel moisture threshold is defined as the 
level associated with the onset of wildfire occurrence 
(Boer et  al. 2017, Ellis et  al. 2022), while fuel moisture 

(2)DFMC = DFMC0 + DFMC1e
(−mVPD)

levels below the critical thresholds set the stage for vigor-
ous fire spread (Nolan et al. 2016b, Ellis et al. 2022, Resco 
de Dios et  al. 2022). Lastly, the extreme fuel moisture 
threshold is defined as the level at which large wildfire 
events exhibiting exponential growth of the burned area 
are observed (Nolan et al. 2016b, Ma et al. 2021). There-
fore, days recording live and dead fuel moisture values 
below the minimum thresholds were accounted as fire 
season days, while days recording values below critical 
and extreme thresholds were accounted as critically and 
extremely low fuel moisture periods, respectively.

To assess LFMC and DFMC responses to climate 
change conditions, we fitted linear mixed-effects models 
with the lme4 R package (Bates et  al. 2015). The fitted 
models had a double factorial structure with Period and 
RCPs as fixed factors and Site and Year as random effects, 
with Year nested in Period. The response variables were 
summer mean fuel moisture values (%) and the length of 
the fire season or low fuel moisture period (days year−1). 
LFMC critical threshold values were squared root trans-
formed in order to meet model assumptions. Results 
for LFMC extreme fuel moisture threshold data are 
not shown as the fitted model did not meet normality 
assumptions. Then, we conducted Bonferroni corrected 
post hoc comparisons in order to assess pairwise differ-
ences between different Period and RCPs fixed factors 
combinations from the linear mixed-effects models fit-
ted using the emmeans R package (Russell et  al. 2023). 
Then, we correlated moisture content dynamics and fire 
season lengths with each study site’s mean annual net 
primary productivity (NPP) to assess whether changes in 
fuel moisture and in the potential fire season length will 
be amplified or reduced across productivity gradients. 
Finally, to test for CO2 effects on LFMC and fire season 
length, we performed a dependent samples sign test from 
the R package BSDA (Arnholt and Evans 2022). A non-
parametric test was used as linear models fitted with con-
stant and increasing CO2 database values did not meet 
normality assumptions. In this way, we assessed whether 
median LFMC (%) and fire season length (days  year−1) 
values predicted under constant or increasing atmos-
pheric CO2 concentrations were significantly different. 
All analyses were conducted considering a significance 
level of p < 0.05.

Results
Fuel moisture content dynamics
Fuel moisture content ranged from 62 to 135% in the 
case of live fuels and from 7 to 15% in the case of dead 
fuels, with a mean LFMC of 114% and a mean DFMC of 
9%, across all study sites and throughout all time peri-
ods while considering both RCP scenarios. Declines in 
LFMC and in DFMC were recorded in the three decadal 
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periods, from 2010–2020 (1st period) to 2040–2050 (2nd 
period) and from 2010–2020 to 2090–2100 (3rd period) 
under both RCP scenarios (Table 1).

There was a significant effect of RCP, Period, and 
their interactions on LFMC variation (Table S3). Bon-
ferroni corrected post hoc comparisons (Table S4.1) 
revealed that, under the moderate greenhouse gas emis-
sion scenario (RCP4.5,  Fig.  2a–c–e), there were only 
significant differences between the 1st and 3rd decadal 
periods (p < 0.001) where mean summer LFMC across 
all sites was predicted to decline from 116% (Fig. 2a) to 
113% (Fig. 2e). The trends of declining LFMC were more 

Table 1  Average summer mean moisture content (%) of live 
(LFMC) and dead fuels (DFMC) predicted across three decadal 
periods under greenhouse gas emission scenarios RCP4.5 and 
RCP8.5. 2040–2050 LFMC values predicted under RCP4.5 were 
not represented as they did not show significant differences with 
the historical 2010–2020 period

LFMC (%) DFMC (%)

