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ORIGINAL RESEARCH

Short‑term recovery of post‑fire vegetation 
is primarily limited by drought in Mediterranean 
forest ecosystems
Miguel Ángel Blanco‑Rodríguez1,2*  , Aitor Ameztegui1,2, Pere Gelabert2, Marcos Rodrigues3,4 and Lluís Coll1,2 

Abstract 

Background Climate change is altering the fire regime and compromising the post‑fire recovery of vegetation 
worldwide. To understand the factors influencing post‑fire vegetation cover restoration, we calculated the recovery 
of vegetation in 200,000 hectares of western Mediterranean forest burned by 268 wildfires over a 27‑year period 
(1988–2015). We used time series of the Tasseled Cap Transformation Brightness (TCTB) spectral transformation 
over Landsat imagery to calculate vegetation recovery. Then, we quantified the importance of the main drivers 
of post‑fire vegetation recovery (climate, fire severity, and topography) along an aridity gradient (semi‑arid, sub‑
humid, and humid) using Random Forest models.

Results In most models (99.7%), drought duration was the most important factor, negatively affecting post‑fire 
recovery especially in the extremes of the aridity gradient. Fire severity was the second most important factor for veg‑
etation cover recovery, with its effect varying along the aridity gradient: there was a positive relationship between fire 
severity and recovery in sub‑humid and humid areas, while semi‑arid areas showed the opposite pattern. Topographic 
variables were the least important driver and had a marginal effect on post‑fire recovery. Additionally, semi‑arid areas 
exhibited a low mean recovery rate, indicating limitations in the short‑term recovery after a fire.

Conclusions Our study highlights the key role that drought duration plays in the recovery of vegetation after wild‑
fires in the Mediterranean basin and, particularly, in forests located in climatically extreme areas. The results suggest 
that the predicted increase in drought duration coupled with a higher frequency and intensity of large fires may 
modify the structure and composition of Mediterranean forest ecosystems. Our analysis provides relevant informa‑
tion to evaluate and design adaptive management strategies in post‑fire recovery hotspots of Mediterranean forest 
ecosystems.

Keywords Climate change, Drought duration, Eastern Spain, Remote sensing, Short‑term resilience, Tasseled Cap 
Brightness, Wildfires

Resumen 

Antecedentes El Cambio Climático está alterando los regímenes de fuego y comprometiendo la recuperación de la 
vegetación post‑fuego en todo el mundo. Para entender los factores que influencian la restauración de la cobertura 
vegetal post‑fuego, calculamos la recuperación de la vegetación en 200 mil ha bosques el oeste del mediterráneo 
que se quemaron en 268 incendios en un período de 27 años (1988–2015). Usamos la transformación espectral 
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Background
Forest ecosystems of arid and semi-arid areas are among 
the most vulnerable to climate warming (Giorgi and 
Lionello 2008). In the Mediterranean basin (a semi-
arid area), climate change is increasing the frequency 
and severity of droughts (Tramblay et  al. 2020; Pulido-
Velázquez et al. 2022), leading to serious episodes of for-
est dieback (Carnicer et  al. 2011). In addition, climate 
change is intensifying the disturbance regimes to which 
forests are exposed globally (Seidl et  al. 2017), particu-
larly wildfires in the western Mediterranean basin (Pau-
sas and Fernández-Muñoz 2012). Recent studies have 
confirmed that the burned area and the intensity and the 
severity of forest fires have increased significantly over 
the past decades (Duane et al. 2021; Grünig et al. 2023), 
which may limit the capacity of forests to provide ecosys-
tem services (Morán-Ordóñez et  al. 2021) and compro-
mise their resilience in the future (Baudena et  al. 2020; 
Nolè et al. 2022).

Post-fire recovery can be modulated by different fac-
tors: for example, the type of pre-fire vegetation (Kee-
ley et  al. 2005), post-fire climate and weather (Moreno 
et al. 2011), fire severity (Fernández-Manso et al. 2016), 
topography (Broncano and Retana 2004), or soil prop-
erties (Muñoz-Rojas et  al. 2016). Recent studies have 
underlined the influence of climate in the first few years 
following a fire. Climate is expected to become increas-
ingly relevant (Stevens-Rumann et al. 2018) because the 
predicted increase of extreme drought events may seri-
ously limit the re-establishment of vegetation cover 
(Bendall et al. 2022). In the Mediterranean basin, one of 

