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Abstract 

Background Wildfires in 2020 ravaged California to set the annual record of area burned to date. Clusters of wildfires 
in Northern California surrounded the Bay Area covering the skies with smoke and raising the air pollutant concen‑
trations to hazardous levels. This study uses the Fire Inventory from the National Center for Atmospheric Research 
database and the Community Multiscale Air Quality model to estimate the effects of wildfire emissions on air quality 
during the period from August 16 to October 28 of 2020. In addition, low‑cost sensor data for fine particulate matter 
 (PM2.5) from the PurpleAir network is used to enhance modeled  PM2.5 concentrations. The resulting impacts on ozone 
and  PM2.5 are used to quantify the health impacts caused by wildfires using the Benefits Mapping and Analysis Pro‑
gram – Community Edition.

Results Wildfire activity significantly increased direct  PM2.5 emissions and emissions of  PM2.5 and ozone precursors. 
Direct  PM2.5 emissions surged up to 38 times compared to an average day. Modeling results indicated that wildfires 
alone led to a rise in ozone daily maximum 8‑h average by up to 10 ppb and exceeded  PM2.5 air quality standards 
in numerous locations by up to 10 times. While modeled  PM2.5 concentrations were lower than measurements, cor‑
recting these with PurpleAir data improved the accuracy. The correction using PurpleAir data increased estimates 
of wildfire‑induced mortality due to  PM2.5 exposure by up to 16%.

Conclusions The increased hospital admissions and premature mortality attributed to wildfires were found to be 
comparable to the health impacts avoided by strategies aimed at meeting ozone and PM2.5 air quality standards. 
This suggests that widespread wildfire emissions can negate years of efforts dedicated to controlling air pollution. The 
integration of low‑cost sensor data proved invaluable in refining the estimates of health impacts from PM2.5 resulting 
from wildfires.

Keywords Wildfires, Air quality, Low‑cost sensors, Health impacts

Resumen 

Antecedentes Los incendios de vegetación en 2020 devastaron California, fijando el récord anual de área quemada 
hasta el presente. Ese año, múltiples grupos de incendios en el norte de California rodeaban el área de la Bahía (Bay 
Area), cubriendo los cielos de humo y elevando las concentraciones de contaminantes hasta niveles peligrosos. Este 
estudio usó el Inventario de Incendios de la base de datos del Centro Nacional para Investigaciones de la Atmósfera 
y del modelo Comunitario Multiescalar sobre la Calidad del Aire, para estimar los efectos de las emisiones de incen‑
dios sobre la calidad del aire desde el 16 de agosto hasta el 28 de octubre de 2020. Adicionalmente, el sensor de 
bajo costo para determinar el particulado fino (PM2.5), tomado de la red PurpleAir, fue usado para mejorar el mod‑
elado de concentraciones de PM2.5. Los impactos resultantes en el ozono y PM2.5 fueron usados para cuantificar los 
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impactos en la salud causados por los incendios de vegetación, usando el Programa Beneficios del Mapa y Análisis 
‑ Edición de la Comunidad.

Resultados La actividad de los incendios incrementaron significativamente las emisiones directas de PM2.5 y los 
precursores de las emisiones de PM2.5 y ozono. Las emisiones directas de PM2.5 resultaron hasta 38 veces más altas 
comparadas con un día normal. Los resultados modelados indicaron que los incendios por sí mismos llevaron a un 
aumento del ozono diario máximo 8 horas en promedio y por 10 ppb, y excedieron los estándares de calidad del 
aire debido al PM2.5 en numerosas ubicaciones y por hasta 10 veces. Mientras que los valores modelados del PM2.5 
fueron más bajos que las mediciones, la corrección de esos valores con el PurpleAir mejoraron su exactitud. Las 
correcciones usando datos de PurpleAir incrementaron las estimaciones de la mortalidad debida a la exposición de 
PM2.5 en un 16%.

Conclusiones El incremento en las admisiones en los hospitales y las muertes prematuras atribuidas a los incendios 
de vegetación fueron encontradas comparables a los impactos en la salud evitados mediante estrategias enfocadas 
a alcanzar los estándares de calidad del aire para el ozono y el PM2.5. Esto sugiere que las emisiones generalizadas 
de los incendios pueden anular años de esfuerzos dedicados a controlar la contaminación del aire. La integración 
de datos del sensor de bajo costo probó ser muy valiosa para refinar las estimaciones de los impactos en la salud 
provenientes del PM2.5 resultante de los incendios.

Background
The year 2020 saw the largest area burned due to wildfires 
in California in recorded history (Fig. 1) and included 5 
of the top 7 largest wildfires ever recorded in California. 
More than 1.7 million hectares burned in 8648 incidents, 
and 33 people perished as a direct result of the fires 
(CalFire 2022). The largest fires started in mid-August, 
clustering across northern California and around the 
Bay area, which famously turned San Francisco daylight 
skies into an apocalyptic orange twilight for several days. 
Because of the large and widespread fires, the state expe-
rienced long episodes of elevated fine particulate mat-
ter  (PM2.5, i.e., particulate matter with diameter smaller 
than 2.5 micrometers) concentrations (Li et  al., 2021). 
Exposure to elevated concentrations of  PM2.5 is linked 
to increased respiratory and cardiovascular illnesses and 
can lead to increased mortality (Atkinson et  al. 2014, 
Brook et al., 2010).

Prior research has investigated the effects of recent 
wildfires on air quality and public health through two 
primary methodologies. One approach involves employ-
ing wildfire emissions and chemical transport models to 
simulate the contribution of wildfires to  PM2.5 levels, as 
demonstrated by studies conducted by Shi et  al. (2019) 
and Lassman et  al. (2023). The other method utilizes 
direct measurements obtained from ground-based or 
satellite observations to map pollutant concentrations 
and subsequently estimates the portion attributed to 
wildfires, as seen in research by Wang et al. (2021) and 
Enayati Ahangar et al. (2022).

