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Abstract 

Background Socio-economic changes in recent decades have resulted in an accumulation of fuel within Medi-
terranean forests, creating conditions conducive to potential catastrophic wildfires intensified by climate change. 
Consequently, several wildfire management systems have integrated prescribed fires as a proactive strategy for land 
management and wildfire risk reduction. The preparation of prescribed fires involves meticulous planning, entailing 
the identification of specific objectives, verification of prescriptions, and the definition of various scenarios. During 
the planning phase, simulation models offer a valuable decision-support tool for the qualitative and quantitative 
assessment of different scenarios. In this study, we harnessed the capabilities of the well-established wildfire simu-
lation tool PROPAGATOR, to identify areas where prescribed fires can be performed, optimizing the wildfire risk 
mitigation and the costs. We selected a case study in the Liguria region, Italy, where the model is utilized operationally 
by the regional wildfire risk management system in emergency situations.

Results Initially, we employed the propagation model to simulate a historical wildfire event, showcasing its poten-
tial as an emergency response tool. We focused on the most significant fire incident that occurred in the Liguria 
region in 2022. Subsequently, we employed PROPAGATOR to identify optimal areas for prescribed fires with the dual 
objectives of maximizing the mitigation of wildfire risk and minimizing treatment costs. The delineation of potential 
areas for prescribed fires has been established in accordance with regional regulations and expert-based insights. 
The methodology put forth in this study is capable of discerning the most suitable areas for the implementation 
of prescribed burns from a preselected set. A Monte Carlo simulation framework was employed to evaluate the effi-
cacy of prescribed burns in mitigating the spread of wildfires. This assessment accounted for a variety of conditions, 
including fuel loads, ignition points, and meteorological patterns. The PROPAGATOR model was utilized to simulate 
the progression of wildfire spread.

Conclusions This study underscores the utility of PROPAGATOR in offering both quantitative and qualitative 
insights that can inform prescribed fire planning. Our methodology has been designed to involve active engagement 
with subject matter experts throughout the process, to develop scenarios grounded in their expert opinions. The 
ability to assess diverse scenarios and acquire quantitative information empowers decision-makers to make informed 
choices, thereby advancing safer and more efficient fire management practices.
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Resumen 

Antecedentes Los cambios socioeconómicos en las recientes décadas han resultado en una acumulación de 
combustibles dentro de los bosques del Mediterráneo, creando condiciones favorables a fuegos catastróficos, 
empeoradas por el Cambio Climático. Consecuentemente, diversos sistemas de manejo del fuego han incluido 
también las quemas prescritas como estrategia proactiva para el manejo de tierras y la reducción del riesgo de 
incendios de vegetación. La preparación de las quemas prescritas necesita una meticulosa planificación, implicando 
la identificación de objetivos específicos, verificación de las prescripciones, y definición de varios escenarios. Durante 
la fase de planificación, los modelos de simulación ofrecen una herramienta valiosa de soporte de decisiones para la 
determinación cualitativa y cuantitativa de diferentes escenarios. En este estudio, aprovechamos las bien establecidas 
capacidades del simulador de incendios PROPAGATOR, para identificar áreas donde las quemas prescritas puedan ser 
llevadas a cabo, optimizando la mitigación del riesgo de incendios y sus costes. Seleccionamos un caso de estudio en 
la región de Liguria, en Italia, donde el modelo es utilizado operacionalmente por el sistema regional en situaciones 
de emergencia.

Resultados Inicialmente, empleamos el modelo de propagación para simular un evento de fuego histórico, 
mostrando su potencial como una herramienta de respuesta de emergencia. Nos enfocamos en el  incendio más 
importante que ocurrió en la región de Liguria en 2022. Subsecuentemente, empleamos el modelo PROPAGATOR 
para identificar las áreas óptimas para quemas prescritas con el objetivo doble de maximizar la mitigación del riesgo 
de incendio y minimizar los costes de los tratamientos. La delineación de áreas potenciales para quemas prescritas 
fue establecida de acuerdo con regulaciones regionales y opiniones de los expertos. La metodología que empleamos 
en este estudio es capaz de discernir las áreas más oportunas para la implementación de quemas prescritas, elegi-
das de un conjunto preseleccionado. En ese marco conceptual,  una simulación de tipo "Montecarlo" fue empleada 
para evaluar la eficacia de las quemas prescritas en la mitigación de la propagación del fuego. Este análisis tuvo en 
cuenta una variedad de condiciones, incluyendo la carga de combustibles, los puntos de ignición, y los patrones 
meteorológicos. El modelo PROPAGATOR fue utilizado para simular la progresión de la propagación del fuego en cada 
condición.

Conclusiones Este estudio subraya la utilidad del PROPAGATOR en que ofrece perspectivas tanto cuantitativas como 
cualitativas que pueden informar sobre el planeamiento de quemas prescritas. Nuestra metodología ha sido diseñada 
para involucrar el compromiso activo de expertos en la materia a lo largo del proceso, para desarrollar escenarios 
basados en sus opiniones expertas. La habilidad para determinar escenarios diversos y adquirir información cuantita-
tiva, empodera a los tomadores de decisión a hacer elecciones basadas en información, y por lo tanto avanzar hacia 
prácticas de manejo del fuego más seguras y eficientes.

Background
Wildfires are a common occurrence on most continents. 
They hold global significance, constituting an integral part 
of numerous ecosystems and playing crucial roles in eco-
system dynamics, acting also on the preservation of species 
that have evolved in response to fire (Williams and Brad-
stock 2008, Pausas and Keeley 2009). Most wildfires are 
natural processes that confer various benefits to human-
kind. In ecosystems reliant on wildfires, disturbances in the 
natural fire regime often arise when fires are suppressed or 
their frequency increases (Pausas and Keeley 2019). In such 
instances, wildfires persist as an ongoing challenge, capa-
ble of significantly impacting wildlife, communities, and the 
environment due to their potential intensity and severity. 
Climate, ignition agents, fuels, and human activities all have 
a significant impact on fire activity (Flannigan et  al. 2009). 
Among these factors, fuels provide the majority of the energy 
required for a fire to spread. As a result, fuel management 
can effectively reduce the intensity and severity of wildfires.