Period RCP4.5 RCP8.5 RCP4.5 RCP8.5

2010–2020 116 116 10 10

2040–2050 - 112 9.5 9.2

2090–2100 113 106 9 8.5
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Fig. 2  Predicted changes in mean summer LFMC across Spain for three decadal time periods under RCP4.5 and RCP8.5. LFMC values of each study 
site for the period 2010–2020 for both RCP 4.5 (a) and 8.5 (b). Differences in LFMC between 2040–2050 and 2010–2020 for RCP 4.5 (c) and 8.5 
(d). Differences in LFMC between 2090–2100 and 2010–2020 for RCP 4.5 (e) and 8.5 (f). Asterisks after the subplot letter indicate significant LFMC 
differences between 2010–2020 and future periods
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pronounced under high greenhouse emission scenario 
(RCP8.5,  Fig.  2b–d–f), where differences between peri-
ods were always significant. We recorded a decline from 
116% in 2010–2020 (Fig.  2b) to 112% for 2040–2050 
(Fig. 2d) and to 106% for 2090–2100 (Fig. 2f ). Regarding 
RCP comparisons (Fig. S3, Table S4.1), there were non-
significant differences between predicted mean summer 
LFMC during the 1st period for both RCPs, and between 
RCP4.5 for the 3rd period and RCP8.5 for the 2nd period. 
The rest of pairwise comparisons involving RCP and 
Period were significantly different (Fig.  2, Fig. S3, Table 

S4.1). Finally, the effect of the random Site factor indi-
cated significant and widespread variability across sites 
(Table S4.2).

DFMC analyses also showed significant effects of 
Period, RCP, and their interaction on DFMC variation 
(Table S5). Bonferroni corrected post hoc comparisons 
revealed that all pairwise differences between periods in 
both RCP scenarios were significant (Fig. S4, Table S6.1). 
Mean summer DFMC levels across the study sites (Fig. 3) 
predicted under RCP4.5 showed a decline from 10% in 
2010–2020 (Fig. 3a) to 9.5% in 2040–2050 (Fig. 3c), and 
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Fig. 3  Predicted changes in mean summer DFMC across Spain for three decadal time periods under RCP4.5 and RCP8.5. DFMC values of each 
study site for the period 2010–2020 for both RCP 4.5 (a) and 8.5 (b). Differences in DFMC between 2040–2050 and 2010–2020 for RCP 4.5 (c) and 8.5 
(d). Differences in DFMC between 2090–2100 and 2010–2020 for RCP 4.5 (e) and 8.5 (f). Asterisks after the subplot letter indicate significant DFMC 
differences between 2010–2020 and future periods
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to 9% in 2090–2100 (Fig.  3e). Under RCP8.5, DFMC 
showed a decline from 10% in 2010–2020 (Fig.  3b) to 
9.25% in 2040–2050 (Fig. 3d), and to 8.5% in 2090–2100 
(Fig. 3f ). Differences in predicted mean summer DFMC 
values across all sites between both RCPs for the 2nd 
periods were not significant, but DFMC was significantly 
lower in RCP8.5 than in RCP 4.5 in the rest of pairwise 
comparisons across periods (Fig. S4, Table S6.1). Again, 
the effect of the random Site factor indicated significant 
and widespread variability across sites (Table S6.2).

Fire season and low fuel moisture period length
Fire season and low fuel moisture period lengths were 
estimated from the total number of days per year 
(days  year−1) with predicted LFMC and DFMC val-
ues below empirical wildfire occurrence thresholds. For 
2010–2020, we estimated a mean fire season length of 
112 days (below the minimum LFMC threshold of 120%), 
and 32 and 2 days with values below the critical (100% 
LFMC) and the extreme (80% LFMC) thresholds, respec-
tively. Regarding DFMC, we estimated a mean fire season 
length of 112 days (below the minimum DFMC threshold 
of 12%), and 70 and 16 days with values below the criti-
cal (10% DFMC) and the extreme (8% DFMC) thresholds, 
respectively.