Shi et  al. (2019) specifically examined the impact of 
wildfires in Southern California in December 2017, uti-
lizing various satellite-based techniques and a chemi-
cal transport model to estimate wildfire emissions and 
their influence on  PM2.5 concentrations and population 

exposure. Their study revealed that exposure to  PM2.5 
induced by wildfires in December accounted for over 40% 
of the total annual  PM2.5 exposure in certain locations. 
Lassman et  al. (2023) used a chemical transport model 
to compare two different wildfire emission schemes that 
are used by the air quality modeling community: the Fire 
Inventory from the National Center for Atmospheric 
Research (FINN, Wiedinmyer et al., 2011) and the Surface 
Fire model (SFIRE, Mandel et al., 2012). Although SFIRE 
provided a more accurate representation of fire location 
and timing, the resulting  PM2.5 modeling outcomes were 
only marginally more accurate than those obtained using 
FINN when compared to measured values of  PM2.5.

In another study, Wang et al. (2021) utilized a combina-
tion of monitoring and satellite data to map  PM2.5 con-
centrations in California during the latter half of 2018. 
This research used low-resolution fire emissions and 
chemical transport models and assessed the direct and 
indirect economic impacts and capital losses incurred 
due to wildfire disruptions.

Enayati  Ahangar et  al. (2022) explored  PM2.5 concen-
tration mapping over California’s San Joaquin Valley in 
late summer and fall of 2020, utilizing regulatory moni-
tors and low-cost sensors from the PurpleAir sensor 
network (PurpleAir, 2022). PurpleAir sensors use a low-
cost technology to estimate concentrations of particulate 
matter and data is reported in real time to the PurpleAir 
website. Enayati  Ahangar et  al. employed a trajectory 
model to quantify the contribution of wildfires to total 
 PM2.5 concentrations, utilizing fire emissions estimates 
derived from satellite observations. Kramer et al. (2023) 
used data from regulatory monitors and PurpleAir sen-
sors and used various interpolation techniques to esti-
mate exposure to wildfire-induced pollution in Northern 
and Southern California.



Page 3 of 22Carreras‑Sospedra et al. Fire Ecology            (2024) 20:6  

The goal of this study is to estimate the impact of wild-
fire emissions on air quality and public health in Cali-
fornia from mid-August to late October in 2020. The 
methodology in this study integrates two approaches 
mentioned above. Specifically, it combines a wild-
fire emissions inventory and a comprehensive chemi-
cal transport model with ground-based observations to 
gauge the influence of wildfires on air pollution. Ground-
based monitoring data are employed to refine the  PM2.5 
model estimates, thereby enhancing our understanding 
of the effects of wildfire emissions on  PM2.5 concentra-
tions and population exposure. Furthermore, the air 
quality impacts resulting from wildfires are assessed in 
terms of health using the Benefits Mapping and Analy-
sis Program – Community Edition model (BenMAP-CE, 
U.S. EPA, 2021).

2020 fire season
This study focuses on the period between August 16 and 
October 28, 2020. Initially, this period was marked by a 
series of wildfires in the northern portion of the state, 
primarily ignited by lightning strikes. These fires began 
as small, isolated, and scattered incidents but rapidly 
evolved into substantial fire complexes that persisted 
for weeks. The fire complexes, as depicted in Fig.  2, 
included the August, Sonoma-Lake-Napa Unit (LNU), 
San Mateo-Santa Cruz Unit (CZU), Santa Clara (SCU), 
and the Butte/Tehama/Glenn (BTG) lightning com-
plexes. Among these large wildfires, the August complex 
became the largest wildfire ever recorded in California. 
In early September, the Creek fire developed quickly in 
the Sierras producing a large pyrocumulonimbus cloud 
that reached altitudes of more than 15,000 meters above 
sea level. Around the same time, the El Dorado fire broke 

out in Southern California. At the end of October, fanned 
by strong Santa Ana winds, the Silverado and Blue Ridge 
fires ignited. In addition to in-state wildfires, large wild-
fires that originated in Oregon also contributed to air pol-
lution in California, as satellite images (NASA Worldview 
2020) showed smoke being transported southwards and 
reaching the San Francisco Area around mid-September.

Methods
The modeling framework, illustrated in Fig. 3, comprises 
multiple models designed to estimate different factors 
and processes related to air pollution formation. These 
models calculate the resulting impacts on both air qual-
ity and public health and are described in more detail in 
this section. In general terms, the framework includes a 
meteorological model to assess the weather conditions 
during the modeling period, models to estimate anthro-
pogenic, biogenic, and wildfire emissions, and a chemical 
transport model to analyze the formation and transport 
of air pollutants. Additionally, data from PurpleAir sen-
sors are utilized to assess and refine certain correction 
methods for air pollution estimates. Finally, a compre-
hensive model is employed to evaluate the health effects 
of air pollution induced by wildfires. Specific details on 
each individual model are described below.

The modeling period spanned from August 16 to Octo-
ber 28, 2020. Meteorology fields for the study period 
were generated using the WRF model, version 4.2.1 
(Skamarock et  al. 2019). The model was initialized with 
the National Center for Environmental Prediction Final 
(NCEP FNL) Operational Global Analysis data (NCEP 
2021) and was run in nested mode with two domains: 
the outer domain at a 12-km grid resolution and the 
inner domain at a 4-km grid resolution. The model was 

Fig. 1 Recorded area burned in wildfire events by year in California. (Source: CalFire, 2022)
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run in staggered periods of 5 days, with modeling being 
reinitialized by reanalysis data every 3 days. The first 
2 days were used for spin-up, and the remaining 3 days 
were used for air quality modeling. The following physics 

options were selected: (1) Purdue Lin scheme microphys-
ics (Chen and Sun 2002), (2) YSU planetary boundary 
layer (PBL) scheme (Hong, Noh and Dudhia 2006), (3) 
NOAH land-surface (Campbell et al. 2019), (4) Grell G3D 

Fig. 2 Cumulative  PM2.5 emissions from wildfires during the period August 16–October 28, 2020

Fig. 3 Diagram of the modeling setup for this study. Emissions and meteorological inputs are used to run the air quality model. Low‑cost sensor 
data is used to analyze potential correction methods, and adjusted results are used to calculate potential health impacts using the health impact 
model.
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cumulus parameterization (Grell and Devenyi 2002), and 
(5) Rapid Radiative Transfer Model (RRTM) longwave 
(Mlawer et  al. 1997) with Goddard shortwave radiative 
transfer schemes (Matsui et al. 2020).