the world’s wildfire hotspots (Pausas 2022), the relation-
ship between post-fire climate and vegetation recovery 
has been studied locally or based on a small number of 
wildfires (e.g., Viana-Soto et al. 2020; Fernández-Guisur-
aga et al. 2023). In these areas, there is a lack of regional 
analysis regarding the importance of drought events in 
the recovery dynamics of burnt areas. Furthermore, it 
is known that overall drier areas may experience lim-
ited post-fire vegetation recovery compared with cooler 
and wetter areas (Young et al. 2019). The persistence of 
these variations in sensitivity to post-fire climate across 
the aridity gradients in the Mediterranean basin remains 
unknown but is crucial for evaluating the future resil-
ience of Mediterranean forests to wildfires.

Remote sensing techniques in which post-fire changes 
over time are analyzed offer a unique perspective. Here, 
we leverage analyses of a time-series of Landsat images 
using the LandTrendr algorithm (Kennedy et al. 2007) to 
quantify the post-fire recovery of vegetation burned by 
268 wildfires over a 27-year period (1988–2015) in areas 
with different levels of aridity (i.e., semi-arid, sub-humid, 
and humid) within the Mediterranean basin. We calcu-
lated the post-fire recovery rate (5 years after fire) of more 
than 200,000 ha and analyzed variables considered to be 
the main recovery drivers (i.e., fire severity, topography, 
and post-fire climate). To the best of our knowledge, our 
analysis features one of the longest time periods and the 
largest number of wildfires in an attempt to unravel the 
short-term role of post-fire recovery drivers. We hypoth-
esize that (1) post-fire drought (in this case, the length 
of periods of extreme drought) is the main constraint on 

de la serie temporal del Tasseled Cap Brightness (TCB) sobre imágenes Landsat, para calcular la recuperación de la 
vegetación. Luego, cuantificamos la importancia de los principales factores conductores de la recuperación de la 
vegetación post‑fuego (clima, severidad del fuego y topografía), a través de un gradiente de aridez (semiárido, sub‑
húmedo y húmedo) usando modelos forestales al azar.

Resultados En la mayoría de los modelos (99.7%), la duración de la sequía fue el factor más importante, afectando 
negativamente la recuperación post‑fuego, especialmente en los extremos del gradiente de aridez. La severidad del 
fuego fue el segundo factor más importante para la recuperación de la cobertura de la vegetación, con su efecto 
variando a través del gradiente de aridez: hubo una relación positiva entre severidad del fuego y recuperación de 
la vegetación en áreas sub‑húmedas y húmedas, mientras que en zonas más áridas el patrón fue el opuesto. Las 
variables topográficas representaron los factores conducentes menos importantes y tuvieron un rol marginal en la 
recuperación post‑fuego. Adicionalmente, las áreas semiáridas exhibieron una recuperación promedio baja, indicando 
limitaciones en la recuperación post‑fuego en el corto plazo.

Conclusiones Nuestro estudio subraya el rol clave que la sequía juega en la recuperación de la vegetación luego 
de incendios en la cuenca del Mediterráneo y, particularmente, en bosques ubicados en áreas climáticas extremas. 
Los resultados sugieren que las predicciones que auguran un incremento en la duración de los períodos de sequía, 
acoplados a una frecuencia e intensidad más alta de grandes incendios, puede modificar la estructura y composición 
de los ecosistemas de bosques mediterráneos. Nuestro análisis provee de información relevante para evaluar y dis‑
eñar estrategias de manejo adaptativos en la recuperación post‑fuego de zonas ubicadas en ecosistemas de bosques 
mediterráneos.
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short-term vegetation recovery across the whole Medi-
terranean aridity gradient and (2) the role of drought in 
the short-term vegetation response will be more relevant 
in semi-arid areas than in sub-humid or humid areas.

Methods
Study area and workflow
The study was carried out in three administrative regions 
of Eastern Spain (i.e., Aragon, Catalonia, and Valencian 
Community), which cover an area of 103,104  km2 within 
the western Mediterranean basin (Fig. 1a). The climate in 
this region is characterized by dry summers with a soil 
water deficit, annual precipitation ranging from 300 to 
1200 mm, and mean annual temperatures ranging from 
5.0 to 17.5°C. We divided our study area into three arid-
ity classes adapting Martonne’s aridity index (MAI; see 
De Martonne 1926) as follows: semi-arid (≤ 20 MAI), 
sub-humid (20–30 MAI), and humid (≥ 30 MAI). Semi-
arid areas are covered by sclerophyllous and xerophil-
ous species, such as Aleppo pine (Pinus halepensis) and 
holm oak (Quercus rotundifolia). In sub-humid areas (i.e., 
transitional zones), forests are dominated by mesophyl-
lous species, such as European black pine (Pinus nigra) 
and Portuguese oak (Quercus faginea). Humid areas are 
dominated by orophilous and hygrophilous species, such 
as Scots pine (Pinus sylvestris) and downy oak (Quercus 
pubescens).