Prescribed burning is one of the most effective fuel 
management activities and it is recognized for reducing 
the risk and severity of wildfires (Keane et  al. 2008). It 
refers to the intentional use of fire by experts in selected 
areas, under prescriptions and procedures, to achieve 
specific objectives (Bovio and Ascoli 2012). Prescribed 
burning entails reducing the fuel load in certain land-
scape areas, limiting the spread and severity of significant 
wildfires, and, as a result, the risk to human life and eco-
nomic assets (Penman et al. 2011, Lydersen et al. 2017). 
Prescribed burning is used in most parts of the world for 
various land management purposes such as regenerating 
forests, clearing land for cultivation, managing pasture-
land, conserving fire-dependent plants and animals, and 
wildfire risk mitigation (Wade et al. 1989). The method’s 
efficacy in managing wildfires through the reduction of 
fuel continuity—both vertical and horizontal—has been 
well-supported by research (Fernandes and Botelho 
2003, Boer et  al. 2009). Furthermore, prescribed burns 
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have been recognized for their role in accomplishing 
other objectives, such as control of weeds, insects, and 
diseases; maintenance of biodiversity; site preparation 
for tree regeneration; and enhancements of silvicultural 
practices (Savage et al. 2011).

The integration of operations research into wildfire 
management dates back to the 1960s, focusing on fire 
detection, suppression, and prevention techniques, with 
its application in fuel management being a more recent 
development. In North America and Australia, as well as 
some Mediterranean countries such as France, Spain, and 
Portugal, prescribed burning is an integral part of fire pre-
vention strategies, aiming to mitigate the risk of uncon-
trolled wildfires by managing fuel accumulation at key 
points across the landscape (Lázaro and Montiel 2010).

While Australia’s modern history of prescribed burning 
began in the 1950s, the Aboriginal Australians’ practice 
of using fire for land management predates this by centu-
ries, underscoring a profound understanding of fire’s role 
in ecological balance (McCaw 2013, Willman 2015). The 
acknowledgment of such traditional burning practices 
provides invaluable insights into the sustainable manage-
ment of fire and has influenced contemporary approaches 
worldwide. Concerning the Mediterranean basin, 
although modern prescribed burning commenced in 
the latter half of the twentieth century, human use of fire 
has a long history in the region (Fernandes et  al. 2022). 
The practice dates back to at least 1000/3000 BC (Con-
nor et al. 2012). Initially employed for land reclamation, 
fire played a crucial role in sustaining ecosystem services 
related to grazing and agroforestry, such as maintain-
ing grasslands for livestock and enhancing the growth of 
crops like blueberries (Keeley et al. 2012). Additionally, it 
served as a tool for rural protest and resistance (Tedim 
et al. 2015). However, it is important to note that depopu-
lation of rural areas in recent decades, driven by socio-
economic changes, and fire use restrictions have led to 
the gradual loss of a fire culture in the region, along with 
the traditional knowledge of fire as a management tool 
(Ganteaume et al. 2013). Fire, now institutionalized in the 
form of prescribed burning, is emerging as a technology 
dedicated to fire hazard reduction and ecosystem mainte-
nance and restoration goals (Fernandes et al. 2013). These 
institutional practices, rooted in science and technology, 
are taking up the challenge of preserving centuries-old 
knowledge and the cultural bond between mankind and 
the landscape.

The use of prescribed fire in France, Italy, Spain, and 
Portugal showcases a diverse array of practitioners, rang-
ing from private forest associations and volunteer or pro-
fessional fire brigades to municipalities, each with their 
unique approaches and historical experiences with fire 
management. This diversity is contrasted with the more 

limited number of active prescribed fire teams in these 
countries, indicating room for growth and greater adop-
tion of these practices. When discussing “diversity,” it is 
pertinent to consider the varied objectives, scales, and 
historical contexts within which these burning practices 
are situated. In comparison to the longstanding indig-
enous use of fire in regions like Australia, the Mediter-
ranean’s prescribed burning practices reflect a different 
spectrum of ecological, cultural, and fire management 
traditions.

Italy’s exploration and adoption of prescribed fire have 
undergone phases of active implementation, research, 
and policy development, since its arose in the late 1970s. 
The National Forest Service recognized the positive 
impacts of prescribed burning (Calabri 1981) and, in 
the 1980s, supported experiments in pine forests (Tus-
cany region) and to maintain fuel breaks in Sardinia 
region under the management of the Istituto Sperimen-
tale di Selvicoltura (Buresti and Sulli 1983). The experi-
ments were abandoned despite good results (Calabri 
1981). Italy’s interest in the prescribed fire died off, unlike 
Portugal, France, and Spain. Focus on prescribed fire in 
Italy returned in the early twenty-first century, and sev-
eral scientific studies (e.g., Giuditta et  al. 2020), legisla-
tion training, initiatives, and burn programs have been 
led throughout the country (Bovio and Ascoli 2012). 
It is worth mentioning that in Italy prescribed fire leg-
islation is a regional task (Italian law on wildfire No. 
353/2000), leading to a fragmentation of the subject 
within the country. Both regional laws and regional fire 
management plans provide the legal framework for pre-
scribed burning, mainly in the forestry sector, although 
not all the regions regulate prescribed burning in the fire 
management law. To date, 70% of Italian regions adjust 
prescribed burning in either a fire management plan or 
regional law. Nevertheless, many regulatory documents 
still lack precise information on critical issues such as 
liability and detailed authorization procedures (Bovio 
and Ascoli 2012). Consequently, many regions do not 
implement prescribed fires. To date, the effective use 
of prescribed burning for fire management purposes is 
restricted to Campania, Piedmont, Tuscany, and Sardinia 
regions.

