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Fire Ecology

Fire regimes of the Southern Appalachians 
may radically shift under climate change
Zachary J. Robbins1*   , E. Louise Loudermilk2   , Tina G. Mozelewski3   , Kate Jones4    and Robert M. Scheller1    

Abstract 

Background  Increased drought due to climate change will alter fire regimes in mesic forested landscapes where fuel 
moisture typically limits fire spread and where fuel loads are consistently high. These landscapes are often exten-
sively modified by human land use change and management. We forecast the influence of varying climate scenarios 
on potential shifts in the wildfire regime across the mesic forests of the Southern Appalachians. This area has a long 
history of fire exclusion, land use change, and an expanding wildland urban interface. We considered interactions 
among climate, vegetation, and anthropogenic influences to forecast future fire regimes and changes to the forest 
structure. We used climate scenarios representing divergent drought patterns (overall drought trend and interannual 
variability) within a process-based fire model that captures the influence of climate, fuels, and fire ignition on wildfire 
patterns and suppression.

Results  Compared to simulations using historical climate (1972–2018), future total burned area (2020–2100: 
782,302.7 (716,655.0–847,950.3) ha) increased by 42.3% under high drought variability (1,134,888.4 (1,067,437.2–
1,202,339.6) ha), 104.8% under a substantial increase in drought trend (1,602,085.7 (1,511,837.5–1,692,334.0) ha), 
and 484.7% when combined (4,573,925.0 (4,434,910.5–4,712,939.5) ha). Landscape patterns of fire exclusion and sup-
pression drove the spatial variability of fire return intervals (FRI). Our projections indicate wide spatial variability 
in future fire regimes with some areas experiencing multiple fires per decade while others experience no fire. More 
frequent fires corresponded with increased oak prevalence and a reduction in the biomass of mesic hardwoods 
and maple; however, mesic hardwoods remained prevalent under all fire intervals because of their contemporary 
dominance.

Conclusions  Our study illustrates how future drought–fire–management interactions and a history of fire exclu-
sion could alter future fire regimes and tree species composition. We find that increasing trends in drought magni-
tude and variability may increase wildfire activity, particularly in areas with minimal fire suppression. In ecosystems 
where fuel moisture (and not load) is the standard limitation to fire spread, increased pulses of drought may pro-
vide the conditions for more fire activity, regardless of effects on fuel loading. We conclude the effects of climate 
and human management will determine the novel conditions for both fire regime and ecosystem structure.
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Resumen 

Antecedentes  El incremento de la sequía debido al Cambio Climático alterará los regímenes de fuego en paisajes 
de bosques mésicos, donde la humedad del combustible limita típicamente la propagación de los incendios y donde 
las cargas de combustible son usualmente altas. Estos paisajes son frecuentemente extensivamente modificados por 
cambios humanos en el uso y manejo de las tierras. Pronosticamos la influencia de varios escenarios climáticos sobre 
desviaciones potenciales en los regímenes de incendios a lo largo y ancho de los Apalaches del Sur. Esta región tiene 
una larga historia de exclusión del fuego, de cambios en el uso de la tierra, y una creciente expansión de las áreas 
de interfaz urbano-rural (WUIs en Inglés). Consideramos las interacciones entre el clima, vegetación, e influencias 
antropogénicas para pronosticar futuros regímenes de fuego y cambios en la estructura forestal. Usamos escenarios 
climáticos que representan patrones de sequía divergentes (tendencia total de sequía y variabilidad interanual) den-
tro de un modelo de fuego basado en procesos-base que capturan la influencia el clima, combustibles, e ignición de 
incendios sobre patrones de incendios y supresión del fuego.

Resultados  Comparados con simulaciones que usan datos climáticos históricos (1972–2018), el área a quemarse 
en el futuro (2020–2100: 782.0302,7 [716.655,0–847.950,3]067.437,2] ha) se incrementan en un 42,3% bajo alta vari-
abilidad de la sequía (1.134.888,4 [1.067.437,2–1.202.339,6] ha, y 484,7% cuando fueron combinadas (4.573.925,0 
[4.434.910,5–4.712.939,5] ha). Los patrones de paisajes de exclusión del fuego y supresión fueron los que dirigieron 
la variabilidad espacial de los intervalos de retorno del fuego (FRI). Nuestras proyecciones indican una amplia vari-
abilidad espacial en los futuros regímenes de fuegos con algunas áreas que experimentarán múltiples incendios por 
década mientras que otros no experimentarán ningún fuego. Los fuegos más frecuentes se corresponden con un 
incremento en la prevalencia de robles y una reducción en la biomasa de árboles de madera dura (hardwoods) y 
arces; sin embargo, los rodales mésicos de madera dura serán prevalentes bajo todos los intervalos de fuego debido 
a su dominancia contemporánea.

Conclusiones  Nuestro estudio ilustra cómo las interacciones entre fuego-manejo-sequía puede alterar los 
regímenes de fuego futuros y la composición de las especies de árboles. Encontramos que las tendencias incremen-
tales en la magnitud de la sequía pueden incrementar la actividad de los incendios, particularmente en áreas con una 
mínima supresión del fuego. En los ecosistemas en los que la humedad de los combustibles (y no su carga) es la limi-
tante principal para la propagación del fuego, el incremento en el pulso de las sequías puede proveer de condiciones 
para más actividad de incendios, sin tener en cuenta los efectos de la carga de combustibles. Concluimos que los 
efectos del clima y el manejo humano determinarán las nuevas condiciones tanto para los regímenes de incendios 
como para la estructura de los ecosistemas.

Background
Climate change will alter fire regimes through several 
mechanisms, which may fundamentally shift ecosystem 
structure and function (Turner 2010). Fire frequency 
and intensity are determined by fuel availability (live 
and dead biomass), weather and climate effects on fuel 
moisture, and ignition sources (Krawchuk and Moritz 
2011). Warming temperatures will increase evapora-
tive demand, drying fuels more rapidly, and will thus 
increase the flammability of fuels and expand the sea-
sonality of available fuels (Flannigan et  al. 2016; Ma 
et al. 2021). Extended drought periods may lengthen the 
wildfire season as fuels become drier and remain dry for 
longer periods of time (Abatzoglou and Williams 2016). 
Understanding how drought influences wildfire regimes 
is crucial to estimating climate change impacts and their 
ecological consequences (McLauchlan et al. 2020; Pausas 
and Keeley 2021). Drought’s influence on moist forests 
may be especially pronounced, as significant increases in 

fire frequency within mesic forests have been observed 
globally (Abatzoglou et  al. 2018). For example, in Sub-
Saharan Africa, warming reduced the likelihood of fire 
in drier areas by limiting the available fuels due to lower 
vegetative productivity, yet more mesic regions increased 
in burned area as fuel aridity rose (Wei et al. 2020). Stud-
ies in central Australia have also found that moist forest 
systems will experience significantly more fire, owing to 
reduced fuel moisture, without an appreciable decline in 
fuel loads (King et al. 2013).