The study area is located within a fire-prone pyro-
region characterized by frequent fire activity, accounting 
for > 50% of the total area burned by large fires (> 100 ha) 

in Europe (Galizia et al. 2021). The burned area (Fig. 1b) 
and the fire severity (Fig. 1c) of our fire dataset differed 
along the aridity gradient. Semi-arid areas had the largest 
fire sizes (albeit with high variability), followed by humid 
and sub-humid areas. Fire severity was highest in humid 
areas, followed by semi-arid areas (also showing high var-
iability) and sub-humid areas. Perimeters of all wildfires 
that occurred in the study area between 1988 and 2015 
were obtained from local administrations. Following Car-
dil et  al. (2015), we selected wildfires that had affected 
more than 50 ha, to reach a compromise between sample 
size and resolution. Fires over 50 ha were responsible for 
the majority of the total area burned between 1985 and 
2021. This filter resulted in the selection of 268 wildfires 
that had burned a total of 369,037 ha (see Fig. 1).

For each of the 268 wildfires, we extracted a series of 
Landsat images for the period 1988–2015. We applied 
the LandTrendr algorithm to define the spectral dynam-
ics before, during and after wildfire. Then, we computed 
metrics to characterize the vegetation cover at pixel level, 
and we used ancillary information to characterize topog-
raphy, fire severity, and post-fire climate for each pixel. 
Finally, we applied random forest models to ascertain the 
importance of each driver in post-fire vegetation recov-
ery. Each of these steps is explained in detail below and 
summarized in a flow diagram (Fig. 2).

Acquisition and pre‑processing of Landsat images
We used Landsat TM, ETM + , and OLI imagery with a 
spatial resolution of 30 × 30 m to assess the early recovery 

Fig. 1 a Location of the study area (the thick black line indicates the study area perimeter) in the western Mediterranean basin and perimeters 
of 268 wildfires (red polygons) that occurred between 1988 and 2015. b Boxplots showing median and interquartile range of burned area (ha) and c 
fire severity of each of the aridity zones as a function of their normalized ratio of relative burn difference (RdNBR) value



Page 4 of 10Blanco‑Rodríguez et al. Fire Ecology           (2023) 19:68 

of vegetation cover in the 268 wildfire areas. We obtained 
Tier 1 surface reflectance imagery through the Google 
Earth Engine (GEE) platform. To ensure spectral compa-
rability across various Landsat sensors, we homogenized 
the OLI data with TM/ETM + by a spectral transfor-
mation using OLS coefficients calculated by Roy et  al. 
(2016). We performed a temporal aggregation for each 
year of the 1988–2015 time series using the median spec-
tral value for the summer period (from 20 June to 20 Sep-
tember). This step minimized cloud cover and reduced 
the noise produced by differences in illumination, co-
registration, snow cover, or phenological changes. To de-
noise the spectral time series, we used the LandTrendr 
algorithm as implemented on the Google Earth Engine 
platform. LandTrendr is a set of spectro-temporal seg-
mentation algorithms designed to identify abrupt 
changes in a time series (Kennedy et al. 2010). In essence, 
key vertexes of change were identified and trajectories in 
the original time series were iteratively simplified. Finally, 
we masked the time series images with fire perimeters 
grouped from 3 years before the wildfire (to assess pre-
fire forest cover) and 5 years after the fire (to assess post-
fire recovery).

We synthesized the original spectral values of the 
Landsat images using Tasseled Cap Transformations, 
an orthogonal transformation of Landsat spectral bands 
reducing spectral information along three components: 
brightness (TCTB), greenness (TCTG), and wetness 
(TCTW). Tasseled Cap Transformations can be used 

to characterize forest recovery processes (Frazier et  al. 
2015) without the variation in spectral recovery values 
depending on the spectral index used (Banskota et  al. 
2014).