Estimated fire season and low fuel moisture period 
length, showed an increasing trend for the 21st century 
in all study sites for both emission scenarios RCP4.5 and 
RCP8.5 (Fig. 4, Table 2). There was a significant effect of 
RCP, Period, and their interaction on LFMC variation 
for minimum and critical thresholds (Table S7 and S8) 
and on DFMC variation for all three thresholds (Table 
S9–S11). Regarding LFMC values, from 2010–2020 to 
2090–2100 fire season length was estimated to increase 
on average by 15 days  year−1 under RCP4.5 and by 50 
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Fig. 4  Fire season and low fuel moisture periods length represented by the number of days per year (days year−1) with LFMC (a) and DFMC 
(b) values below wildfire occurrence thresholds (minimum: 120–12%, critical: 100–10% and extreme: 80–8% for LFMC-DFMC, respectively) 
under scenarios RCP4.5 and RCP8.5. Each bar represents a year within each period (2010–2020, 2040–2050 and 2090–2100). Black dots represent 
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normality assumptions

Table 2  Fire season length represented by the number of 
days per year (days  year−1) with LFMC and DFMC values below 
wildfire occurrence thresholds (minimum: 120–12% | critical: 
100–10% | extreme: 80–8% for LFMC-DFMC, respectively) under 
scenarios RCP4.5 and RCP8.5. Values for the extreme LFMC 
threshold of 80% were not represented as the fitted model does 
not meet normality assumptions

LFMC DFMC

Period RCP4.5 RCP8.5 RCP4.5 RCP8.5

2010–2020 112 | 32 | 2 110 | 27 | 2 112 | 70 | 16 112 | 70 | 16

2040–2050 117 | 35 | - 123 | 39 | - 124 | 79 | 23 124 | 79 | 23

2090–2100 127 | 40 | - 160 | 57 | - 132 | 87 | 31 158 | 110 | 49
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days year−1 under RCP8.5. Meanwhile, critically low fuel 
moisture periods were estimated to increase by 8 and 
30 days  year−1 under RCP4.5 and RCP8.5 respectively. 
Across the same periods and regarding DFMC values, fire 
season length was estimated to increase by 20 days year−1 
under RCP4.5 and 46 days  year−1 under RCP8.5. Mean-
while, critically low fuel moisture periods were estimated 
to increase by 17 and 40 days  year−1 under RCP4.5 and 
RCP8.5 respectively. Finally, extremely low fuel mois-
ture periods were estimated to increase by 15 days year−1 
under RCP4.5 and 33 days year−1 under RCP8.5.

Changes across productivity gradients
The effects of climate change on LFMC depended on 
site productivity, with the decline in LFMC being more 
marked at the least productive sites. Comparing cur-
rent LFMC with predicted levels at the end of the 21st 
century (ΔLFMC, Fig.  5a, c), we observed a negative 
relationship (p = 0.007, R2 = 0.2), such that ΔLFMC 
changed from −10 to −2% from the least to the most 
productive site under RCP8.5. The slope of the rela-
tionship was significantly higher (p = 0.001) in conifer 

forests, meaning that the future decrease in LFMC 
could be less marked at broadleaf forest locations. 
Under RCP 4.5, the change in LFMC with productivity 
was only marginally significant (p = 0.057) for conifer 
forests, where the ΔLFMC change across the produc-
tivity gradient was from −3 to 1%.

Fire season lengthening was also significantly less in 
places with higher productivity (Fig. 5b, d). The increase 
in fire season length (defined from days under the mini-
mum LFMC threshold of 120%) with productivity under 
RCP8.5, ranged from 100 to 7 days year−1 from the least 
to the most productive site, and the slope of the relation-
ship was more negative in broadleaf forests (from 80 to 
7 days  year−1) than in conifer forests (ranging from 95 
to 38 days  year−1). We observed the same trends under 
RCP4.5, but less pronounced. The change in fire season 
length with productivity ranged from 22 to 0 days year−1, 
being again only significant in conifer forests and with 
lower slope estimates. Finally, correlations between vari-
ation in predicted DFMC and fire season length (regard-
ing DFMC thresholds) against productivity were not 
significant.