Air quality was modeled using the Community Mul-
tiscale Air Quality model (CMAQ, Byun and Schere, 
2006), version 5.3.2. Version 5.3.2 includes minor bug 
fixes with respect to version 5.3.1, which was docu-
mented and validated by Appel et  al. (2021). Initial and 
boundary conditions were derived from concentration 
fields from the Whole Atmosphere Community Climate 
Model (WACCM) configuration of the Community Earth 
System Model 2 (CESM2) (Gettelman et al. 2019).

Anthropogenic emissions were derived from the 
California Air Resources Board’s (CARB) emissions 
inventory. Area and off-road emissions were spatially 
resolved using source-specific spatial surrogates devel-
oped by CARB. On-road emissions were generated 
using CARB’s on-road emissions model EMmission 
FACtor (EMFAC) (EMFAC2017, CARB 2020) and spa-
tially allocated using the Emissions Spatial and Tempo-
ral Allocator (ESTA) (CARB 2021). Dust and biogenic 
emissions were calculated inline in CMAQ. Inline bio-
genic emissions were based on the Biogenic Emissions 
Inventory System version 3.61, which used the Biogenic 
Emissions Land-use Database (version 3) with 1-km 
resolution (U.S. EPA, 2016).

Fire emissions were developed based on FINN version 
1.5 (Wiedinmyer et  al. 2011). Fire emissions included 
trace gas and particle emissions from open burning 
of biomass, which accounts for wildfires, agricultural 
fires, and prescribed burning. The emissions were esti-
mated using satellite observations of fire detections and 
vegetation density from the moderate resolution imag-
ing spectroradiometer (MODIS) instruments, land 
cover data, and emission factors specific for each type 
of land use/land cover. Resolution of fire emissions is 1 
km, and their chemical speciation was converted to the 
Statewide Air Pollution Research Center (SAPRC)-07 
chemical mechanism. The daily average and daily maxi-
mum wildfire emissions during the modeling period are 
shown in Table 1, along with average and maximum daily 
anthropogenic emissions. On average, wildfires emit-
ted nitrogen oxides  (NOX) at a comparable rate to that 
of anthropogenic emissions, whereas reactive organic 
gas (ROG) emissions from wildfires were more than five 
times higher than those from anthropogenic sources. 
 NOX and ROG are precursors to ozone formation and 
secondary  PM2.5. Wildfires also emitted significantly 
more  PM2.5 precursors such as sulfur oxides  (SOX) and 
ammonia  (NH3) than anthropogenic sources. Finally, 

direct emissions of  PM2.5 from wildfires were nearly nine 
times larger than those from anthropogenic sources. The 
day with the highest emissions was September 9, 2020, 
when the August Complex Fire and the Creek Fire were 
at their peak. In that day,  PM2.5 emissions from wildfires 
were 38 times the average emissions from anthropogenic 
sources. Overall, wildfires contributed severely to air pol-
lutant emissions and impacted the air quality across large 
areas in the state.

The air quality modeling evaluation for ozone and 
 PM2.5 was based on observations extracted from the Air 
Quality System (AQS) database. A total of 172 stations 
measuring ozone and 120 stations measuring  PM2.5 were 
included in the analysis. The overall model performance 
is evaluated based on the following statistical parameters: 
mean bias (MB), mean error (ME), mean normalized 
bias (MNB), and mean normalized error (MNE). These 
parameters are defined as follows (Emery et al., 2017):

in which Pj denotes model prediction on day j, Oj 
denotes observed concentration on day j, and N is the 
total number of observed data points.

This study used data from PurpleAir sensors, which 
constitute a large network of low-cost monitors that 
measure particle pollution, to enhance the modeling of 
PM concentrations. PurpleAir sensors use laser tech-
nology to count suspended particles that range from 0.3 
to 10 μm. The particle counts are then processed by a 
complex algorithm to calculate  PM10,  PM2.5, and  PM1.0 
mass concentration (PurpleAir, 2022). Due to the limi-
tations in low-cost sensor technology, bias in PM con-
centrations measured by PurpleAir sensors is expected. 
Previous studies analyzed the performance of PurpleAir 
sensors collocated with regulatory monitors, and correc-
tion factors using ambient meteorological parameters 
have been proposed. The United States Environment 
Protection Agency (U.S. EPA) analyzed many complex 
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correction schemes and suggested that a simple linear 
correction using ambient relative humidity provides a 
good approximation at a national level (Barkjohn et  al. 
2021). Shulte et al. (2020) also proposed binning the cor-
rection algorithm into two spaces of low and high  PM2.5 
concentrations and including seasonality as an additional 
correction parameter.

This study used data from 5661 outdoor sensors spread 
throughout California and calculated the correction fac-
tors based on daily  PM2.5 observations from 120 refer-
ence monitors. Sensors that were within 0.02°radius (~2 
km) from regulatory monitors were used to calculate 
the linear correction parameters following the approach 
proposed by Barkjohn et al. (2021) and the concentration 
binning used by Schulte et al. (2020) for two models: one 
for concentrations below 35 μg/m3 and the other for con-
centrations equal or above 35 μg/m3.