We used a classification model to discern forested areas 
within forest perimeters. To do so, we first calibrated a 
binary Support Vector Machine (SVM) classification 
model (forest/non-forest) for each 30-m pixel (see Sup-
porting Information, Tables S1 and S2). The SVM is a 
non-parametric machine-learning technique designed 
to identify patterns (Cortes and Vapnik 1995). We then 
assigned to each pixel the main tree species that was pre-
sent before the wildfire according to the closest polygon 
feature to the fire date using the Spanish Forest Map. To 
characterize fire severity, we calculated the relative dif-
ference normalized burn ratio (RdNBR), because it per-
forms better when making comparisons across a range 
of fires, particularly when sites differ strongly in pre-fire 
vegetation due to factors such as moisture. To compare 
the RdNBR before and after the fire in the severity esti-
mation, we manually selected the image closest in time 
and free of clouds (before and after the fire). This index 
is a modified version of the difference normalized burn 
ratio (dNBR) that corrects the misclassification of pixels 
with low levels of vegetation by dividing the dNBR by the 
pre-fire NBR value (Miller and Thode 2007). Pixels were 
classified according to three fire severity classes (Miller 
and Thode 2007): low severity (69 > RdNBR < 316), mod-
erate severity (316 ≥ RdNBR < 641), and high severity 

Fig. 2 Flowchart of the methodology, beginning with remote sensing data preprocessing followed by modeling to examine drivers of post‑fire 
vegetation recovery in the western Mediterranean basin
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(RdNBR ≥ 641). Using this multiple filtering process, we 
obtained a total of 2,258,411 million pixels (203,257 ha) 
relating to the 268 wildfires for which we subsequently 
calculated the short-term recovery index of vegetation.

Post‑fire recovery
We used Tasseled Cap Transformation Brightness 
(TCTB) to characterize post-fire vegetation recovery. 
TCTB is related to surface albedo and the changes occur-
ring immediately after wildfires depend on the relative 
concentrations of materials such as ash (leading to whit-
ening) and soot (leading to blackening), among other fac-
tors (Ramanathan & Carmichael, 2008). TCTB has been 
used in recent studies to characterize the revegetation 
process following forest disturbances (for defoliators and 
bark beetles, see Senf et  al. 2015; for woody encroach-
ment, see Gelabert et  al. 2021), including the measure-
ment of post-fire vegetation reestablishment at different 
stages of the recovery process in Mediterranean areas 
(Viana-Soto et al. 2020).

In this study, we measured post-fire recovery after 5 
years according to the recovery index proposed by Lloret 
et al. (2011). This index calculates the ratio between per-
formance after and during the disturbance. The perfor-
mance during the disturbance was defined as the TCTB 
value for the year of the fire  (TCTBi), whereas the per-
formance after the event was based on the TCTB value 5 
years after the fire  (TCTBi+5). Given that a higher level of 
brightness (i.e., a higher TCTB value) is associated with 
bare soil than with soil with vegetation cover, we changed 
the sign of the recovery index by subtracting both  TCTBi 
and  TCTBi+5 from the maximum TCTB value observed 
in the pixel. We fitted this index to our spectral metric as 
follows:

The recovery index takes a value of 1 when 
 TCTBi =  TCTBi+5 (i.e., no recovery), greater than 1 when 
there is a decrease in brightness (i.e., an increase in veg-
etation cover), and 0 when  TCTBi+5 equals the maximum 
TCTB (i.e., the minimum cover value observed 5 years 
after the fire).

Explanatory variables
We selected a set of variables that influence post-fire veg-
etation recovery in Mediterranean areas (see Keeley et al. 
2005 or Martín-Alcón and Coll 2016). We characterized 
the effect of the post-fire climate by determining the 
duration of drought spells during the recovery period. 
We first used the Standardized Precipitation Evapo-
transpiration Index (SPEI) (Vicente-Serrano et  al. 2010, 
2017) to characterize climate for the entire time series 

Recovery index =
max (TCTB)− TCTBi+5

max (TCTB)− TCTBi

(1988–2015) with temporal windows of 3, 6, 9, and 12 
months and a spatial resolution of 1 km at weekly time 
intervals. After preliminary analyses, we decided to use 
the 6-month SPEI for subsequent analyses because it 
achieved a higher correlation with the post-fire recovery 
index (see Figure S1). SPEI values lower than − 1 corre-
spond to a meteorological drought situation (Abbasi et al. 
2019), so we characterized drought duration as the maxi-
mum number of consecutive weeks with a SPEI of <  − 1 
during the recovery period (i.e., the first 5 years after the 
fire).