Fig. 5  The effects of climate change on fuel moisture depend on site productivity (2010–2020 mean annual net primary productivity in kg C m−2). 
Correlations between changes in LFMC (ΔLFMC) between 2090–2100 and 2010–2020 and changes in fire season length (minimum threshold 
of LFMC<120%) as a function of mean annual net primary productivity under RCP4.5 (a, b) and RCP8.5 (c, d). R2 and p-values represent the results 
of linear fitting for all species and separately for conifer forests (blue) and broadleaf forests (orange)
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CO2 effects
Results of the dependent samples sign test showed 
that median LFMC values predicted under an increas-
ing atmospheric CO2 concentration were significantly 
greater (p < 0.001) than median LFMC values predicted 
under a constant [CO2]. Differences between constant 
and increasing atmospheric [CO2] predictions were 
greater for RCP8.5 (1.5%) than for RCP4.5 (0.75%). LFMC 
levels under RCP4.5, from 2010–2020 to 2090–2100, 
were predicted to decline by about 4% under increasing 
atmospheric [CO2], and by about 5% under stable atmos-
pheric [CO2]. For RCP8.5, predicted declines were larger 
for the same periods, with a LFMC decline of 10% under 
increasing atmospheric [CO2], and a decline of 13% 
under constant atmospheric [CO2] conditions. Estimated 
fire season lengthening was approximately 10 days year−1 
lower in simulations conducted under increasing atmos-
pheric [CO2]. Thus, the estimated lengthening under 
RCP8.5 between 2020 and 2100 was 50 days year−1 under 
increasing atmospheric [CO2], while under constant 
[CO2] conditions lengthening was 60 days year−1 for the 
same RCP, period and thresholds (Table S.12).

Discussion
By applying process-based models and considering cli-
mate change conditions derived from moderate and high 
greenhouse gas emission scenarios (RCPs 4.5 and 8.5), 
we predicted that warmer and more arid climatic condi-
tions will lead to declining trends of LFMC and DFMC, 
consequently increasing the annual frequencies of days 
recording fuel moisture values below wildfire occurrence 
thresholds, lengthening the fire seasons and increasing 
wildfire danger. LFMC and DFMC values were predicted 
to decrease by 3% and 1%, respectively, extending annual 
fire season length by 20 days under projected climatic 
conditions for RCP4.5 by 2100. LFMC and DFMC val-
ues were predicted to decrease by 10% and 1.5%, respec-
tively, causing the annual fire season length to increase by 
50 days under RCP8.5 projected climatic conditions for 
RCP8.5 by 2100, compared with the current fire season. 
Despite predicted declines in LFMC and DFMC (10 and 
1.5%, respectively) were relatively small, it is important 
to consider that the relationship between fuel moisture 
and burned area is exponential. Longer periods with 
low fuel moisture values increase available fuel connec-
tivity at landscape scales by affecting wet local areas, 
as valley bottoms, that could act as natural fire breaks 
(Resco de Dios et  al. 2022). Thus, considering that cur-
rent fuel moisture values in large European areas are 
already close to the limit of wildfire occurrence thresh-
olds (Carnicer et al. 2022, Resco de Dios et al. 2021), even 
minimum decreases in fuel moisture can lead to large 
wildfire events that exponentially increase the burned 

area surface (Nolan et al. 2016b). In this context, is also 
crucial to consider future changes in socioeconomic fac-
tors and land use policies that influence burned area, as 
that could affect the relationship between LFMC and 
burned aea (de Diego et al. 2023).

DFMC showed proportionally steeper declining trends 
than LFMC. We found more study sites with fuel mois-
ture values below wildfire occurrence thresholds for 
DFMC (Fig. 3) than for LFMC (Fig. 2), and DFMC pre-
dictions showed more days per year with values below 
critical and extreme thresholds (70 and 16 days  year−1, 
respectively) than LFMC (32 and 2 days  year−1). These 
observed differences would not arise if future moisture 
dynamics of both fuel types were predicted by applying 
commonly used drought indices, as process-based mod-
els allowed to consider species-level physiological capa-
bilities to adjust the moisture status of live tissues. The 
predicted misalignment between live and dead fuel mois-
ture declines could modify fire regimes by affecting fire 
behavior and fire spread. Further studies should assess 
how physiological plant responses to climate change con-
ditions (e.g., vulnerability to cavitation) will increase the 
proportion of dead particles in tree canopies, and, conse-
quently, crown fire risk (Van Wagner 1977).