The linear correction scheme obtained using measure-
ments from the period August 16 to October 28 was as 
follows:

For PM2.5 < 35µg/m3, PM2.5 = 0.5225× PA − 0.0768× RH+ 7.4352 R2 = 0.3938

For PM2.5 <
35µg

m3
, PM2.5 = 0.7792× PA + 0.0684 × RH− 5.8310 R2 = 0.6886

in which PA denotes the PurpleAir  PM2.5 data and RH 
denotes the relative humidity.

Two approaches were employed to interpolate Pur-
pleAir corrected measurements and to blend them 
with modeling results: (1) using inverse squared dis-
tance weighting for PurpleAir measurements and 
model gradient adjustment based on the modeled daily 
 PM2.5 values from the simulation that includes fire 
emissions and (2) using kriging of the model-to-meas-
ured ratios.

Inverse squared distance weighting (ISDW) for PurpleAir 
measurements with model gradient adjustment
Inverse distance weighting is commonly used as an 
interpolation method to estimate concentration maps 
of air pollutants based on monitoring data. For exam-
ple, inverse distance weighting is used by the Software 
for Model Attainment Test – Community Edition 
(SMAT-CE) developed by the U.S. EPA to determine 

Table 1 California state‑wide pollutant emissions from anthropogenic and wildfire emissions. Anthropogenic emissions represent the 
average daily emissions during the modeling period

ROG reactive organic gases

Emissions (metric tons per day)

ROG CO NOX SOX PM2.5 NH3

Stationary sources

 Fuel Combustion 25.6 222.9 173.1 23.4 23.4 17.9

 Waste disposal 51.8 4.3 4.3 1.4 2.6 28.1

 Cleaning and surface coatings 146.2 0.1 0.1 0.0 2.6 0.5

 Petroleum production and marketing 79.7 11.0 4.4 4.2 1.9 0.3

 Industrial processes 55.6 33.1 59.6 24.1 40.4 10.9

 Total stationary sources 358.8 271.3 241.5 53.1 71.1 57.6

Areawide sources

 Solvent evaporation 325.6 0.0 162.6

 Miscellaneous processes 195.3 584.2 55.0 3.6 222.3 306.8

 Total areawide sources 520.9 584.2 55.0 3.6 222.3 469.3

Mobile sources

 On‑road motor vehicles 191.2 1394.0 449.0 4.2 24.6 29.1

 Other mobile sources 224.1 1796.6 545.0 11.9 25.4 0.5

 Total mobile sources 415.3 3190.5 994.0 16.2 50.0 29.6

Total anthropogenic sources 1295.1 4046.0 1290.5 72.9 343.4 556.5

Fire emissions daily average 6974.9 26563.3 1221.5 228.6 2985.8 734.7

Max daily anthropogenic emissions 1385.5 4984.5 1436.0 80.3 515.3 758.0

Max daily fire emissions 30972.9 116420.1 5281.1 1001.8 13089.6 3302.2
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attainment status over unmonitored areas (U.S. EPA, 
2022). While the recommended exponent of the 
inverse distance weights can vary depending on the 
application (de Mesnard, 2013), the SMAT-CE model 
uses inverse squared distance weighting as the default 
option.

In this study, once all the daily  PM2.5 were corrected, 
daily  PM2.5 concentration maps were generated using 
interpolated PurpleAir measurements at the 4 km by 4 
km grid level using inverse square distance weighting 
and gradient adjustment based on the modeled daily 
 PM2.5 values from the simulation that included fire emis-
sions. The PurpleAir sensors used in the interpolation 
were limited to the ones within a radius of 40 km from 
each cell centroid. Modeled values were also included 
as artificial monitors to constrain grid cells that are far 
from monitors to concentrations informed by the mod-
eled results. The expression used to calculate the Purple 
Air concentration maps is as follows:

 where Ci,fires is  PM2.5 concentration in cell i, Dk is the 
distance of sensor k to cell i, PAk is corrected PurpleAir 
 PM2.5 concentration from sensor k, and  Modi,fires and 
 Modk,fires are the modeled daily  PM2.5 concentration in 
cell i and at sensor location k, respectively. The distance, 
Dk, is expressed in terms of discreet cell lengths, where 
sensors in cell i have Dk=1, and every increment in cell 
distance is added as integer values.

Kriging of model‑to‑measured ratios
Kriging is an advanced geostatistical procedure that gen-
erates an estimated surface from a scattered set of points 
by performing a regression that produces a least-squares 
estimate of the data (Remy et al., 2011). Kriging has been 
used to interpolate measured pollutant concentrations to 
determine air pollution exposure (Lassman et  al., 2017, 
Yu et al., 2018, Kramer et al., 2023). Yu et al. (2018) com-
pared various methods of interpolation for air pollution 
field estimations and suggested the blending of measured 
and modeled data by using ordinary kriging of the ratios 
of modeled-to-observed concentrations. We constructed 
the experimental semivariogram for each individual day 
with the ratios of modeled daily  PM2.5 over observed daily 
 PM2.5. We tested three different semivariogram models: 
spherical, gaussian, and exponential. Based on the sum 
of the squared of the residuals between the experimental 
semivariogram and the model, the spherical and gaussian 
models resulted in the best fit.

(5)
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,

Conversely, the estimated concentration maps adjusted 
to PurpleAir data without the impact of wildfires were 
calculated as follows:

 where Ci,nofires is the PurpleAir-adjusted concentra-
tion without the contribution of wildfires in cell i and 
 Modi,nofires is the modeled daily  PM2.5 concentration 
without wildfire emissions in cell i.