Understanding both the change in vegetation due to 
climate change and plant responses to the fire regime 
is crucial to estimate future fire regime changes. Fol-
lowing a shift in vegetation, fuel combustibility, drying 
rates, fuel bed thickness, and forest floor moisture will 
change, altering the fire regime (Kreye et  al. 2013). A 
more frequent fire return interval may favor species that 
promote fire whereas less frequent fire may favor spe-
cies that dampen fire’s likelihood and are more suscep-
tible to fire mortality, each creating a positive feedback 
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cycle (Nowacki and Abrams 2015). This is confounded 
by evidence that more fire-adapted species can produce 
a thicker organic layer than more fire sensitive species, 
causing a positive feedback loop of potentially higher 
delayed mortality in fire-adapted species due to more 
fine-root death as the organic layer is consumed by fire 
(Carpenter et al. 2021; Robbins et al. 2022). State changes 
or extirpation may occur if fire regimes are drastically 
altered (Johnstone et  al. 2016; Serra-Diaz et  al. 2018; 
Nowacki and Abrams 2008; Lindenmayer et al. 2022).

A purely biophysical representation of fire regimes fails 
to capture changes due to human influences (Andela 
et al. 2017). The wildland urban interface (WUI) defines 
areas where wildland vegetation and human develop-
ment intersect, illustrating where humans are directly 
impacted by and actively modifying fire regimes (Stewart 
et al. 2007). Housing development in the WUI and asso-
ciated forest fragmentation can increase fire likelihood, 
particularly in areas where natural ignitions are sparse 
(Alencar et al. 2015). However, interactions between for-
est fragmentation and fire will vary as development can 
lead to increased access for fire suppression via addi-
tional roads, create new fuel breaks, and lead to increased 
suppression efforts near structures (Syphard et al. 2019; 
Driscoll et al. 2021). Fire suppression and exclusion (pre-
venting ignitions or limiting fire spread due to infrastruc-
ture barriers) have led to global declines in area burned, 
particularly in more developed areas (Stewart et al. 2007; 
Yang et al. 2014).

In the USA, the Southern Appalachian region repre-
sents a transition zone between mesic and xeric forests, 
where changes in precipitation regimes are projected 
to increase fire risk due to prolonged droughts dur-
ing the fire season (Mitchell et  al. 2014). The 2016 fire 
season occurred during the most severe drought in the 
southeastern USA has experienced in the last 50  years 
(Williams et  al. 2017). During the fall of 2016, wildfires 
occurred throughout the Southern Appalachians; these 
wildfires burned more than 1 3 of the total combined area 
burned in the preceding 23  years (1992–2015) (James 
et al. 2020).

Land management and urban expansion have greatly 
influenced the fire regime and vegetation of the South-
ern Appalachian Mountains. Fire exclusion and suppres-
sion in the last century have shifted forest composition, 
particularly in xeric and sub-xeric forests (Flatley et  al. 
2013, 2015). Historically, the landscape experienced 
fires frequently (mean fire return interval < 25  years), 
often leading to open conditions and dominance by fire-
adapted species (e.g., Quercus spp. and Pinus spp.; Flatley 
et  al. 2013; Hanberry et  al. 2020). Important exceptions 
included cove forests with longer fire return inter-
vals (FRI; time between fire returning to an area) due 

topographic and fuel moisture limitations (Flatley et  al. 
2015; Mitchell et  al. 2014). Following fire exclusion, the 
mean fire return interval increased to hundreds of years, 
favoring non-fire-adapted species (e.g., Acer rubrum L., 
Liriodendron tulipifera L.; Lafon et al. 2017). The South-
ern Appalachian WUI is also expanding (Thomas and 
Butry 2014) and suppressing wildfires that threaten life 
and property in the WUI has become a priority. In addi-
tion, accidental human ignitions now account for 82.4% 
of recent area burned by wildfire in the Southern Appala-
chians (Short 2021).

We assessed how interactions among climate, dis-
turbance, and vegetation may change in a future with 
more frequent and severe droughts. We evaluated these 
changes at the broader landscape scale; the Southern 
Appalachians contain tremendous local variation in 
topography, climatic conditions, and vegetation. We 
focused on broad-scale, multi-decadal changes, recogniz-
ing that our results may be informative for understand-
ing broad trends and could potentially inform landscape 
policy, yet may not be applicable to local planning or 
management.

To do so, we used a simulation modeling framework to 
estimate how climate will transform disturbance regimes 
and how disturbances would subsequently shape forested 
ecosystems (Scheller 2018). We deployed a process-based 
model of vegetation dynamics coupled to a fire model 
driven by fire weather conditions to capture the eco-
logical response of wildfire (Scheller et al. 2019; Robbins 
et al. 2022). We selected climate projections representing 
divergent drought projections for the Southern Appala-
chians to capture future climate uncertainty.

Within this experimental framework, we tested the fol-
lowing hypotheses: (H1) an increase in climatic drought 
would increase the total area burned due to drier fuels, 
(H2) an increase in interannual variability of drought 
will increase the total burned area because wildfire dis-
proportionately occurs under drought conditions (as 
witnessed in 2016), and (H3) any resulting increase in 
the burned area will favor historically fire-adapted spe-
cies but will not restore their historic dominance because 
there will be insufficient burning to displace the mesic 
tree species that are now widely established.