We found a productivity gradient effect over the pre-
dicted fuel moisture trends, with the largest declines at 
the least productive sites (Fig.  5). But, despite low pro-
ductivity southern study sites recorded the minimum 
predicted moisture content values (Figs.  3 and 4), high 
productivity northern sites showed significant increases 
in the fire season length. Furthermore, it is in northern 
study sites where we predicted greater DFMC declines 
(Fig. 3e, f ). Northern Spain climatic conditions favor the 
development of forests dominated by temperate decidu-
ous broad-leaf species (Fig.  1c). These ecosystems are 
highly productive and hold huge amounts of biomass 
(Fig.  1d) being the major Spain’s forest carbon sinks 
(Alberdi et  al. 2016). Several decades of land abandon-
ment have promoted the encroachment of forest into 
former pastures and croplands increasing fuel accumu-
lation and forest continuity (Gelabert et al. 2022). These 
vast amounts of forest biomass have formed fuel arrays 
of high vertical and horizontal continuity in relatively 
humid environments with large fire return intervals 
(Resco de Dios et al. 2021). However, predicted fuel mois-
ture declines driven by projected climate aridity increases 
would largely increase fire danger in Spain’s major forest 
carbon sinks (Anderegg et al. 2020).

Predictions conducted with increasing atmospheric 
CO2 concentrations showed significantly higher LFMC 
values compared to predictions conducted with stable 
CO2 concentrations. Under RCP 8.5, the CO2 mitigation 
effect caused an average increase of 3% in LFMC values, 
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which was not enough to compensate for a net LFMC 
decline of 13% expected by the end of the century as a 
result of increasing temperature and decreasing precipi-
tation. Also, fire season lengthening was 10 days  year−1 
lower under increasing CO2 concentration predictions, 
but again not enough to overcome a net increase of 60 
days year−1 estimated as a result of climate change alone. 
Our model of CO2 effects over LFMC only accounted 
for water savings through stomatal conductance, and it 
did not include negative LFMC feedbacks through, for 
instance, increasing leaf area index which would increase 
transpiration and, hence, soil water depletion (McDow-
ell et al. 2022). Our results thus present a “best-case sce-
nario” regarding the mitigation effect of increasing CO2 
concentration over LFMC declines.

We applied process-based models to predict fuel mois-
ture dynamics, quantifying annual time periods with val-
ues below fire danger thresholds. Fuel moisture declines 
and fire season lengthening trends found in this study are 
consistent with projections for southern Europe by pre-
vious studies (Abatzoglou et al. 2019; Dupuy et al. 2020; 
Ellis et  al. 2022; Jones et  al. 2022; de Rigo et  al. 2017). 
However, it is important to consider that these previous 
studies were based on fire weather indices such as the 
Canadian Fire Weather Index (FWI; Van Wagner 1987). 
Weather indices ignore species-level physiological capa-
bilities to adjust the moisture status of live fuels, which 
would explain why we observed a less pronounced fire 
season lengthening than previous studies (i.e., Jones et al. 
2022 predicted a fire season lengthening of 60 days year−1 
from 2020 to 2100 under RCP8.5 conditions while we 
report a lengthening of 50 days year−1). It is important to 
note that even minimum fuel moisture prediction biases 
could lead to large uncertainties. Thus, we suggest that 
the use of process-based approaches for modeling fuel 
moisture would benefit the prediction of annual and sea-
sonal dynamics, enhancing fire danger monitoring from 
local to landscape scales.

Conclusions
We predicted that the warmer and more arid climatic 
conditions projected for the 21st century will lead to 
generalized declines in fuel moisture, lengthening fire 
seasons, and increasing wildfire danger. The use of pro-
cess-based models to forecast LFMC dynamics allowed 
the consideration of plant species capabilities to buffer 
climate change impacts, beneficiating wildfire dan-
ger assessments. Significant increases in the fire season 
length, as predicted for the most productive environ-
ments, currently with large fire return intervals, would 
pose an increase of fire danger in major Spanish carbon 
sinks. Finally, our results indicated that the CO2 miti-
gation effect on plant water relations and LFMC (via 

increases in water-use efficiency) would not be enough to 
offset climate change-driven declines in seasonal LFMC 
levels.