BenMAP-CE version 1.5 was used to estimate the 
increase incidence of health end points due to wild-
fires (U.S. EPA, 2021). BenMAP-CE converts air pollut-
ant concentration increments into health impacts with 
the use of concentration-response (C-R) functions. C-R 
functions are derived from epidemiology studies and 
provide the relation between a change in pollutant con-
centration and an increase in the incidence of a given 
health impact indicator from a baseline incidence rate. 
Baseline incidence rates for this study are based on val-
ues developed in earlier analysis for Southern California 
(South Coast AQMD 2017a) and later used to determine 
the health and economic impacts from California fires in 
2018 (Wang et al. 2019). Information on the concentra-
tion-response functions used in this study are summa-
rized in Table 2 and their respective function forms are 
described in Table 3. In general, the functions depend on 
population (P), rate of incidence of a particular health 
end point (I), change in concentration of a pollutant (ΔC), 
and fitting parameters A and β. The baseline function 
represents the reference value of incidence of a particular 
health end point (e.g., hospital admission, death) with a 
zero change in air pollutant concentrations. The concen-
tration-response function calculates an increase in inci-
dence of a particular health end point due to a change in 
pollutant concentration (ΔC).

Results
Air quality modeling results and model performance
Model performance is presented in Table  4. The model 
overestimated ozone concentrations, most notably along 
coastal stations, with better performance in stations in 
the eastern portion of the Los Angeles Basin and in the 
Central Valley, where ozone concentrations are typically 
the highest (Fig.  4a). Generally,  PM2.5 concentrations 
were underpredicted throughout the state, in part possi-
bly due to the model inability to capture fully the effects 
of wildfires. As shown in Fig. 4b, the largest  PM2.5 under-
predictions occurred east of the San Francisco Bay Area, 
which was highly impacted by wildfire smoke throughout 
the wildfire season.

(6)Ci,nofires = Ci,fires ×
Modi,nofires

Modi,fires
,
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Results presented in this study for  PM2.5 are consist-
ent with the negative biases reported for CMAQ version 
5.3.1 for California (Appel et al., 2021). Appel et al. (2021) 
reported model performance of CMAQ version 5.3.1 for 
the continental US in 2016 at 12 km resolution. Although 
in 2016 only moderate wildfire activity was recorded in 
California, the model performance was characterized by 
biases contained between +4% and −8% for ozone and 
consistently negative and as low as −30% for  PM2.5, like 

the biases shown in the present study. It is also likely that 
the exceptionally high wildfire activity recorded dur-
ing the modeling period considered in this study may 
have negatively affected CMAQ’s ability to reproduce 
observed  PM2.5 concentrations.

An alternate method to evaluate model performance 
is to determine the model capability to predict exceed-
ances with respect to U.S. EPA’s national ambient air qual-
ity standards (NAAQS). Fig.  5 presents scatter plots of 
modeled versus observed concentrations for daily maxi-
mum 8-h ozone and daily  PM2.5. The lines indicating each 
respective standard delineate four quadrants that define 
the model fitness to predict exceedances. Each subfigure 
in Fig. 5 shows from top right and clockwise: true positive, 
false negative, true negative, and false positive. The true 
positive rate (TPR) is the ability of the model to detect 
exceedances compared to observations. Conversely, the 
true negative rate (TNR) is the ability of the model to 
detect concentrations below the standard. The false nega-
tive rate (FNR) and the false positive rate (FPR) are the 
complementary values of TPR and TNR, respectively. 
In general, the model performed better when predicting 
exceedances for ozone, with TPR = 55%, than for  PM2.5, 

Table 2 Concentration response functions used to quantify health impacts. Function forms shown in Table 3

a These functions are representative of the same end point and same population. The results of these functions are averaged to estimate the overall change in hospital 
admissions due to acute myocardial infarction

Endpoint group Author Age range Function form β A

Ozone

 Hospital admissions, asthma Moore et al., 2008 0–19 3 1.86E–06 2

 Hospital admissions, respiratory Katsouyanni et al., 2009 65–99 2 0.000614

 Mortality Bell et al., 2005 0–99 1 0.000186 0.00274

PM2.5

 Hospital admissions, respiratory Zanobetti et al., 2009 65–99 5 0.00207

 Hospital admissions, acute myocardial  infarctiona Pope et al., 2006 0–99 4 0.00481

 Hospital admissions, acute myocardial  infarctiona Sullivan et al., 2005 0–99 4 0.00198

 Hospital admissions, acute myocardial  infarctiona Zanobetti and Schwartz, 2006 0–99 4 0.0053

 Hospital admissions, acute myocardial  infarctiona Zanobetti et al., 2009 0–99 2 0.00225

 Hospital admissions, other cardiovascular Moolgavkar, 2000 18–64 2 0.0014

 Hospital admissions, other cardiovascular Moolgavkar, 2003 65–99 2 0.00158

 Work loss days Ostro, 1987 18–64 2 0.0046

 Mortality Atkinson et al., 2014 0–99 1 0.000936 0.00274

Table 3 Forms of the concentration‑response functions and 
the baseline functions to calculate health impacts as a function 
of change in pollutant concentration (ΔC), incidence rate (I), 
population (P), and fitting coefficients A and β 

# Function form Baseline 
function

1
[

1− 1
exp (β•�C)

]

• I • P • A I·P·A

2
[

1− 1
exp (β•�C)

]

• I • P I·P

3 β ∙ ∆C ∙ P ∙ A I·P
4

[

1− 1
(1−I)•exp (β•�C)+I

]

• I • P I·P

5 [1 − exp(−β ∙ ∆C)] ∙ I ∙ P I·P

Table 4 Overall air quality modeling performance for  O3 and  PM2.5

Mean observed Mean modeled Mean bias Mean normalized 
bias

Mean 
normalized 
error

Daily max 8h  O3 52.2 ppb 58.2 ppb 6.0 ppb 22.3% 29.2%

Daily  PM2.5 28.0 μg/m3 18.5 μg/m3 −9.5 μg/m3 −17.0% 54.4%
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with TPR = 46%, in part because the model showed a pos-
itive bias for ozone and a negative bias for  PM2.5.