Prescribed fire procedures and objectives are identified 
in the regional land management or wildfire management 
policies. The core of prescribed fires are the design indi-
cations concerning the season and frequency of the inter-
vention, the time windows in which to operate according 
to weather conditions (e.g., fuel humidity, air humidity, 
temperature, wind speed, and direction), and the igni-
tion techniques to be adopted (e.g., against the wind and 
slope), in order to conduct a flame front with a predicted 
intensity and rate of spread (Esposito et al. 2014). The use 
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of prescribed fires is anticipated by the plan definition, in 
which prescriptions are checked and expected objectives 
are identified. The typical objectives of prescribed fires in 
Italy are wildfire risk mitigation in wildland-urban inter-
faces and forests, reducing fuel load, restoring the ecolog-
ical role of fire in fire-adapted ecosystems, and managing 
agro-pastoral resources and in agro-forestry (Esposito 
et al. 2014). The objectives are, therefore, related to eco-
logical purposes as well as wildfire risk mitigation (Bovio 
and Ascoli 2012).

Forest managers in Europe use various techniques for 
fuel modification, including prescribed burning (Rig-
olot et  al. 2009). Even though mechanical treatment is 
the most common technique for fuel reduction in South 
European countries, prescribed burning is progressively 
being considered, with various acceptance levels among 
countries (Lázaro and Montiel 2010). In short, the prac-
tice of using fire as a tool for land management spans 
centuries and continents, with a rich diversity of tradi-
tional methods evolving into the prescribed burns widely 
implemented today. This evolution reflects a deepen-
ing understanding of fire’s role in ecosystem dynamics 
and human safety, with an increasing emphasis on stra-
tegic, regulated, and science-based approaches to fire 
management.

As discussed before, prescribed burning is effective 
in managing wildfires and has emerged as a key fuel 
management strategy. It is important then to focus on 
improvement of modeling prescribed fire. The use of 
modeling tools and technologies could help the expert 
make informed decisions to evaluate different plans and 
assess the achievement of objectives in advance (Cassa-
gne et al. 2011). Some uses of models in prescribed fire 
plans have been identified in the literature. Modeling 
tools could identify areas where actions can be more 
effective in reducing wildfire risk. In Wei et  al. (2008), 
authors use mixed integer programming (MIP) in the 
framework of fuel management and wildfires to reduce 
the expected fire loss. In Matsypura et al. (2018), a net-
work-based model has been developed to identify the 
areas where fuel treatment is more efficient in reducing 
fire spread. Fire simulation models can also be used to 
anticipate fire behavior during prescribed burning based 
on differences in fuels (fuel loads, moisture contents, and 
fuel types), topography (slope, aspect), and weather con-
ditions such as temperature, wind speed, and humidity 
(Pearce 2009). Numerous authors also proposed utilizing 
fire simulators as an easy way to generate fire severity and 
probability maps based on various fuel reduction tech-
niques and climatic factors (Ager et al. 2011, Finney et al. 
2013). Several authors have discussed the effectiveness 
of using modeling tools. Fernandes and Botelho (2003) 
assessed the success of burning in reducing fire hazards 

and found that fire propagation models can be used to 
predict the effect of fuel reduction on  potential fire haz-
ard. Although several models have been established for 
basic fire behavior research or emergency response, only 
a handful have been designed for fuel management plan-
ning (Ager et al. 2011). Models created for fire behavior 
simulation in the USA, Canada, and Australia are also 
widely used in Europe (Mitsopoulos et al. 2017), becom-
ing popular for prescribed fires. However, many aspects 
should be analyzed to reveal possible differences between 
wildfire and prescribed fire modeling. There is a need for 
developing a refined research agenda specifically adapted 
to prescribe fire to help with fuel management (Hiers 
et al. 2020).

Three model classes have been developed in the lit-
erature to assess fire behavior: empirical, quasi-physical, 
and physically based (Sullivan 2009a, Sullivan 2009b). 
Empirical models are built on the correlation between 
terrain characteristics, experimental fire spread rate, 
weather, and fuel. Their calibration requires many 
experimental fires, but they can quickly simulate fire 
spread. Their strength is the ability to explore numerous 
scenarios in a short time in different fire spread condi-
tions. Quasi-physical and physical models are founded 
on an analysis of fire physics. These models require 
many parameters that are typically derived from labo-
ratory experiments or modeling assumptions. One of 
the most famous models in this category is BEHAVE 
fire behavior prediction and fuel modeling system (Bur-
gan and Rothermel 1984). Since it considers natural 
fuel characteristics, it can predict fire spread rate and 
intensity within any given fuel type when its main fea-
tures are known. Other physically based fire models that 
openly take the spatial structure of the fuel have been 
constructed (Mell et  al. 2007). These computational 
fluid dynamics models have established their ability to 
consider fuel structure when analyzing the impact of 
fuel treatment on fire propagation (Dupuy and Morvan 
2005, Parsons 2007). However, physically based mod-
els are computationally heavy, leading to long simula-
tion times and difficulty in simulating many scenarios. 
Complex fuel management and risk estimation planning 
demand refined fire behavior models from the stand to 
the landscape level to simulate fire behavior. At the same 
time, the need to explore numerous scenarios to make 
informed decisions poses an important limitation to fire 
modeling. In recent years, the cellular automata (CA) 
paradigm has raised attention in wildfire modeling, due 
to its modularity, its reduced computational costs, and 
its capacity to describe complex processes through sim-
ple rules (Alexandridis et  al. 2011). The use of cellular 
automata models for prescribed fires has been recently 
explored in the literature by Linn et  al. (2020), where 
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the authors highlighted the potential use of CA models 
for prescribed fire simulation. Recently, the use of CA 
model to operationally support in prescribed burning 
has also been tested by Oliveira et al. (2023).