Methods
Study area
Our study area was the Blue Ridge ecoregion of the 
Southern Appalachians (as defined by Omernik 1995) in 
North Carolina, South Carolina, Tennessee, and Georgia, 
USA (Fig.  1). The study area encompasses ~2.8 million 
ha of topographically diverse landscape (ranging from 
~120 to ~2017  m, Fig.  1) with a heterogenous climate 
profile (Figs.  1, S.1-S.3). For the warmest areas, historic 
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(1979–2019) summer mean temperature averaged 23  °C 
(June–August) and historic mean winter temperatures 
averaged 6  °C (November–January). Over the same 
period (1979–2019), mean daily temperature for Novem-
ber–January was ~6 °C for the warmest region and ~3 °C 
in the coolest region.

This area consists primarily of upland hardwood for-
ests. Over 50 tree species are common (Bechtold and 
Patterson 2005). Ranked by aboveground biomass, the 
most common xeric deciduous tree species are chest-
nut oak (Quercus montana Willd), white oak (Quercus 
alba L.), northern red oak (Quercus rubra L.), scarlet 
oak (Quercus coccinea Muenchh.), and sourwood (Oxy-
dendrum arboreum L.). Common mesic hardwood trees 
included red maple (Acer rubrum L.) and tulip-poplar 

(Liriodendron tulipifera L.). Common conifers included 
eastern white pine (Pinus strobus L.), Virginia pine (Pinus 
virginiana, Mill.), and loblolly pine (Pinus taeda L.). State 
abbreviations are TN: Tennessee, GA: Georgia, SC: South 
Carolina, NC: North Carolina

Climate scenarios
To understand future drought outcomes, we analyzed 20 
downscaled global climate projections from the MACA 
database (Abatzoglou and Brown 2012) for the CMIP5 
under Relative Concentration Pathway (RCP) 8.5 (Table 
S.2). We selected RCP 8.5 to maximize variability in 
model outcomes from which to select divergent sce-
narios. The climate models include forecasted data for 
daily relative humidity, temperature, precipitation, wind 

Fig. 1  Study area of the Southern Appalachians as defined by Omerik’s (1995) blue ridge ecosystem. Here we show four separate maps of the study 
area which contains portions of Tennessee, Georgia, North Carolina, and South Carolina. The Southern Appalachians is a diverse and heterogeneous 
region as shown by A the wide ranging and complex elevation (Gesch et al. 2018), B the differing types of ownership (Noonan-Wright et al. 2021), 
C the wildland–urban interfaces (WUI: Radeloff et al. 2018), and D separate climate regions varying in precipitation and temperature profiles 
(Thornton et al. 2014; Figs. S1-S3). In this study, we used the LANDIS-II model to simulate the Southern Appalachians, USA, under four CMIP5 climate 
scenarios representing increased drought trend, increased drought variability, their combination, and a scenario with neither increase. These 
simulations were compared to the historical climate and each other to understand changes in fire patterns and landscape-scale changes in species 
composition and biomass
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speed, and wind direction. For each model, we calcu-
lated the annual potential evapotranspiration (PET) for 
2006–2100 using a Thornthwaite model (Thornthwaite 
1948). We then calculated each climate drought trend 
(hence, T) via the model’s annual precipitation (PPT) to 
PET ratio and used a linear trend with a fixed intercept to 
rank models by the slope in PPT:PET. Drought increased 
under all climate projections (Fig. S.4). We determined 
decadal variance in drought (hence, V) by calculating the 
decadal mean of PPT:PET and its squared variance. We 
then summed the squared variance for the study period 
and used this to rank each model (Figs. S.5 and S.6). We 
then selected four representative models (Table  1): (1) 
a minimal drought trend with low decadal variability 
(hence, LowT/LowV: MRI CGCM3 RCP 8.5), (2) a mini-
mal drought trend with high decadal variability (LowT/
HighV: CNRM CM5 RCP 8.5), (3) a maximal drought 
trend with low decadal variability (HighT/LowV: IPSL 
CM5A MR RCP 8.5), and (4) a maximal drought trend 
with high decadal variability (HighT/HighV: HadGEM2 
ES365 RCP 8.5).

Landscape change model
We simulated a dynamic wildfire regime and vegetation 
change using a landscape disturbance and change model, 
LANDIS-II (Scheller et al. 2007). LANDIS-II represents 
the landscape as an interconnected grid, simulating veg-
etation and disturbance processes within and between 
cells. Each grid cell represented a 250 m-by-250 m forest 
stand (6.25  ha). LANDIS-II simulates the establishment 
and succession of tree cohorts (cohorts are comprised 
of a single species and age class; each cell can contain 
multiple cohorts). LANDIS-II includes spatially explicit 
seed dispersal. We used the Net Ecosystem Carbon and 
Nitrogen succession (“NECN”) extension (Scheller et al. 
2011) and parameterized the growth and trait charac-
teristics for 48 separate tree species (See supplemental, 

Fig S7). NECN simulates tree growth, regeneration, and 
mortality in each landscape cell; cohorts compete for 
light, nitrogen, and soil moisture, and regeneration is a 
function of species-specific seasonal temperature and 
moisture responses. To capture landscape heterogeneity, 
10 climate regions were used both in the historical and 
future climate simulations (Figs. S1-S3). Finally, NECN 
calculates the exchange of carbon and nitrogen between 
living tissue, dead tissue, and soil pools following the 
logic of the CENTURY model (Parton 1996). NECN esti-
mates fuel loads over time; the decay rates for fuels are a 
function of climate and leaf composition (lignin content, 
carbon to nitrogen ratio), and each cohort has a unique 
contribution to the fuel pool, creating a continuous and 
temporally dynamic fuel model.