Contribution of wildfire emissions to air pollution
An additional air quality model simulation without 
including wildfire emissions was conducted for the same 
period between August 16 and October 28, 2020, to 
quantify the impact of wildfires on ozone and  PM2.5. Fig-
ure  6 shows the overall increase in daily maximum 8-h 

ozone and daily  PM2.5 attributed to wildfire emissions 
during the modeling period and the relative increase with 
respect to the simulation without wildfire emissions. The 
impact of wildfires was localized over the northern half 
of the state, near the location of the wildfires in North-
ern California. On average, daily maximum 8-h ozone 
concentrations increased by up to 10 ppb, and many of 
the largest increases occurred in areas where ozone con-
centrations are typically high. In relative terms, daily 

Fig. 4 Mean normalized bias (MNB) during the modeling period for a daily maximum 8‑h ozone  (DMAO3) and b daily  PM2.5. Values are normalized 
with observations, as described in Eqs. 3–4.

Fig. 5 Comparison of observations and modeled concentrations for a daily maximum 8‑h average of ozone and b daily average  PM2.5. Diagonal 
shows the 1:1 modeled vs. observed ratio, and the vertical and horizontal lines show the National Ambient Air Quality Standards level for daily 
maximum 8‑h average of ozone (70 ppb) and daily average  PM2.5 (35 μg/m3). The true positive rate (TPR) is the ability of the model to detect 
exceedances compared to observations. The true negative rate (TNR) is the ability of the model to detect concentrations below the standard. The 
false negative rate (FNR) and the false positive rate (FPR) are the complementary values of TPR and TNR, respectively.
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maximum 8-h ozone concentrations increased on aver-
age by up to 20% in some northern California locations. 
Some stations experienced increases in daily maximum 
8-h ozone of over 70 ppb in the third week of August, 
which suggests that wildfire emissions alone led to 
exceeding the ozone standard. On average, the daily 
 PM2.5 concentration increased by up to 39 μg/m3, which 
for some stations represented an increase of more than 
400% over normal average values. For instance, some 

stations experienced increases of over 350 μg/m3 dur-
ing the third week of August. Thus, considering that the 
NAAQS for daily  PM2.5 is 35 μg/m3, on average, many 
stations exceeded the daily  PM2.5 due to wildfire emis-
sions alone, and stations experienced daily  PM2.5 over ten 
times higher than the daily  PM2.5 standard during several 
days.

Figures  7 and 8 show the daily variation in  PM2.5 
emissions, the observed and modeled daily  PM2.5 

Fig. 6 Overall contribution of wildfires during the modeling period to a increase in daily maximum 8‑h ozone  (DMAO3), b increase in daily  PM2.5, c 
percentage increase in  DMAO3, and d percentage increase in daily  PM2.5 with respect to the case without fires.
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concentrations, and daily contribution of fires to total 
daily  PM2.5 for the periods of August 16–September 21 
and September 22–October 28, respectively.  PM2.5 con-
centrations were particularly underpredicted during 
the period of September 10–16, trailing the days with 
the highest emission increases due to wildfires. In addi-
tion, based on satellite images, that period was affected 
by wildfire smoke that originated from wildfires in Ore-
gon, which were not included in the modeling setup. As 
a result, the impact from wildfire emissions is believed 
to be underrepresented in the second week of Sep-
tember, and overall, modeling results suggest that the 
effects of wildfires on daily  PM2.5 presented here are 
underpredicted.

Biomass burning modeled in this study is a major source of 
atmospheric organic aerosol, typically referred to as brown 

carbon. Wildfires and brown carbon contribute to the plan-
etary radiative balance and to the formation of secondary 
organic aerosol, although there are still model limitations in 
our understanding of the atmospheric transformations of 
brown carbon (Wong et al. 2019). Figures 9 and 10 present 
modeled daily concentrations of organic matter (OM) with 
and without the contribution from wildfires for the periods 
of August 16–September 21 and September 22–October 
28, respectively. They also show that, on average, second-
ary OM corresponds to more than 90% of the total OM, 
although the percentage of secondary OM in wildfire-driven 
OM is slightly smaller than that without the presence of fires 
because of the large contribution from direct OM emissions. 
Overall, results suggest that wildfires more than doubled the 
fraction of OM in aerosol, and the overall OM contribution 
to total  PM2.5 during fire events was over 80%.

Fig. 7 Contribution of fires to daily  PM2.5 by day (August 16–September 21): a total daily  PM2.5 emissions from wildfires from FINN, b observed 
and modeled daily  PM2.5 concentrations, and c modeled contribution of fires to total daily  PM2.5. Whisker/box plot shows the minimum, 1st quartile, 
median, 3rd quartile, and maximum. Markers show outliers, which are defined as points that are more than 1.5 times the interquartile range (IQR, 
namely the height of the box) away from the top or bottom of the box.
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Enhancement of PM2.5 modeling with low‑cost sensor 
data (PurpleAir)
The use of PurpleAir adjustment improved model per-
formance with respect to observations. Pure modeling 
results have an R2 value of 0.27 with respect to PurpleAir 
observations, whereas the R2 values for ISDW and ordi-
nary kriging with a spherical model are 0.74 and 0.76, 
respectively. Even though the gaussian model for krig-
ing showed similar fitting to the experimental semivari-
ogram, the R2 for the modeled adjusted values was less 
than 0.2. Consequently, ISDW and ordinary kriging with 
a spherical model, in addition to direct model outputs, 
were used to determine the health impacts from wildfires 
during the period of study.

Figures  11 and 12 show two samples of PurpleAir-
adjusted daily  PM2.5 concentration fields for two 
high  PM2.5 events on August 22 and September 10, 

respectively. In general, PurpleAir-adjusted concen-
trations were higher than unadjusted model output 
concentrations. As shown in Fig.  7, the model grossly 
underestimated  PM2.5 in those events, and thus, the use 
of PurpleAir correction reduced substantially the nega-
tive bias of the modeled  PM2.5.