The model PROPAGATOR has been developed within 
the cellular automata paradigm (Trucchia et  al. 2020). 
PROPAGATOR is a wildfire spread simulator developed 
in 2008 by the CIMA Research Foundation for the Ital-
ian Civil Protection Department. The main objective 
of the model is to quickly simulate the possible wildfire 
evolution, providing scenarios during the response phase 
to the ongoing emergency. Since its first release in 2008, 
the model has been implemented and tested in many 
national and European projects. In Italy, the model is 
currently available to the Italian Civil Protection Depart-
ment in a user-friendly web application. Further, it is 
operationally available for the wildfire risk management 
system of the Liguria region (Lantero et  al. 2022). The 
model has undergone continuous enhancements and 
functional expansions over time, largely driven by its dis-
semination and utilization in projects related to natural 
hazards, such as ANYWHERE (ANYWHERE Consor-
tium 2019) and SAFERS (SAFERS  Consortium 2020). 
Valuable feedback from stakeholders played a vital role 
in refining the model’s performance and capabilities. 
However, PROPAGATOR remained mainly used as a rapid 
emergency response tool.

In this paper, we explored a possible use of PROPAGA-
TOR for wildfire risk mitigation actions, in particular for 
prescribed fires. After many years of use of the model, 
this represents a necessary step in order to embrace all 
phases of the Wildfire Risk Management cycle.

Material and methods
In this section, we will present the PROPAGATOR model 
and the adopted case study as well as the methodology 
underlying the scenario-making process. We will start 
with its use as a wildfire simulation tool for emergen-
cies and will then present a possible use of the model for 
prescribed fire planning. We selected a case study in the 
Liguria region (Italy) because of the operational use of 
the model by the regional wildfire risk management sys-
tem. The region also has indications for prescribed fires 
in the regional regulation, although prescribed fires are 
not commonly used as a fuel management practice.

PROPAGATOR: from early warning to early action
PROPAGATOR is a quasi-empirical stochastic cellular 
automata model. It is described thoroughly in Trucchia 
et al. (2020), and a schematic description is also avail-
able in Supplementary Materials. The model discretizes 
the space into a square grid. Every grid cell is character-
ized by three possible states: burning, already burned 

and unburned. Each cell is also associated with some 
static (e.g., fuel type and elevation) and dynamic (e.g., 
wind and fuel moisture) conditions, given as inputs to 
the model.

The fire propagation dynamics is a contamination pro-
cess between adjacent cells, with spread probability that 
depends on cell and boundary conditions. A burned 
cell cannot change its status and remains burned for the 
simulations, while a burning cell becomes burned after 
a computed burning time, propagating the fire at the 
end of its consumption. The unburned cell can change 
its status if a burning cell is in its neighborhood. It can 
become a burning cell or remain unburned, with a prob-
ability that depends on the wind, topography, fuel type, 
and fuel moisture content of cells. The time evolution of 
the fire front is modeled by the rate of spread computed 
for each ignition process between two cells, depending 
as well on the wind, topography, fuel moisture, and fuel 
type. The time of ignition per each cell is consequently 
computed, and the simulation proceeds in time accord-
ing to the next ignited cell. A large ensemble of stochastic 
simulations is computed with identical settings in terms 
of ignitions, weather conditions, and static inputs. Wind 
is stochastically perturbed in each simulation to con-
sider local wind changes. On the basis of this simulations 
ensemble, the probability u(xP , t) of being burnt at time 
t and for the center xP of each cell is computed, using 
the fire frequency for each cell. This map is also used to 
compute the isochrones of wildfire evolution at different 
time steps, corresponding to the iso-contour lines of the 
fire probability maps at different threshold values (typi-
cal thresholds are 50% , 75% and 90% ). From these isoch-
rones, the simulated burned areas at different time steps 
and different probability thresholds are obtained. Fur-
ther, mean and maximum values of the rate of spread and 
fire-line intensity for each cell are computed by means 
of empirical laws. In the last release of the model, a fire 
spotting module has been added. The module is based on 
a stochastic approach, keeping coherence with the sto-
chastic paradigm used by PROPAGATOR. Further, in the 
last release, there is also the possibility of considering 
firefighting actions in the simulations. Four firefighting 
actions are available: Canadair drops, helicopter drops, 
waterlines, and heavy actions. The latter refers to the use 
of machines to cut the fuel or create strong barriers to 
wildfire propagation, so it acts in the model as a fuel type 
change during the simulation. The other implemented 
firefighting actions, which involve the use of water, 
increase the fuel moisture in the simulation. The simula-
tion time required by PROPAGATOR model is usually less 
than 5 min (see Trucchia et al. 2020).
PROPAGATOR uses a simplified custom fuel model 

with seven fuel types corresponding to vegetation types: 
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grasslands, shrubs, broadleaves, fire-prone conifers, 
agro-forestry areas, non fire-prone forests, and non-
vegetated areas. The Non-vegetated areas class includes 
buildings and infrastructure, water bodies, and natural 
bare soil, where fire cannot propagate. Non fire-prone for-
est class corresponds to the low-flammable forests. The 
Broadleaves class models tall vegetation with medium 
flammability, while highly flammable tall vegetation 
falls into Fire-prone conifers class. The medium-to-low 
vegetation is organized into three classes: agro-forestry 
areas with a low vegetated density and low propagation 
probability; shrubs with medium-flammable low vegeta-
tion; grassland with highly flammable very low vegeta-
tion. Each fuel type is associated with different nominal 
fire spread probabilities and rate of spread values, each of 
them modified according to topography, wind, and fuel 
moisture conditions. The fuel parameters are reported in 
Table 1. These values were defined by means of continu-
ous calibration throughout the years.