We simulated the fire regime using the Social-Climate 
Related Pyrogenic Processes and their Landscape Effects 
(SCRPPLE) extension. SCRPPLE includes separate sub-
models for ignitions (e.g., lightning or accidental human 
ignition), fire spread, and tree mortality (Scheller et  al. 
2019; Robbins et al. 2022). The ignition sub-model calcu-
lates the likelihood of a successful accidental and light-
ning ignition based on the daily Canadian Fire Weather 
Index (FWI, an index that captures fine fuel moisture, 
Van Wagner 1987). The sub-model fits the estimated 
ignitions for the entire landscape from a zero-inflated 
Poisson model (Zuur et al. 2009). SCRPPLE spatially dis-
tributes the calculated number of ignitions using a prob-
ability distribution map for each ignition type. Each cell 
is weighted based on probability and then a weighted 
uniform draw is performed. SCRPPLE calculates the 
probability of adjacent, intercellular fire spread based 
on FWI, effective wind speed (wind speed adjusted by 
topography; Nelson 2002), and an index of fine fuel mass 
(g B m−2). The fine fuel index is calculated by dividing the 
fine fuels in each cell by the maximum possible fine fuel 
mass (excluding disturbances); this adjustment maintains 

Table 1  The CMIP 5 climate models (Abatzoglou and Brown 2012) selected to represent the four drought outcomes for the study 
area and used to project the influence of varying climate scenarios on potential shifts in the wildfire regime across the Southern 
Appalachians. The four models selected encompass a range of plausible future climate warming and drought variability. In this 
study, we used the LANDIS-II model to simulate the Southern Appalachians, USA, under four CMIP5 climate scenarios representing 
increased drought trend, increased drought variability, their combination, and a scenario with neither increase. These simulations were 
compared to the historical climate and each other to understand changes in fire patterns and landscape-scale changes in species 
composition and biomass

Climate model Ranking in drought trend Ranking in drought 
variability

Mean Warming by 2100 Labeled in this study

MRI CGCM3 RCP 8.5 20 of 20 20 of 20 ~3° C Low T/ Low V

CNRM CM5 RCP 8.5 19 of 20 4 of 20 ~5° C Low T/ High V

IPSL CM5A MR RCP 8.5 2 of 20 12 of 20 ~6 °C High T/ Low V

HaGEM2 ES365 RCP 8.5 1 of 20 2 of 20 ~7° C High T/ High V
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model sensitivity to autumn leaf deposition and variable 
rates of foliar decay among tree species.

Notably, effective wind speed accounts for the effect 
of topography and aspect on fire behavior, as effective 
winds, and ultimately fire spread, increase with steeper 
slopes and on certain aspects. For each daily timestep, 
fire spreads to a new cell based on adjacent intercellu-
lar probabilities of spread until no more cells achieve 
the probability of spread or the daily maximum spread 
is reached (estimated from the observed maximum rate 

of possible spread modeled with FWI and effective wind 
speed). When fire passes through a cell, SCRPPLE cal-
culates cohort mortality based on cohort bark thickness 
and site-level characteristics (potential evapotranspira-
tion, climatic water deficit, soil composition) (Robbins 
et al. 2022).

We parameterized the SCRPPLE model based on wild-
fire occurrence data from our study area for 1992–2016 
(Robbins et  al. 2022) (Fig.  2). We fit the fire ignitions 
sub-model by comparing historic FWI to historical 

Fig. 2  The relationship within the model between fire variables (the index of fine fuel mass, fire weather index (accounting for fuel moisture), 
and effective windspeed) and modeled fire spread. a The intercellular fire spread probability as a function of the index of fine fuel mass and fire 
weather index. Colored lines represent different fine fuel indices (10th percentile, median, 90th percentile). b The maximum daily rate of spread (ha) 
as a function of effective daily wind speed. The model probabilistically calculates the likelihood of intercellular spread based on cellular conditions 
but is capped daily by the maximum daily rate of spread. In this study, we used the LANDIS-II model to simulate the Southern Appalachians, 
USA, under four CMIP5 climate scenarios representing increased drought trend, increased drought variability, their combination, and a scenario 
with neither increase. These simulations were compared to the historical climate and each other to understand changes in fire patterns 
and landscape-scale changes in species composition and biomass
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ignitions from 1992 to 2016 (Table S3; Short 2021). We 
used separate processes to generate probability maps for 
each ignition type. For lightning, we used a climatology 
of lightning for the area (Albrecht et  al. 2016), and for 
accidental human ignitions, we interpolated the spatial 
distribution from the wildfire record (Short 2021). We 
parameterized the fire spread function using fuel load, 
daily FWI, and topographically downscaled and effective 
wind speed. To model the probability of spread given the 
predictor variables, we identified the adjacent cells where 
a fire could spread using historic daily wildfire perimeters 
(Scheller et al. 2019; Walters et al. 2011). Finally, we used 
the combined data set to fit a generalized linear binomial 
fire spread model (Table 2a, b; Scheller et al. 2019).

We developed probabilistic prescribed fire ignition 
maps that use the spatial boundaries of different land 
ownerships to assign the relative probability for a pre-
scribed burn (see Robbins et  al. 2022). We parameter-
ized prescribed fire on federal lands using the proposed 
prescribed burn sizes and frequencies in National Forest 
plans (Table S.4). To parameterize non-federal prescribed 
burning, we used records of known prescribed burns 
in other jurisdictions (private, tribal, state, and other). 
While prescribed fire is an integral part of this landscape 

(currently accounting for ~40% of the burned area), each 
future scenario represents the same total area burned by 
prescribed fire. Thus, we focus on the effects of drought 
on future wildfires. We spatially delineated three wild-
fire suppression levels using a combination of wildland-
urban interface (WUI) definitions (Radeloff et  al. 2018), 
distance from roads, slope, elevation, and USFS roadless 
wilderness designations (U.S. Forest Service 2001). To 
parameterize the three levels of wildfire suppression, we 
compared historical records of fire rotation period (time 
needed to burn an area of land equal to the landscape) 
for each of the three suppression zones to unsuppressed 
fire spread. We then calibrated suppression under three 
fire weather index scales (Table 2c).

Scenario analysis
To test the influence of drought trends and variability, we 
simulated seven replicates for each climate projection for 
80  years (using the parameterized landscape from Rob-
bins et al. 2022 with the addition of climate change). In 
addition, we included a baseline historical-random (HR) 
climate scenario randomly assigning climate years from 
1972 to 2016 to future years.

We analyzed the relative fire regimes by looking at the 
pattern of fire return interval for each model in each of 
the suppression areas and in the WUI. Finally, we exam-
ined how tree species composition (by biomass) changed 
under each climate scenario. To understand changes in 
the forest composition under each FRI, we compared all 
climate model scenarios and assessed the mean biomass 
density across all sites of that FRI; we also analyzed the 
mean biomass density across all sites of a given FRI for 
all individual models. SCRPPLE also calculates mean fire 
severity (the sum of severity in individual cells divided 
by the number of cells in the fire). We tracked changes 
in severity over time and across climate scenarios, with 
a specific interest in events that had with a fire severity 
greater than > 300 at 250 m (measured as relative delta in 
normalized burn ratio in Robbins et al. 2022 and included 
within the model as severity) for comparison in the rela-
tive occurrence of high severity fires.