To assess the effect of fire severity, we used the RdNBR 
value at a spatial resolution of 30 m. The effect of topog-
raphy was determined using an adaptation of the north-
ness index, which is the product of the cosine of the slope 
aspect multiplied by the slope of the terrain (Martín-
Alcón and Coll 2016). Slope aspect cosine values range 
from − 1 for southern exposures to 1 for northern expo-
sures, whereas the slope reflects the steepness of the ter-
rain. Finally, we used the Topographic Moisture Index 
(TWI) to assess potential soil moisture due to topogra-
phy and determine its influence on post-fire regeneration 
(Agne et al. 2022). All variables were resampled and co-
registered according to the centroid of Landsat pixels.

Modeling drivers of post‑fire recovery
We used the Random Forest (RF) algorithm to analyze 
the importance and the effect of explanatory factors in 
short-term vegetation recovery after fire. RF is a non-
parametric machine-learning ensemble algorithm based 
on decision trees that can handle large volumes of data 
(Breiman 2001). To calculate and calibrate RF regression 
models we used the ‘caret’ R package (Kuhn 2008), with 
drought duration, fire severity, northness index, and TWI 
as predictor variables and recovery index (defined in the 
“Acquisition and pre-processing of Landsat images” sec-
tion) as a response variable. We first fitted a global model 
containing data from all aridity areas, and hyper-param-
eters were optimized using tenfold repeated cross-val-
idation with five replications. We used bootstrapping to 
avoid the effects of the huge sample size on the signifi-
cance of the parameter estimators (White et al. 2014) and 
to avoid the potential misspecification of the model due 
to spatial autocorrelation. Thus, we fitted 500 models, 
each with a subsample of ~ 3000 randomly chosen data 
points (110 for each of the 27 years of the time series). 
Data were stratified by year so as to avoid the sample 
being disproportionately influenced by years with a high 
number of large fires (see Figure S2 for details). For each 
iteration, 80% of the sample was used for training and 
20% for validation, and we discarded those iterations 
where residuals of models showed significant spatial 
autocorrelation (p-value of Global Moran’s I < 0.05). Then, 
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we split the dataset into three based on aridity area and 
repeated the procedure to fit 500 bootstrapped models 
for each aridity area as explained above.

We evaluated the performance of the models, calculat-
ing the mean R2 and root mean square percentage error 
of the regression line between the observed and the pre-
dicted response across the 500 bootstrapped iterations, 
using the validation sampling. In addition, the impor-
tance of explanatory variables was calculated using the 
percentage increase in mean square error and model 
improvement ratio (MIR) metrics. The MIR is compara-
ble between models and avoids the bias of the influence 
of the total number of metrics in the model (Murphy 

et al. 2010). The MIR is calculated as [In/Imax], where In 
is the importance of a given metric and Imax is the maxi-
mum model improvement score (which always takes a 
value of 1). The most important variables will have values 
close to 1, whereas the less relevant ones will have lower 
scores.

Results
Our overall model (all aridity classes together) pointed 
to post-fire drought duration as the most important fac-
tor determining post-fire vegetation recovery at 5 years 
(see Fig.  3a and Table  1). Drought duration was identi-
fied as the most important variable in 99.7% of the total 

Fig. 3 Boxplot of importance values (percentage increase in mean square error) of predictor variables for 5 years post‑fire vegetation recovery 
in the western Mediterranean basin. The black line inside the boxes is the median of importance value across the 500 bootstrap random forest 
models for a all aridity areas analyzed together, and b semi‑arid, sub‑humid, and humid areas analyzed separately. Abbreviations: SPEI, Standardized 
Precipitation Evapotranspiration Index; RdNBR, relative difference normalized burn ratio

Table 1 Calculated importance of variables in Random Forest models for predicting post‑fire recovery in three aridity areas (pooled 
and separately) in the western Mediterranean basin according to the model improvement ratio (MIR). Means and standard deviation 
(SD) of the percent root mean square error and R squared of each model are also indicated

Abbreviations: SPEI Standardized Precipitation Evapotranspiration Index, RdNBR relative difference normalized burn ratio