Albenga Fire: case study
We present the use of PROPAGATOR as an emergency 
response tool simulating the Albenga Fire, the main wild-
fire incident that occurred in the Liguria region in 2022. 
Albenga Fire was ignited on 6 August 2022 in the early 
afternoon in the municipality of Albenga, in the western 
part of the Liguria region (see Fig. 1). The wildfire was par-
tially contained by the end of the day, 6 August. However, 
a strong wind reinforcement in the night between 6 and 7 
made the wildfire uncontrolled. Most of the area burned 
on 7 August, with also a spotting activity on the neigh-
borhood hill. The fire involved numerous fire brigades 
and aerial and ground vehicles. The operations lasted for 
3 days. The total burned area obtained by satellite images 
with AUTOBAM algorithm (Pulvirenti et al. 2020) is 405.9 
ha. The burned area is shown in Fig. 2.

We simulated the wildfire incident with PROPAGA-
TOR. In the wildfire simulation, topography data has 
been obtained using the official Digital Elevation Model 
(DEM) of the Liguria region from the regional geographi-
cal data website (Regione Liguria, https:// geopo rtal. regio 
ne. ligur ia. it/; see Fig.  2a). The native resolution of the 
DEM is around 5 m, which has been downgraded to 20 
m to be compatible with the fuel map. The fuel map used 
(see Fig. 2b) has been obtained from the CORINE 2018 
Land Cover and has been operationally used by the wild-
fire risk management system. To accurately represent the 
fire dynamics, we made some modifications to the opera-
tional fuel map: we incorporated the main roads into the 
map by designing them as non-vegetated fuel types; we 
also classified the burned area of the Cisano Fire that 
occurred in the same region in 2021 as non-vegetated. 
The weather data used was obtained from a weather 
station located about 5 km from the wildfire area (see 
Fig.  2c). Weather observations were available at 10-min 
resolution. We downgraded the resolution to 1 h as the 
resolution of the present simulation, computing mean 
values per each variable. Weather observations are then 
used to compute the fine fuel moisture content from the 
forest fire danger rating system RISICO (Fiorucci et  al. 
2008, Perello et  al. 2022). The RISICO system provides 
fuel moisture computation in real-time through Italy, 
running with observed weather data from a selected 
weather station network. The system provides a proxy for 
fuel moisture modeled for grasslands. We used the fuel 
moisture computed on the weather station mentioned 
above. Due to the lack of an official ignition point loca-
tion, we placed it in the area where the first reports of 
fire were received. The wildfire incident is simulated for 
the first 24 h, commencing from 12:00 UTC on 6 August 
2022. We limited the simulation time to this duration 
since no firefighting actions were considered due to the 

Table 1 The first six rows show the nominal fire spread probability between all the fuel types considered in PROPAGATOR. The last 
row shows nominal fire spread velocity for each fuel type

Burning cell

Broadleaves Shrubs Grassland Fire-prone 
conifers

Agro-forestry 
areas

Not fire-
prone 
forest

Neighbor cells

     Broadleaves 0.3 0.375 0.25 0.275 0.25 0.25

     Shrubs 0.375 0.375 0.35 0.4 0.3 0.375

     Grassland 0.45 0.475 0.475 0.475 0.375 0.475

     Fire-prone conifers 0.225 0.325 0.10 0.35 0.2 0.35

     Agro-forestry areas 0.25 0.25 0.3 0.475 0.35 0.25

     Not fire-prone forest 0.075 0.1 0.075 0.275 0.075 0.075

Nominal fire spread velocity 
[m/min]

140 140 120 200 120 60

https://geoportal.regione.liguria.it/
https://geoportal.regione.liguria.it/
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impossibility of having this information at present. The 
simulation was performed at a spatial resolution of 20 m, 
with a time resolution of 1 h. The simulation employed 
the spotting model adopted by PROPAGATOR.

Performance indicators To assess model performance, 
we adopted some indicators used by Trucchia et al. (2020) 
to compare simulation results with the real burned area. 
In particular, we used the Sorensens similarity index, the 
sensitivity, and the specificity. In order to compute the 
performance indicators, a computational cell is consid-
ered to be burned by PROPAGATOR when the computed 
probability of fire is greater than a threshold; we set the 
threshold to 75% . Based on this assumption, we compute 
the confusion matrix (Agresti 1990). The first entry of the 
confusion matrix, a, corresponds to the number of cells 
identified as burned in both observed and simulated fires; 
b corresponds to the number of cells coded as burned by 
PROPAGATOR but not in real fire; c corresponds to the 
number of cells that burned in the actual fire but coded 

as unburned by PROPAGATOR. Based on the confusion 
matrix entries, the performance indicators are computed. 
The Sorensen similarity index ( Sc ) (Sørensen et al. 1948) 
is a statistical index that computes the value of similarity 
between two samples, computed as follows:

The sensitivity (or producer’s accuracy, Arca et al. 2019) 
is the ratio between cells correctly classified as burned 
by the simulation and the total number of burned cells 
in a real fire. The complementary measure is the error of 
omission, which is the probability of committing a false 
negative. The specificity (or user’s accuracy, Montealegre 
et al. 2014) is the ratio between the number of cells cor-
rectly classified as unburned by the model and the total 
number of unburned cells from real fire. Its complemen-
tary measure is the error of commission, which is the 
probability of committing a false positive. All the perfor-
mance indicators have values between 0 and 1, where 1 

(1)Sc =
2a

2a+ b+ c

Fig. 1 Study area. In the main picture, Liguria region (in red) and Albenga municipality locations (the blue dot). In the overlay picture, the burned 
area of Albenga Fire (the light blue line) and the area considered for prescribed fires (the orange dashed line)
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Fig. 2 Albenga Fire case study: a Digital Elevation Model map considered in the simulations, from official regional cartography; b fuel map 
considered for simulations, used for the regional implementation of PROPAGATOR model; c weather conditions (wind, relative humidity, 
temperature) during the first 24 h of the Albenga Fire. The fuel moisture reported in c is obtained by RISICO model based on the weather 
conditions reported
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corresponds to a perfect agreement between observation 
and simulation, and 0 means no agreement.