Results
Parameterizing the wildfire regime
In our statistical fitting of the fire spread model (see 
Supplemental), we found both FWI (representing fine 
fuel moisture) and the index of fine fuel mass were 
significant predictors of the probability of intercellu-
lar fire spread (Table  2). Visual interpretation of the 
effects of FWI and the fine fuel index suggests that 
FWI is the dominant control of fire spread (Fig.  2). 
However, increasing fine fuel mass will increase the 
probability of intercellular fire spread by as much as 

Table 2  The resulting parameters from our calibration process 
controlling fire spread from the portion of the SCRPPLE fire 
model governing (a) fire spread probability and (b) the maximum 
daily rate of fire spread (ha) and (c) suppression probability 
for the three suppression ratings at three fire weather index 
level in our SCRPPLE fire model for the Southern Appalachians. 
In this study, we used the LANDIS-II model to simulate the 
Southern Appalachians, USA, under four CMIP5 climate scenarios 
representing increased drought trend, increased drought 
variability, their combination, and a scenario with neither 
increase. These simulations were compared to the historical 
climate and each other to understand changes in fire patterns 
and landscape-scale changes in species composition and 
biomass

Coefficient Estimate Std. Error P value

(a) Fire spread probability

  Intercept −1.740204 0.113415 < 0.0001

  Fire weather index 0.725350 0.188870 < 0.0001

  Fine fuel index 0.061306 0.003369 < 0.0001

b) Maximum rate of daily spread (ha)

  Intercept 477.60 55.70 < 0.0001

  Mean effective wind-
speed (m/s)

393.00 13.28 < 0.0001

(c) Fire suppression values

Suppression class FWI < 20 20 < FWI < 28 FWI > 28

  Low (1) 0.30 0.12 0.05

  Medium (2) 0.50 0.25 0.03

  High (3) 0.70 0.35 0.20
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~10%. Our ecological interpretation of this statistical 
fitting is that for this area, fire weather is the primary 
contributor to high fire spread between forested cells, 
but the location of available fuels may determine where 
a fire is most likely to spread. Due to directional error, 
wind speed was removed from predicting intercellu-
lar spread probability. Wind speed, however, was the 
predictor used in calculating the maximum daily rate 
of spread within the model (Fig.  2). This may reflect 
the limitations of downscaled wind speed in weather 
records (i.e., at a large-scale wind speed affects fire 
spread rates, but this cannot be captured at relevant 
scales for modeling intercellular fire spread.) Both 
lightning and accidental human ignitions simulated by 
our fire model were sensitive to changes in FWI (Table 
S3, Fig. S8). For the lightning ignition sub-model, the 
likelihood of an excess zero increased with increas-
ing FWI; however, so did the predicted daily lightning 
(S.3). The accidental human ignition sub-model was 

not sensitive to FWI for the probability of excess zeros 
(S.3); however, the daily ignition count was positively 
correlated with FWI. Therefore, accidental ignition 
likelihood increased slightly with increasing FWI. For 
additional information on the influence of FWI on 
ignition likelihoods, please see the Supplemental.

Validating the wildfire regime
The SCRPPLE fire model reproduced the expected num-
ber of accidental human-ignited fires (1623 (95% CI: 
1598–1649) compared to 1709 observed) and lightning-
ignited fires (160 (95% CI: 153–177) compared to 174 
observed) from 1992 to 2016 (Fig. S.9). The mean total 
area burned in the simulations between 1992 and 2016 
was 140,316 (95% CI: (119,067–161,564)) ha, compared 
to 147,367 ha observed by Short (2021) (a mean under-
estimation of ~2%; Fig. S.10). The SCRPPLE fire model 
generally captured the fire size distribution; the model 
slightly overestimated the proportion of small (0–50 ha) 

Fig. 3  The distribution of binned fire sizes for ten LANDIS-II model replicates compared to historical fire size observations by Short (2021). 
For each fire size class, the LANDIS-II values show the proportions of fire sizes for the modeled years in the final validations (1992–2016), which 
correspond with the observation period for Short (2021). Note the varied y-axis. In this study, we used the LANDIS-II model to simulate the Southern 
Appalachians, USA, under four CMIP5 climate scenarios representing increased drought trend, increased drought variability, their combination, 
and a scenario with neither increase. These simulations were compared to the historical climate and each other to understand changes in fire 
patterns and landscape-scale changes in species composition and biomass
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and large (5000 ha and above) fires and underestimated 
fires of intermediate size (50–5000  ha) (Fig.  3; Short 
2021). Comparing the annual area burned shows that the 
model captured about 46% of interannual variability in 
the burned area (Fig.  4). The model tended to overesti-
mate burned area, even if by only a few hundred ha, with 
the largest overestimates occurring in the same years 
across replicates (1992–1994, 2008, 2011–2012). Simula-
tions of the peak fire year in 2016 (observed ~67,000 ha 
burned) yielded highly variable modeled values of burned 
area (13,112–87,043 ha) (Fig. 4).

Climate simulations
The modeled burned area of the historical-random 
(782,302.7, model range: (716,655.0–847,950.3) ha) and 
LowT/LowV (707,858.0 (684,478.3–731,237.8) ha) sce-
narios were similar (Fig.  5a). The burned area of the 
HighT/LowV scenario (high drought trend, low vari-
ability: 1,602,085.7 (1,511,837.5–1,692,334.0) ha) was 
104.8% higher than the historical-random simulation. 
The burned area of the LowT/HighV scenario (increased 
drought-variability, 1,134,888.4 (1,067,437.2–1,202,339.6) 
ha) was 42.3% higher than the historical-random simu-
lation. The burned area for the HighT/HighV scenario 
(high drought trend and drought variability, 4,573,925.0 
(4,434,910.5–4,712,939.5) ha) increased nearly 500% 
from the historical-random scenario (Fig. 5a). The LowT/
LowV model showed similar temporal patterns to the 
random historical simulations oscillating around ~60,000 
hectares burned per decade (Fig.  5b). The LowT/HighV 

scenario forecasted increasing hectares burned during 
the middle part of this century and eventually returned 
to the burned interval range seen in the historic-random 
scenario. This tracks the pattern in FWI (Fig S.13a), 
rather than a pattern in fuel availability (S.13b). The 
HighT/LowV scenario forecasted a similar burned area 
to the historical-random simulation until the middle of 
the century, when the burned area rose and remained 
elevated for the rest of the century. The HighT/HighV 
scenario began with an elevated burned area (~2 × the 
historical-random) and increased throughout the simu-
lation, forecasting a burned area ~9 × higher than the 
random historical scenario during the last decade of the 
century (Fig. 5b).