All Semi‑arid Sub‑humid Humid

Variable importance (MIR)
 Drought duration (SPEI) 1.00 1.00 1.00 1.00

 Fire severity (RdNBR) 0.54 0.64 0.78 0.54

 Northness index 0.25 0.31 0.46 0.41

 Topographic wetness index 0.18 0.26 0.31 0.23

% Root mean square error (SD) 3.76 (± 0.34) 3.33 (± 0.35) 3.68 (± 0.35) 3.09 (± 0.25)

Mean R squared (SD) 0.18 (± 0.05) 0.24 (± 0.06) 0.09 (± 0.04) 0.49 (± 0.06)



Page 7 of 10Blanco‑Rodríguez et al. Fire Ecology           (2023) 19:68  

iterations and was the second most important variable in 
the remaining iterations (see Supplementary Material—
Table S3). The second most important variable determin-
ing post-fire recovery was fire severity, followed by the 
northness index and topographic wetness index. Models 
applied separately to each aridity area indicated an effect 
of aridity on the importance ranges of predictor vari-
ables, but not on their ranking of importance (see Fig. 3b 
and Table 1). Semi-arid and humid areas showed a strong 
and negative effect of drought duration on short-term 
post-fire recovery (Fig.  4a). However, the importance of 
drought on the early post-fire response was less clear in 
sub-humid areas, despite still being the most important 
predictor.

RF models allowed us to analyze the marginal effect 
of predictor variables on short-term vegetation recovery 
after fire. Figure 4a shows a strong decrease in recovery 
due to the longer duration of drought conditions in semi-
arid and humid areas, but no clear pattern was observed 
for sub-humid areas. Fire severity induced different pat-
terns of recovery depending on the aridity area (Fig. 4b). 
Recovery largely increased with increasing fire severity 
in humid areas; however, this effect was less strong in 
sub-humid areas. Interestingly, the effect was reversed in 

semi-arid areas, where recovery was negatively affected 
by increasing fire severity. Topography, characterized by 
the northness index (Fig. 4c) showed an overall low effect 
across all aridity areas, with slightly negative effects on 
recovery for semi-arid and sub-humid areas, whereas 
this effect was positive in humid areas. Finally, the TWI 
(Fig. 4d) exerted a slightly positive effect on recovery in 
all aridity areas.

Discussion
In this study, our analyses showed that short-term, post-
fire vegetation recovery in the western Mediterranean 
basin is strongly conditioned by post-fire climate and 
particularly by the duration of drought during the first 
years after the disturbance. These results support our 
first hypothesis that post-fire climate is the most impor-
tant determinant of Mediterranean post-fire vegetation 
dynamics after a wildfire. They suggest that the predicted 
increase in the occurrence of extreme drought periods 
associated with climate warming will limit the capacity 
of Mediterranean vegetation to recover after fire (Rod-
man et al. 2020). Within the Mediterranean region, areas 
of burnt forest distributed in semi-arid areas showed 
an average recovery index of below 1, indicating that 

Fig. 4 Partial dependence plots showing the marginal effect of predictor variables (x‑axis) on post‑fire vegetation recovery (y‑axis) for three aridity 
areas in the western Mediterranean basin. The predictor variables analyzed were a the maximum number of consecutive weeks with Standardized 
Precipitation Evapotranspiration Index (SPEI) values of <  − 1; b fire severity, measured in relative difference normalized burn ratio (RdNBR) values; c 
the northness index; and d the topographic wetness index
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vegetation has a rather poor ability to recover rapidly 
after fire.

Short‑term drivers of post‑fire regeneration
The effect of drought duration on post-fire recovery var-
ied across three different aridity areas that were defined 
according to the Martonne index (i.e., semi-arid, sub-
humid and humid). Contrary to our second hypothesis, 
drought duration had the greatest impact on vegetation 
recovery at both extremes of the aridity gradient (i.e., 
semi-arid and humid areas). Stevens-Rumann et  al. 
(2018) previously reported the negative effects of drought 
on the post-fire recovery of wet forests in a multi-
regional study conducted in the US Rocky Mountains. 
For arid environments, the negative effect of drought 
on recovery is consistent with recent observations that 
adaptations to drought (embolism resistance) may be 
antagonistic to the post-fire recovery process (Resco de 
Dios et al. 2018). However, we found no effect of drought 
duration on the post-fire recovery of sub-humid areas. 
This might be related to the post-fire response mecha-
nisms (i.e., resprouting capacity and serotiny) of the vege-
tation dominating these areas (for more details, see Table 
S4 and Figure S3).