PROPAGATOR for prescribed fires
We have identified a possible use of PROPAGATOR for 
prescribed fires, that is, the identification of optimal areas 
of intervention. The optimal areas are identified from a 
preselected set of areas, that can be input by the user. In 
our analysis, we selected these areas in accordance with 
regional regulation and expert opinion. The quantitative 
results given by the model can support the expert, help-
ing to prepare the prescribed fire plan.

Area of interest and data retrieval
We used the area of the Albenga Fire as a study area in a 
hypothetical scenario where the fire did not occur. The 
Albenga Fire provided us with the opportunity to use 
the same study area, and its weather and ignition condi-
tions as described in the following sections. All the fuel 
conditions are considered as just before the Albenga Fire 
in the following analysis. The study area corresponds to 
the hill where the Albenga Fire started, which is shown 
in Fig. 1. We selected the Albenga municipality area as it 
presents a low slope, then prescribed fire can more easily 
be carried out. The Albenga area has been used to pre-
sent the methodology, which applies to any other area 
of interest. We used the official Digital Elevation Model 
(DEM) of the Liguria region as topographic input. We 
downgraded the original map resolution of 5 m to a 
resolution of 20 m to perform the simulations. We also 
created a detailed vegetation map of the study area for 
a total of 1 142 hectares (it is presented in Fig.  3a). We 
carried out the classification procedure through inde-
pendent photo-interpretation of the following: the 
regional digital color orthophotos of Liguria from the 
year 2019; NDVI maps based on Sentinel-2 images 
acquired before Albenga Fire; high-resolution RGB 
orthomosaics derived from Unmanned Aerial Vehicle 
(UAV) survey of the study area in September 2022. The 
latter, being post-fire imagery, was considered only for 
the unburned vegetation. We classified vegetation into 
four main plant formations, also considering their use 
as fuel map in PROPAGATOR simulations: herbaceous 
vegetation, broadleaves forests, shrubs, and coniferous 
forests. The area presents a composition of mixed broad-
leaves forests ( 26.4% ), mostly represented by downy oaks 
(Quercus pubescens Willd.), European hop-hornbeans 
(Ostrya carpinifolia Scop.), and common ashes (Fraxi-
nus excelsior L.); shrubs ( 24% ); herbaceous vegetation 
( 17.4% ); and coniferous forests ( 15.1%)—especially mari-
time pines (Pinus pinaster Ait.). Furthermore, we used 
the map to identify the plant formations most affected 
by the Albenga Fire which are broadleaves forests ( 41% 

of the total burned area) and shrubs ( 34% ). Coniferous 
forests were less affected in terms of quantity ( 22% ), but 
their damage severity is the highest, as well as for shrubs. 
We then rasterized the map into 20-m map and used in 
the following simulations.

Prescribed fires plans and Liguria regulation
In this part, we discuss the protocol to be followed for the 
prescribed fire as required by the Liguria regulations. In 
Liguria region, prescribed fire requirements are speci-
fied in the regional wildfire risk management ordinance1. 
As the first step in defining prescribed fire plans, specific 
objectives to be achieved by the prescribed fire are usu-
ally identified. In Liguria, the regulation identifies pre-
scribed fire as a possible wildfire risk mitigation action. 
After, prescriptions on weather conditions have to be 
checked to identify proper time windows in which fire 
could be managed properly. In Liguria region, prescribed 
fires can be carried out when air humidity is in the range 
30− 50% , air temperature is in the range 0− 10

◦
C , and 

wind speed is in the range 3− 10 km/h . Further, fuel 
moisture has to be in the range 7− 20% , although it is 
not specified to which type of fuel it refers. To adopt a 
conservative estimate, this constraint can be applied to 
fine fuel moisture content. The Liguria regional regula-
tion identifies ignition techniques to be adopted, with 
some constraints of slope conditions concerning the 
technique used. In particular, the heading fire ignition 
can be applied with a slope of less than 20%.

Optimization of prescribed fire location
We propose a methodology to find the optimal areas for 
prescribed fires from a set of possible areas identified 
at the first stage from expert’s opinion or user’s choice. 
The objective is to identify which areas could, if subject 
to prescribed fires, maximize the effect of slowing wild-
fire propagation, thus enhancing wildfire risk mitigation. 
Also, the optimal areas have to be identified to reduce 
the overall area extent of prescribed fires to reduce costs. 
To simulate wildfire propagation, we adopted PROPA-
GATOR model.

First, we identify in the study area six possible areas 
where prescribed fires can be done based on regional 
regulations and expert opinions. Then, we consider 
the effect of prescribed fires performed in the areas by 
changing their fuel types based on different regrowth 
scenarios. We then identify possible ignitions and 
weather conditions for wildfire propagation. Finally, 

1 Regione Liguria, “Piano Regionale di Prevenzione, Previsione e Lotta 
Attiva contro gli Incendi Boschivi”, 2022, available at the link: https:// www. 
regio ne. ligur ia. it/ compo nent/ publi ccomp etiti ons/ docum ent/ 49269: piano- 
regio nale- incen di- bosch ivi- rev- 2022. html? Itemid= 11918.

https://www.regione.liguria.it/component/publiccompetitions/document/49269:piano-regionale-incendi-boschivi-rev-2022.html?Itemid=11918
https://www.regione.liguria.it/component/publiccompetitions/document/49269:piano-regionale-incendi-boschivi-rev-2022.html?Itemid=11918
https://www.regione.liguria.it/component/publiccompetitions/document/49269:piano-regionale-incendi-boschivi-rev-2022.html?Itemid=11918
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Fig. 3 In a, the detailed fuel map used for the prescribed fire simulations. In b, the six possible patches identified for prescribed fires. In c, 
the susceptibility map of the area obtained with machine learning techniques, and the six ignition points considered for the multiple ignitions 
case analysis
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we simulate the wildfire propagation after the pre-
scribed fires in all the possible combinations of the cho-
sen areas and in all the scenarios, to assess the effect 
of prescribed fires in slowing wildfire propagation. As 
a result, the optimal areas for prescribed fires can be 
identified according to a specific cost-benefit function 
introduced below. The proposed methodology employs 
a Monte Carlo approach, performing an ensemble of 
simulations in various scenarios. All the simulations 
are computed for a fixed time of 48 h and without spot-
ting or firefighting actions. In the following sections, we 
detailed the presented methodology.