Modeled fire severity remained similar throughout the 
simulation, generally low with a minimal increase in the 
proportion of higher severity fires or an increase in the 
gross number of higher severity fires (Fig S.14). In sce-
narios with more burned area (HighT/LowV and HighT/
HighV), mean fire severity per individual forested cell fell 
slightly through time. Lower severity is likely due to the 
prior removal of the most susceptible cohorts.

The modeled mean landscape fire rotation period for 
the historic climate scenario was ~284 years, in the LowT/
LowV scenario ~314 years, in the LowT/HighV scenario 
~200  years, in the HighT/LowV scenario ~139  years, 
and in the HighT/HighV scenario ~48  years. In fore-
casts using the LowT/LowV, LowT/HighV, and HighT/
LowV scenarios, the largest percentage of the landscape 
either had an FRI over 200 years or experienced no fire 

Fig. 4  The interannual variability in the simulated annual burned area (ha/year) and the total area burned (ha) generated by the SCRPPLE 
fire model, compared to the observed historical burned area. Transparent gray dots represent individual replicates, solid red dots represent 
the observed data (Short 2021). R2 represents the predictive power of the combined replicates in explaining the annual variation in the observed 
data. In this study, we used the LANDIS-II model to simulate the Southern Appalachians, USA, under four CMIP5 climate scenarios representing 
increased drought trend, increased drought variability, their combination, and a scenario with neither increase. These simulations were compared 
to the historical climate and each other to understand changes in fire patterns and landscape-scale changes in species composition and biomass
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(Table  3). However, under the HighT/HighV scenario, 
only ~22% had an FRI longer than 200  years or experi-
enced no fire. The modeled spatial distribution showed 
lower fire rotation period in the non-WUI areas (Fig 
S.7), and in areas with a lower suppression classifica-
tion (Fig. 6, Fig S.6). The northwestern and southwestern 

areas where fires are most concentrated across scenarios 
represent the boundaries of the Chattahoochee–Oconee 
and the Cherokee National Forests (Fig.  1). Areas that 
experienced a FRI less than 50 years expanded under all 
climate scenarios that increased burned area, including 
more frequent fire in the WUI and high suppression area 

Fig. 5  The change in the burned area attributed to drought and drought variability. a The total area burned during a 90-year simulation in our 
process-based, paired fire, and landscape change models for four selected climate models that represent a range of future drought conditions. 
Error bars represent the 95% CI across models. b Hectares burned per decade under the four selected climate models. Dots represent individual 
model runs and the trend line represents a LOESS smoothed model. High T represents a major drought trend, while Low T represents a minor 
drought trend. High V represents high variability, while Low V represents low variability. The historical simulation’s climate is years drawn randomly 
from the years 1979–2016. In this study, we used the LANDIS-II model to simulate the Southern Appalachians, USA, under four CMIP5 climate 
scenarios representing increased drought trend, increased drought variability, their combination, and a scenario with neither increase. These 
simulations were compared to the historical climate and each other to understand changes in fire patterns and landscape-scale changes in species 
composition and biomass
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(Table 3, Tables S.5 and S.6). Increased burned area sug-
gests that fire frequency will increase and fire, with its 
potential ecological benefits and possible hazards, will 
impact a larger portion of the future landscape.

Modeled mean total biomass decreased in sites with an 
FRI of < 5 years (79.95 Mg/ha) as compared to 25–50 years 
(104.46 Mg/ha), 50–80 (119.73 Mg/ha), or sites that experi-
enced no fire (131.03 Mg/ha). Sites with FRIs of 0–25 years 
and 25–50 years had lower biomass than the initial land-
scape average (106.24  Mg/ha). Percent total biomass of 
xeric white oaks increased for all FRIs, but the maximum 
biomass increase (45.4%) occurred with the shortest FRI 
(Fig.  7). Biomass of xeric red oaks held constant in all 
scenarios. The percent of maple biomass declined by half 
under the scenario with the shortest FRI (from 13.1% of 
landscape biomass to ~8%). Mesic hardwood biomass 
remained relatively stable in all FRI, although the propor-
tion declined with decreasing FRI. Yellow pine declined in 
all scenarios (from 1.0% to ~0.5%). Non-oak xeric hard-
woods declined in all scenarios from (~5% to around 0.3%, 
Fig. 7). Comparing the relative biomass in each FRI class 
between models showed minimal differences (S.20-S.23).

Table 3  The distribution of simulated FRI intervals across the 
southern Appalachians for each climate model in our study, 
based on the mean of all seven model replicates. The fire return 
intervals represent the time between fires in an individual cell 
on the landscape for each modeled climate scenario. In this 
study, we used the LANDIS-II model to simulate the Southern 
Appalachians, USA, under four CMIP5 climate scenarios 
representing increased drought trend, increased drought 
variability, their combination, and a scenario with neither 
increase. These simulations were compared to the historical 
climate and each other to understand changes in fire patterns 
and landscape-scale changes in species composition and 
biomass