Health impacts
Table  5 shows the health impacts related to increase in 
ozone and  PM2.5 concentrations resulting from wildfires. 
 PM2.5 impacts were calculated using both direct model 
outputs and PurpleAir-adjusted  PM2.5 concentrations. 
While ozone contributed to increased hospital admis-
sions and mortality,  PM2.5 is the major pollutant of con-
cern regarding health effects. Using unadjusted model 
data, wildfires caused an additional 1391 hospitalizations 
and 466 deaths. While these figures constitute a small 

Fig. 8 Contribution of fires to daily PM2.5 by day (September 22–October 28): a total daily  PM2.5 emissions from wildfires from FINN, b observed 
and modeled daily  PM2.5 concentrations, and c modeled contribution of fires to total daily  PM2.5. Whisker/box plot shows the minimum, 1st quartile, 
median, 3rd quartile, and maximum. Markers show outliers, which are defined as points that are more than 1.5 times the interquartile range (IQR, 
namely the height of the box) away from the top or bottom of the box.
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fraction of California’s total hospitalizations and deaths, 
it is important to note that annual air pollution-related 
deaths in the state are estimated at around 40,000 (Wang 
et  al., 2019). Consequently, wildfire-induced pollution 
estimated in this study accounts for a 1% rise in air pollu-
tion-related mortality. However, as discussed before, due 
to the negative bias of the air quality model with respect 
to  PM2.5, health impacts using direct model output likely 
represent an underestimation of the wildfire impacts. The 
correction using ISDW of PurpleAir data increased the 
estimated hospital admissions by 35% and the estimated 
increased deaths by 16%, whereas the correction using 
kriging of model/PurpleAir ratios increased the esti-
mated hospital admissions by 10% and estimated deaths 
by 9%. Since air quality models tend to show negative 
bias for  PM2.5, as reported by Appel et al. (2021) and pre-
viously discussed, the use of monitor-based corrections 

implemented in this study potentially improves the esti-
mates of air quality and health impacts. Given that the 
performance of ISDW and kriging are very similar, health 
impact estimates from both methods are considered 
comparable within the uncertainty bounds.

Distribution of health impacts was skewed towards 
counties with the largest population density, as shown 
in Fig. 13. In previous studies, it was shown that higher 
 PM2.5 concentrations during the 2020 California wildfire 
season were also positively correlated with poverty and 
housing inequities (Kramer et  al. 2023). While the larg-
est fires occurred in the northern half of the state, the 
highest mortality was estimated to occur in Los Angeles 
County, which suffered a moderate impact from wildfires 
but houses one fourth of the state’s population. Figure 14 
shows the impacts of  PM2.5 using PurpleAir-adjusted 
concentrations. Estimated county-level average changes 

Fig. 9 Comparison of daily OM concentrations without and with the contribution of wildfires (August 16–September 21): a modeled daily average 
secondary organic aerosol concentrations, b modeled contribution of secondary organic aerosol to total OM, and c modeled contribution of OM 
to total  PM2.5. Whisker/box plot shows the minimum, 1st quartile, median, 3rd quartile, and maximum. Markers show outliers, which are defined 
as points that are more than 1.5 times the IQR away from the top or bottom of the box.
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in  PM2.5 increased over the northern half of the state, 
whereas the incidence of mortality increased the most 
over the Central Valley.

Discussion and limitations
The increase in hospital admissions due to wildfires is 
comparable to the potential health impacts of air pollu-
tion in the South Coast Air Basin of California (SoCAB), 
which houses 17 million people out of the total 40 mil-
lion in California. It is estimated that the drastic emission 
reductions needed to attain the ozone and  PM2.5 NAAQS 
in the SoCAB (South Coast AQMD 2017b) would reduce 
the number of hospital admission by numbers similar to 
those corresponding to the increase due to wildfire emis-
sions during the modeling period for 2020. Also, the 
impact of wildfires on premature deaths due to air pollu-
tion significantly offsets the premature deaths avoided by 

the drastic air pollution control strategies that are needed 
to attain the ozone and  PM2.5 NAAQS.

This study is based on wildfire emissions from the 
FINN database, which estimates daily emissions from 
satellite products that include MODIS fire detection and 
land cover classification. Dispersion and transport of air 
pollutants and smoke from fires is driven by meteorology, 
whereas secondary formation of air pollutants—ozone 
and secondary  PM2.5—depend on atmospheric physico-
chemical processes that transform primary pollutants. 
Hence, the results presented in this study depend on the 
ability of the used models to represent fire emissions, 
meteorology, and atmospheric chemistry. Moreover, this 
study demonstrates the use of low-cost sensor data as 
correction for the negative bias that the air quality model 
typically displays for  PM2.5 concentrations.

Fig. 10 Comparison of daily OM concentrations without and with the contribution of wildfires (September 22–October 28): a modeled daily 
average secondary organic aerosol concentrations, b modeled contribution of secondary organic aerosol to total OM, and c modeled contribution 
of OM to total PM2.5. Whisker/box plot shows the minimum, 1st quartile, median, 3rd quartile, and maximum. Markers show outliers, which are 
defined as points that are more than 1.5 times the IQR away from the top or bottom of the box.
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FINN database includes information of daily emis-
sions and starting time of the fire but does not include 
hourly variation of emissions. For this study, emissions 
were assumed to be at a daily constant rate since the start 
of the fire; however, this assumption may misrepresent 
how emissions interact with background air pollutants 

that follow a diurnal pattern. Alternative approaches are 
documented for cases in which FINN fire emissions are 
adjusted to follow a diurnal profile with minimum emis-
sions at night and peak emissions in the early afternoon 
(Lassman et al., 2023).