Areas of prescribed fires The first step of the methdol-
ogy is the definition of possible areas where prescribed 
fires can be done. Let call S the set of possible areas for 
prescribed fires. To identify these areas, from now on 
named patches, we used the regional slope constraint of 
20% to perform heading fire ignition technique, as the 
most restrictive case. Further, we wanted to reduce shrubs 
in the area. As mentioned before, shrubs were one of the 
fuel types most affected by the Albenga Fire. Combining 
these two constraints, we identified six possible patches 
(see Fig. 3b) where quite large areas of shrubs and slopes 
less than 20% are present. Also, we identified patches with 
the presence of ridges that can help in performing pre-
scribed fire. We have then to identify all the possible con-
figurations of these patches for prescribed fires. With the 
term configuration, we refer to a specific choice of patches 
(one or more) where prescribed fire is performed. In fact, 
each of these patches can be either subject to prescribed 
fire or not. This leads to the power set of the initial areas 
set, C := P(S) . In doing so, we assess whether the imple-
mentation of prescribed fires across multiple patches 
could yield increased effectiveness. Let us call c an ele-
ment of this set, i.e., a specific configuration. Consider-
ing the six patches defined in the present study, we have 
then 26 = 64 possible configurations, ranging from none 
of the patches to all six patches involved in prescribed 
fires. For the sake of notation, we call each of the initial 
six prescribed fire patches with a sequence of six binary 
digits 0 or 1, and all the possible configurations as a digit-
wise sum of these initial configurations: the configuration 
c = 001000 refers to a specific patch; the configuration 
c = 100100 corresponds to the combination of patches 
100000 and 000100; the configurations c = 000000 and 
c = 111111 correspond respectively to no prescribed fires 
(none of the patches are involved) and all prescribed fires 
(all the patches are involved) scenarios.

Regrowth scenarios We want to consider the condition 
of each configuration after the prescribed fire to simulate 
the effect on wildfire propagation. We mimic the effect 

of prescribed fires by changing fuel types. We modify the 
fuel from shrubs to different fuel types according to the 
different regrowth scenarios. As mentioned in the pre-
vious paragraph, we focus on modifying shrubs as one 
of the fuel types most affected by the Albenga Fire. The 
process of plant regrowth following the prescribed fire 
is widely studied in the literature (Quevedo et  al. 2007, 
Catalanotti 2009, Potts et al. 2010, Fernández et al. 2013, 
Teshome and Glatzel 2018). The regrowth process var-
ies depending on the type of vegetation, the intensity of 
the fire, and other environmental factors. We did not 
consider collecting field data on plant regrowth after the 
Albenga Fire because of the difference in plant regrowth 
conditions after a real fire with respect to prescribed fires. 
However, in the absence of field data, some hypotheses 
can be formulated in the model as a proxy for the plant 
regrowth process. In Matsypura et al. (2018), for example, 
the change in fuel load is considered in simulations with-
out taking into consideration different fuel types. Given 
the complex nature of the regrowth process, we decided 
to assume a stochastic regrowth process by assigning a 
regrowth probability for each fuel type. We use a stochas-
tic method to consider different possible regrowth pro-
cesses. Let us call fi the probability of regrowth for fuel 
type i in a single cell so that i fi = 1 , considering all fuel 
types. The regrowth scenario F  can then be identified as 
the collection of these probabilities. As mentioned before, 
the values fi could depend on different environmental 
conditions and prescribed fire conditions. Further, they 
can change over time. For the sake of simplicity, we lim-
ited the study to constant values of regrowth probabilities 
for two different regrowth scenarios:

• scenario F1 : probability 100% to be non-vegetated 
areas, 0% otherwise, i.e., the prescribed fire pre-
vents regrowth;

• scenario F2 : probability 10% of shrubs, 50% of non-
vegetated areas, 40% for grassland; 0% otherwise.

These two scenarios can be recognized as two post-
prescribed fire scenarios at two different times: the for-
mer immediately after treatment, the latter at a later 
stage when shrubs are regrowing together with her-
baceous species. This approach is similar to the one 
adopted in Cassagne et al. (2011). Let Fk

j  , with k ∈ {1, 2} 
and j ∈ {1, 2, ...,Nj} , be a realization of the regrowth 
scenario Fk and let Nj be the number of its realiza-
tions. We made ten independent realizations for each 
regrowth scenario, using a Monte Carlo approach.
Ignitions and weather conditions Let us define a 
set of ignition points I  and let W  be a set of weather 
conditions—we identify with i and w respectively a 
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specific ignition point and weather condition. Expert-
based knowledge and historical data can be used to iden-
tify the location of ignition points properly. Similarly, 
climatic data or weather conditions during past wildfire 
events in the area can be used to define weather condi-
tions. In the present study, we split the analysis into two 
different cases. In the first single ignition case, we used 
the same ignition point of the Albenga Fire, perturbing 
weather conditions registered during the event of 0% , 
+50% and −50% respectively. In the second multiple igni-
tions case, we tested a random selection of ignition points 
and historical moisture conditions from past events. For 
the multiple ignitions case, we used the wildfire suscep-
tibility map produced by CIMA Research Foundation for 
the Liguria region (Tonini et al. 2020) to randomly select 
six ignition points where fire susceptibility is over the 75th 
percentile (see Fig. 3c). We impose a minimum distance of 
500 m among them. Regarding the weather conditions, we 
focused on different fuel moisture conditions obtained by 
RISICO model in the areas of the wildfire incidents that 
occurred in Italy from 2007 to 2021. We identified three 
mean fuel moisture conditions: 8% (burned areas greater 
than 500 ha), 10% (burned areas between 50 ha and 500 
ha), and 12% (burned areas smaller than 50 ha). We then 
obtained three weather scenarios for each case.