FRI Low T/Low V Low T/High V High T/Low V High T/High V

0–25 0.00% 0.00% 0.01% 15.07%

25–50 0.00% 1.87% 5.52% 28.62%

50–100 3.70% 12.27% 20.26% 21.17%

100–200 17.01% 23.82% 26.71% 13.00%

200–Inf 79.21% 62.01% 47.37% 22.13%

Fig. 6  Spatial distribution of the fire return interval (FRI: years simulated/fires that occurred) simulated by the SCRPPLE fire model 
across the Southern Appalachian landscape under four climate scenarios. Each map represents the combined FRI of seven simulations (wildland fire 
plus prescribed fire). The white outline denotes the study boundary. Climate models are LowT/LowV (MRI CGCM3 RCP 8.5), LowT/HighV (CNRM CM5 
RCP 8.5), HighT/LowV (IPSL CM5A MR RCP 8.5), and HighT/HighV (HadGEM2 ES365 RCP 8.5). In this study, we used the LANDIS-II model to simulate 
the Southern Appalachians, USA, under four CMIP5 climate scenarios representing increased drought trend, increased drought variability, their 
combination, and a scenario with neither increase. These simulations were compared to the historical climate and each other to understand 
changes in fire patterns and landscape-scale changes in species composition and biomass
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Discussion
We found that both increasing annual drought trends 
and greater drought variability could increase the area 
burned across the Southern Appalachians, validating 
our first two hypotheses (H1 and H2). Furthermore, 
the increase in the modeled burned area due to a high 

drought trend and high drought variability suggests mul-
tiplicative non-linear interactions (Fig. 5) and represents 
the threshold-driven nature of the wildfire regimes in 
mesic forested systems (Young et  al. 2017; Abatzoglou 
et al. 2021). The historical data and our simulations sug-
gest that drought years (particularly those containing 

Fig. 7  Landscape proportions of the functional groups represented in each fire return interval (FRI: years simulated/fires that occurred) in our 
model of fire regime and vegetation change in the Southern Appalachians. Each bar represents the mean percent of total live biomass of each 
functional group across all locations that experience that FRI across the landscape in all simulations under all climate models. Functional groups are 
defined in Table S.1. In this study, we used the LANDIS-II model to simulate the Southern Appalachians, USA, under four CMIP5 climate scenarios 
representing increased drought trend, increased drought variability, their combination, and a scenario with neither increase. These simulations were 
compared to the historical climate and each other to understand changes in fire patterns and landscape-scale changes in species composition 
and biomass
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months with fire weather indices > 22) will contribute 
most to future burned area. Because strong drought years 
account for a disproportionate amount of area burned 
by wildfire, an increase in drought variability has a sub-
stantial effect on the modeled area burned even with-
out an overall increase in the projected drought trend. 
The non-linear interaction is driven disproportionately 
by the most drought prone years, (i.e., the 2016 fire sea-
son); therefore the combination of decreasing annual 
PPT/ET ratios and greater interannual variability results 
a greater number of years with widespread fire. The dif-
ference in modeled area burned between the four cli-
mate scenarios used in this study was determined by 
their divergent forecasts. The HADGEM-ES 365 (High T 
/ High V) model predicted the most drastic changes in 
future climate, with mean temperatures 7 °C higher and 
a decrease in precipitation of 180  mm annually by the 
end of the century (Table 1). The ISPL CM5A-LR (High 
T/ Low V) and CNRM-CM5 (Low T/ High V) models 
predicted 5–6  °C of warming, with slight increases in 
annual precipitation (Table 1). However, future precipita-
tion patterns for the southern USA should be interpreted 
with caution because global climate model projections 
derived from the Coupled Model Intercomparison Pro-
ject Phase 5 (CMIP5) fail to simulate observed fall pre-
cipitation patterns (Bishop et al. 2019). For context, Rupp 
(2016) analyzed the MACA downscaling of these GCMs 
(among others) in the southeastern USA and compared 
historic minimum, maximum, and average monthly 
temperature, and surface precipitation to weather data 
to characterize inherent bias. Overall, the highest-rank-
ing model (according to a normalized error score of 22 
metrics) was the CNRM-CM5 (Low T/ High V), and the 
HADGEM-ES 365 (High T / High V) was ranked 10th 
of 41. The MRI.CGCM3 (Low T/ Low V) and the IPSL 
CM5A-LR (High T/ Low V) both scored near the 25th 
percentile in normalized error score. As is common in 
GCMs, models reproduced temperature more accurately 
than precipitation.

Our findings reflect the complex, non-linear interac-
tions between fire frequency due to climate coupled with 
changes in fire behavior due to human management of 
fuels and fire (Balch et al. 2017; Pausas and Keeley 2021; 
Krawchuk et  al. 2009). Our results suggest more area 
burned under increased drought trend and drought vari-
ability, even where a high level of fire suppression was 
modeled (Table  3, Table S.6). Our inclusion of fire sup-
pression and patterns of human ignition indicate that the 
current pace of wildfire management may not be suffi-
cient to maintain current levels of burned acres or limit 
burning in the WUI under a more arid future climate 
with more wildfire activity (Tables S.6 and S.7). However, 
this effect is most prominent in areas away from housing 

development and population centers (Table S.7). As such, 
fuel reduction efforts that target the WUI, particularly 
under drier future conditions, may be most effective in 
this region (Sturtevant et al. 2009; Krofcheck et al. 2019). 
In other forested systems, however, land management 
and human interaction with the landscape have been 
projected to play a more prominent role in increasing fire 
activity than the role projected by the warming climate 
(Creutzburg et al. 2017), at least in the near term (Max-
well et al. 2022). Our results are similar to those of Moritz 
et al. (2012), who found that climate trends could exceed 
the influence of land management. Our results differ in 
that our model suggests short-term drought patterns (as 
represented by drought variability) also had a large effect 
on total burned area. Other factors to consider include 
that fuel loads can increase due to rural abandonment 
and long periods of fire suppression, and ignitions can 
increase in previously remote areas via increased access 
through fragmentation (Pausas and Keeley 2014). It is 
also possible that future fire suppression could increase 
to meet wildfire management needs to combat increased 
fuel loads and more accidental human ignitions (Andela 
et al. 2017; Driscoll et al. 2021).

Our results run contrary to prior projections of area 
burned under climate change in the Southern Appala-
chians (Prestemon et  al. 2016; James et  al. 2020). These 
studies suggested that the total area burned would likely 
decline over the next 50  years under the CMIP3 mod-
els, MIROC32, CSIROMK35, and CGCM31 (scenarios 
AB1, A2, and B2). A decline in burned area was attrib-
uted to denser populations and rising wealth resulting in 
increased wildfire suppression efforts that could negate 
any increase in fire size associated with future tempera-
tures. However, these studies were parameterized with 
data from 1992 to 2010 and did not capture the 2016 fire 
year that had monthly FWIs > 22. Our findings suggest 
that failing to capture such exceptionally dry years will 
severely underestimate landscape-level wildfire activ-
ity as these drought years account for a disproportionate 
amount of burned area. In the context of all three stud-
ies, including ours, the level of fire suppression could 
ultimately drive the fire regime across this landscape, but 
increased levels of high drought variability will challenge 
suppression efforts (Prestemon et  al. 2016; James et  al. 
2020).