Fire severity also conditioned early post-fire vegetation 
recovery, although to a lesser extent than drought. In a 
recent study, Davis et  al. (2023) reported that decreas-
ing fire severity can help to reduce the negative effects 
of post-fire weather on short-term vegetation reestab-
lishment. In our study, the role of fire severity changed 
depending on the level of aridity within the study area, 
with humid and sub-humid areas showing stronger veg-
etation recovery as fire severity increased and arid areas 
showing the opposite pattern. An explanation for fire 
severity having a less marked effect on the recovery of 
forests located in semi-arid areas may be the dominance 
of P. halepensis (see Table S5). Previous studies on this 
serotinous species have not found a clear relationship 
between the abundance of post-fire vegetation regen-
eration and fire severity (Pausas et  al. 2002). Besides, 
positive correlations between fire severity and vegeta-
tion recovery in sub-humid and humid areas might be 
explained by the increasing dominance of resprouting 
species in forests prior to fire (see Meng et al. 2018 and 
Figure S3). This idea is also supported by Zeppel et  al. 
(2015), who showed that post-fire recovery is faster in 
areas dominated by resprouters that have been burnt by 
a high-severity fire.

Local topographic conditions (e.g., aspect or elevation) 
are considered important factors that modulate local 
post-fire vegetation in Mediterranean areas (Martín-
Alcón and Coll 2016). However, our analyses showed that 
topographic variables had a marginally weak effect on the 

post-fire response in all aridity areas. Climate and topog-
raphy are often correlated, suggesting that local effects 
of topography may be stronger than our analyses suggest 
(see Bright et al. 2019 for this effect).

Remote‑sensing detection of post‑fire recovery
The use of multi-sensor or multi-member spectral mix-
ture analyses has recently gained importance when 
assessing post-fire recovery (Fernandez-Manso  et al. 
2016; Meng et al. 2018). In turn, different spectral indi-
ces have been used to measure post-fire recovery, such 
as the NBR (Bright et al. 2019) or the Normalized Differ-
ence Vegetation Index (Vicente-Serrano et  al. 2011). In 
our study, TCTB was the best predictor of pre-fire forest 
cover, robustly discriminating those pixels that were for-
est vs non-forest 3 years prior to disturbance (see Tables 
S1 and S2). In a recent study, TCTB was used to assess 
post-fire trajectories of pixels in NW Iberia (Marcos et al. 
2023) and—unlike Tasseled Cap Wetness, which indi-
rectly assesses canopy structure through the increased 
ability of the vegetation to retain moisture as the vege-
tation grows vertically—TCTB is considered to be suit-
able for assessing early vegetation recovery stages where 
ground cover occurs (Viana-Soto et  al. 2020). TCTB is 
sensitive to canopy disturbances that drastically reduce 
canopy cover, causing an increase in albedo (i.e., an 
increase in TCTB values) at the time of a disturbance, 
and can capture the process of vegetation reestablish-
ment, which decreases albedo (i.e., a decrease in TCTB 
values) in the first years after a disturbance (Oliver and 
Larson 1990).

Remote sensing data enables a very large area to be 
assessed and provides relevant information on forest 
dynamics. However, because data are based on reflected 
light measurements, caution is needed when interpreting 
them in terms of ecological processes (Bright et al. 2019). 
For instance, neither the different vertical strata of veg-
etation after a fire (Meng et al. 2018) nor the composition 
of species forming the post-fire community can be dis-
tinguished using a single spectral index. Integrating field 
data and remote sensing information is challenging but 
would provide a deeper understanding of such complex 
ecosystem processes (Senf 2022). Finally, combining our 
post-fire recovery trajectory data with Light Detection 
and Ranging techniques may also allow a better struc-
tural characterization of post-fire vegetation communi-
ties (Pérez-Cabello et al. 2021).

Conclusions
The use of TCTB and time series analysis algorithms 
enabled the short-term post-fire vegetation recovery 
of a set of 268 wildfires that burned over 200,000 ha in 
eastern Spain between 1988 and 2015 to be analyzed. 
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Our analyses highlight the critical role that post-fire 
climate plays in vegetation recovery. They suggest that 
the future resilience of Mediterranean forests could 
be compromised given the increasing recurrence of 
extreme drought periods expected in this area. From 
a management perspective, our findings highlight that 
particular attention should be given to forest distrib-
uted at both extremes of the climatic gradient found 
within the Mediterranean region.
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