Fig. 11 Example of PurpleAir‑adjusted daily  PM2.5 concentrations on August 22, 2020: measured PurpleAir concentrations (top left), modeled 
concentrations (top right), PurpleAir‑corrected model concentrations using ISDW interpolation (bottom left), and PurpleAir‑corrected model 
concentrations using kriging (bottom right).
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The chemical transport model used in this study, 
CMAQ, does not include feedback effects of wildfire 
smoke to meteorology. Studies using chemical trans-
port models that account for feedback effects of PM 
on the radiative balance, planetary boundary layer 
height, and temperature have documented decreases 

in temperature of 1–4 K and decreases in PBL height 
of 50–400 m (Jiang et  al. 2012, Sharma et  al., 2022). 
Lower temperatures can slow down the production 
of ozone whereas shallow PBL height can enhance the 
concentration of air pollutants. Also, smoke reduces the 
downward solar radiation, which reduces the isoprene 

Fig. 12 Example of PurpleAir‑adjusted daily  PM2.5 concentrations on September 10, 2020: measured PurpleAir concentrations (top left), modeled 
concentrations (top right), PurpleAir‑corrected model concentrations using ISDW interpolation (bottom left), and PurpleAir‑corrected model 
concentrations using kriging (bottom right).
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biogenic emissions and lowers the photolysis rates, and 
in turn can reduce the formation of ozone and second-
ary aerosol formation. Lassman et al. (2023) also quan-
tified the effect of wildfires on wind speed and showed 
that the California wildfires in 2020 reduced wind 
speed, possibly contributing to slightly less ventilation 
and higher air pollutant accumulation than the results 
presented in this study suggest.

Conclusions
This study examines various modeling approaches for 
assessing the effects of wildfire emissions on ozone 
and PM2.5 between August 16 and October 28, 2020, a 
period marked by unprecedented wildfires in California. 
The research utilizes the FINN database in conjunction 
with the CMAQ model to estimate the impact of wildfire 
emissions on air quality. Additionally, the BenMAP-CE 

Table 5 Increase in incidence of major health impacts due to wildfire air pollution (units are in number of admissions, work loss days, 
and mortality events). Baseline incidence also included for reference.

End point Increase 95% confidence interval

Ozone

 Hospital admissions – asthma 21 (10–31)

 Hospital admissions – respiratory 39 (‑13–89)

 Mortality 24 (‑1–48)

PM2.5

 Model only

 Hospital admissions – respiratory 470 (271–655)

 Hospital admissions – acute myocardial infarction 181 (0–333)

 Hospital admissions – other cardiovascular 680 (374–968)

 Work loss days 420,661 (358,719–479,020)

 Mortality 442 (340–539)

ISDW

 Hospital admissions – respiratory 1108 (639–1545)

 Hospital admissions – acute myocardial infarction 213 (‑9–392)

 Hospital admissions – other cardiovascular 505 (288–709)

 Work loss days 492,690 (420,325–560,823)

 Mortality 515 (397–628)

Kriging

 Hospital admissions – respiratory 518 (299–723)

 Hospital admissions – acute myocardial infarction 200 (‑10–369)

 Hospital admissions – other cardiovascular 750 (412–1067)

 Work loss days 463,351 (395,027–527,771)

 Mortality 482 (371–588)

Total hospital admissions

 Model Only 1391 (642–2077)

 ISDW 1886 (916–2765)

 Kriging 1528 (699–2279)

Total mortality

 Model only 466 (340–587)

 ISDW 539 (396–676)

 Kriging 506 (370–636)

Baseline incidence

 Baseline hospital admissions 406,341

 Baseline work loss days 51,488,353

 Baseline mortality 232,073
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model is employed to evaluate the health consequences 
of air pollution resulting from wildfires.

To address certain limitations in the modeling setup 
for predicting  PM2.5 concentrations, PurpleAir data was 

incorporated. The findings indicate that the typically 
observed negative bias in  PM2.5 displayed by CMAQ is 
reduced by PurpleAir observations. This reduction in 
negative bias improves the capability to assess air quality 

Fig. 13 Overall impacts of wildfires on air quality and mortality by county using direct modeling results: a average increase in daily maximum 8‑h 
average of ozone, b increased mortality due to ozone increase, c average increase in daily average of  PM2.5, and d increased mortality due to  PM2.5 
increase.
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and health impacts related to wildfires. Namely, the study 
reveals that incorporating PurpleAir data using two dis-
tinct methods increases the estimated health impacts of 
wildfires, resulting in a 9–16% rise in estimated wildfire-
induced mortality.

The study observes that California wildfires significantly 
contributed to elevated levels of ozone and  PM2.5, with an 
average increase of 2.5 ppb in daily maximum 8-h ozone 
and an average increase of 12 μg/m3 in daily PM2.5 con-
centrations. These increases are anticipated to lead to a 
higher incidence of air pollution-related hospitalizations 

Fig. 14 Overall impacts of wildfires using  PM2.5 adjusted with PurpleAir data on air quality and mortality by county: a average increase in daily 
average of  PM2.5 using ISDW, b average mortality due to  PM2.5 increase using ISDW, c average increase in daily average of  PM2.5 using kriging, and d 
average mortality due to  PM2.5 increase using kriging.
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and premature deaths, potentially causing up to 1886 addi-
tional hospitalizations and 539 extra premature deaths. 
Some of the health impacts stemming from the fires are 
comparable to the benefits gained from long-term air pol-
lution control strategies designed to meet ozone and  PM2.5 
air quality standards. Given the escalating frequency of 
wildfire events driven by climate change, the health ben-
efits derived from reducing anthropogenic emissions are at 
times offset by wildfire impacts in the state. The incorpo-
ration of low-cost sensor data can enhance the predictive 
capabilities of air quality models during wildfire events, 
particularly when these models tend to underestimate par-
ticle pollution formation on their own.
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