Our results suggest that the species composition 
change has passed a threshold and is unlikely to revert 
to pre-fire suppression and exclusion composition in the 
Southern Appalachians in the next century. Even under 
drastic climatic and fire regime shifts, we see only minor 
variation in species composition, supporting the idea 
of an ecological hysteresis (Nikanorov and Sukhoru-
kov 2008). Based on these conclusions, we support our 
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third hypothesis (H3) that the amount of area burned is 
unlikely to restore the majority of the landscape to more 
fire-adapted conditions, as even the most frequent FRI 
maintained near current levels of non-fire adapted mesic 
hardwoods. These results suggest an alternative stable 
state and that consistent reintroduction of fire, without 
additional land management restoration actions, may not 
restore the landscape to a more fire-adapted state (Beis-
ner et al. 2003; Alexander et al. 2021).

Under a modeled shift to a much more frequent FRI, 
stands were able to maintain both fire-adapted and non-
fire-adapted tree species throughout the century, unlike 
more arid areas in the Western USA, where more per-
manent state shifts are expected to occur (Davis et  al. 
2019). Continued fuel availability will likely differentiate 
fire activity in areas that experience increases in drought 
under future warming (Abatzoglou et al. 2018). Our suc-
cession sub-model (NECN) calculates the fuel load as 
surficial detrital biomass (reflecting annual foliage turn-
over and recent disturbance, not including large wood 
material); our simulations indicated that the fuel load 
would not decline to the point of limiting fire at the land-
scape scale, even under an increase in fire frequency and 
resulting mortality.

While increased area burned did not yield a complete 
reduction in mesic species or restoration of Quercus spp., 
our simulations suggest that white oak (Leucobalanus: Q. 
montana Willd and Q. alba) will remain the dominant 
canopy species and will not be replaced by other spe-
cies within the next century, regardless of the climate 
scenario. While oaks are currently less prevalent in the 
mid and understory, larger and older oak trees will make 
up an increasing fraction of the overstory biomass in the 
future because of their continued growth potential and 
ability to survive low–moderate intensity fires. Many 
oaks in the Southern Appalachians were established 
during  early industrial harvesting and before fire sup-
pression and exclusion (1890–1930) and generally can 
live between 200–400  years (Loehle  1988). Essentially, 
the larger oaks still have considerable growth potential, 
maintaining their successional legacy into the next cen-
tury. While more frequent fires may favor oaks under 
the hotter and drier climate projections, this was accom-
panied by lower regeneration rates in all species due to 
increasing drought stress (higher frequency and intensity, 
Figs. S.15-S.19). Including oak decline (Greenberg et  al. 
2014) or disturbances beyond fire (Clinton et al. 1993) in 
future simulation studies could provide further insight 
into these dynamics.

Our study presents a novel approach to simulating 
the spatio-temporal interactions of fire suppression, 
management, and increased and more variable drought 
conditions and quantifies how these interactions affect 

wildfire activity in the Southern Appalachians. Future 
work should quantify the effects of varied fire suppres-
sion and ignition reduction tactics coupled with other 
management strategies, such as changes in the number 
and size prescribed fires, to balance ecosystem resilience 
with human community safety.

Limitations to our forecasts must be considered. Anom-
alous events in wildfire records, such as those of the 2016 
fire season, are difficult to model as they have no replicates 
and are outliers from preceding wildfire patterns. How-
ever, our fire spread model is centered around fire behav-
ior metrics (fuel load, FWI, windspeed), which should 
allow some extrapolation to future annual weather condi-
tions. Additionally, our model of interactive fire spread, 
and suppression is non-adaptive, meaning that while the 
effect of fire suppression does scale with fire weather con-
ditions, it does not consider the reorganization of fire sup-
pression resources, as might be expected if the wildfire 
regime radically shifts. Nor did we consider a future reduc-
tion in fire suppression resources created by national-scale 
wildfires that compete for firefighting labor (Belval et  al. 
2020). Our simulations represented the cumulative effects 
of climate-wildfire interactions over the entire Southern 
Appalachians (3.4 M ha area simulations), not the efficacy 
of individual prescriptions on specific stands or areas. 
Given the broad variation in climatic trends and the high 
stochasticity introduced by wildfire, localized uncertainty 
(at the small watershed or stand scale, for example) is high 
and therefore the information produced should not be 
used to inform local management or to infer local ecologi-
cal trends. It should be noted that fire occurrence is not 
uniform across the landscape. Areas with greater fire fre-
quency may be more predisposed to xeric species or other 
adaptations not captured in this fire analysis. Further, our 
analysis focuses on the landscape at large; future analysis 
will examine fine-scale trends in specific management-
relevant outcomes, including smoke and bird habitat. 
Finally, fire severity was parameterized primarily from cur-
rent stands in areas where fire events were rare (Robbins 
et al. 2022). While the mortality parameterization included 
areas that had been burned twice, a shift in fire frequency 
may change the mortality profile. Increased fire frequency 
may reduce fire severity by removing trees that are more 
susceptible to subsurface burning due to the buildup of 
duff or by altering the mycorrhizal environment (Waldrop 
et al. 2016; Carpenter et al. 2021).

Conclusion
Increased future drought severity and variability may 
generate a much greater area burned in the Southern 
Appalachian region than has recently been experi-
enced, even when accounting for wild fire suppression. 
In ecosystems where fuel moisture (and not load) is the 
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standard limitation to fire spread, increased pulses of 
drought may provide the conditions for more fire activ-
ity, regardless of effects on fuel loading. Furthermore, 
while fire suppression and other disturbances have 
altered this landscape’s vegetation composition for over 
a century, the future projected increases in wildfire will 
likely not revert the landscape to pre-suppression con-
ditions, owing to the establishment of non-fire-adapted 
species. However, oak canopy dominance will likely 
continue into the next century because of continued 
growth potential of the current oak population, but oak 
regeneration is more questionable. Thus, the future fire 
regime of the Southern Appalachians (and other fuel 
moisture-limited systems) may be neither like the past 
nor the present but a novel ecosystem state governed 
by climate and human activities.
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