Limitations
The process-based fuel moisture dynamics modeling 
attempts carried out in this study show limitations. In the 
case of LFMC modeling, we have considered vegetation 
communities to be static, that is, we have not accounted 
for the climate-driven vegetation changes that may occur 
over the 21st century, in order to reduce modeling com-
plexities when simulating the climatic influence on live 
fuel moisture. In this context, we also have only consid-
ered tree species. Future research efforts should include 
shrub species and more complex communities. Finally, 
we have not taken into account the effect of seasonal 
changes in dry weight. Given the importance of pheno-
logical variations in dry weight driving LFMC dynamics 
(Brown et al. 2022; Griebel et al. 2023; Nolan et al. 2020), 
it should be at the forefront of our future research efforts. 
In the case of DFMC modeling, we have not accounted 
for the precipitation effect as we applied a VPD-based 
approach. However, as dead fuel moisture will reach the 
saturation point (25–30%) after as little as 2 mm of rain 
(Viney 1991), VPD will sharply drop as relative humidity 
approaches 100%. Therefore, the effect of precipitation 
on DFMC model performance is very limited (Resco de 
Dios et al. 2015).
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variable. Figure S3. LFMC mean values across the three decadal periods 
(1:2010-2020; 2:2040-2050 and 3:2090-2100) in both RCP scenarios (4.5 in 
red and 8.5 in blue). Bars represent standard deviation (SD). Table S4.1. 
Pairwise differences between different Period (1:2010-2020; 2:2040-2050 
and 3:2090-2100) and RCP (4.5 and 8.5) fixed factors combinations from 
the linear mixed-effects model fitted with annual summer mean LFMC as 
response variable. Table S4.2. ANOVA-like table for Site and Year (as a rep‑
licate of Period) random-effects from the linear mixed-effects model fitted 
with annual summer mean LFMC as response variable. Table S5. Analysis 
of variance table for fixed effects in the linear mixed-effects model fitted 
with annual summer mean DFMC as response variable. Figure S4. DFMC 
mean values across the three decadal periods (1:2010-2020; 2:2040-
2050 and 3:2090-2100) in both RCP scenarios (4.5 in red and 8.5 in blue). 
Bars represent standard deviation (SD). Table S6.1. Pairwise differences 
between Period (1:2010-2020; 2:2040-2050 and 3:2090-2100) and RCP (4.5 
and 8.5) from the linear mixed-effects model fitted with annual summer 
mean DFMC as response variable. Table S6.2. ANOVA-like table for Site 
and Year random-effects from the linear mixed-effects model fitted with 
annual summer mean DFMC as response variable. Table S7. Analysis of 
variance table for fixed effects in the linear mixed-effects model fitted 
with the number of days per year when LFMC < 120 % as response 
variable. Table S8. Analysis of variance table for fixed effects in the linear 
mixed-effects model fitted with the number of days per year when LFMC 
< 100 % (square root transformed) as response variable. Table S9. Analysis 
of variance table for fixed effects in the linear mixed-effects model fitted 
with the number of days per year when DFMC < 12 % as response vari‑
able. Table S10. Analysis of variance table for fixed effects in the linear 
mixed-effects model fitted with the number of days per year when DFMC 
< 10 % as response variable. Table S11. Analysis of variance table for fixed 
effects in the linear mixed-effects model fitted with the number of days 
per year when DFMC < 8 % as response variable. Table S12. Fire season 
lengthening median values (d yr-1) regarding minimum (<120%) and criti‑
cal (<100%) LFMC thresholds for wildfire occurrence under increasing and 
constant atmospheric [CO2] conditions for both RCPs (4.5 and 8.5) and in 
all periods (2010-2020, 2040-2050, 2090-2100).
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