Objective function The objective of the methodology is 
to identify in which areas prescribed fires should be per-
formed in order to both maximizes wildfire risk mitiga-
tion and minimizes the costs, i.e., which is the optimal 
areas configuration. We can identify an objective func-
tion G of the areas configuration, which encloses both 
effects. This function will depend on fuel regrowth, 
ignitions, and weather scenarios considered within the 
simulations. To find the optimal areas configuration, we 
should minimize this function:

The optimal configuration c∗ will be dependent on fuel 
regrowth, ignitions, and weather scenarios.

We used the simulated burned area as a proxy 
for considering the effect of performing prescribed 
fires in some areas on wildfire risk mitigation. 
Let  A(t; c, Fj , i,w)  be the evolution of the simulated 
burned area in time, given the prescribed fire per-
formed in the areas configuration c, a regrowth reali-
zation Fj from the regrowth scenario F  , ignition point 
i, and weather conditions w. A(·) is a non-negative 
increasing function of time. Since PROPAGATOR pro-
duces as output of each time step a scalar map corre-
sponding to the fire arrival probabilities, we used the 

(2)c∗(F , I ,W) = argmin
c∈C

G(c,F , I ,W)

area enclosed by the isochrones of the 50% probability 
threshold to compute the burned area of a single simu-
lation after a given time. We then computed the mean 
value of the burned area for each time, with respect to 
the different regrowth realizations, ignition points, and 
weather conditions of the considered scenarios:

where | · | is referred to the cardinality of the set and Nj 
is the selected number of regrowth realizations. To avoid 
the time dependency, we performed the integral of this 
function up to the final simulation time T:

We chose the integral of the function to also take into 
consideration the shape of the function, i.e., the wild-
fire evolution. Finally, we normalized this value for the 
value obtained in the no prescribed fires configuration 
c = 000000:

To maximize the wildfire risk mitigation, we want to min-
imize function Ā(·) , i.e., the simulated burned area from a 
wildfire that occurs after performing prescribed fires.

Then, we should consider the costs of prescribed burn-
ing. To simplify the analysis, we assumed a constant cost 
per hectare, which led to decrease the total area involved 
in prescribed fires T (c) . We can then normalize this 
value according to the all prescribed fires configuration 
c = 111111 in order to have values between 0 (none of the 
patches are involved) and 1 (all the patches are involved):

Due to the normalization of both functions with 
respect to the no prescribed fires or all prescribed fires 
scenarios, respectively, we can then minimize the sum 
of the two functions obtaining the optimal configura-
tion (Miettinen and Mäkelä 2002). We can assign a rel-
ative weight a, b in (0, 1] to each function according to 
the importance assigned to each:

In the present study, we put a = b = 1.

Results
This section presents both the simulation results for the 
Albenga Fire and prescribed burning scenarios.

(3)Â(t; c,F ,I,W) =
1

|I| |W|Nj

∑
i∈I

∑
w∈W

∑
Fj

A(t; c, Fj , i,w)

(4)A(c;F , I ,W) =

∫ T

0

Â(t; c,F , I ,W) dt

(5)Ā(c;F , I ,W) =
A(c;F , I ,W)

A(c = 000000;F , I ,W)

(6)T̄ (c) =
T (c)

T (c = 111111)

(7)G(c;F ,I ,W) = a Ā(c;F ,I ,W)+ b T̄ (c) a, b ∈ (0, 1]
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Albenga Fire simulation
In Fig. 4, we reported (from top to bottom) the probabil-
ity map, with isochrones of 75% probability, mean rate of 
spread, and fire-line intensity maps. The probability, rate 
of spread and fire-line intensity maps are produced per 
each cell affected by the simulations, regardless of the 
probability value. This is reflected in a discrepancy 
between the isochrones, which enclose the areas with 
probability beyond a certain threshold, and the afore-
mentioned maps. The final burned area, corresponding 
to a 75% probability threshold, is estimated to be 424.91 
ha. The simulation yielded a mean intensity value of 
3 458.95 kW /m , with a maximum value of 56 210 kW /m . 
The mean rate of spread is determined to be 256.7m/h , 
with a maximum value of 3 789m/h . Different patterns of 
high rate of spread and fire-line intensity values can be 
identified from the maps obtained. In the simulation, the 
fire remains confined in the hill where it was ignited for 
the first 14 h; after, the simulation identifies a spotting on 
the neighboring hill. We obtained the following perfor-
mance indicator values: Sorensen’s coefficient of 0.581, 
sensitivity of 0.635, and specificity of 0.536. Let us recall 
that the indicators are computed considering the 75% 
probability threshold. The computational time required 
for the simulation was about 2 min.

Optimization of prescribed fire location
The optimal configurations obtained for the ana-
lyzed cases are reported in Fig. 5. The results for the sin-
gle and multiple ignitions cases are reported in Figs.  6 
and 7, respectively. In these figures, we reported only 
the regrowth scenario F2 since the regrowth scenario F1 
shows similar results. In the first plot (counted from top 
to bottom) of each figure, the mean burned area func-
tion obtained from Eq. 3 for the 64 areas configurations 
is reported. The reported curves Â(t; c,F , I ,W) can also 
be used to identify the effect of prescribed fires in slow-
ing the fire propagation process since they describe fire 
evolution. In particular, the shape of each curve obtained 
for each area configuration can be compared with the 
no prescribed fires configuration c = 000000 (black line), 
representing the condition of a wildfire spreading without 
any action performed. In the second plot, each point rep-
resents a different area configuration, and its coordinates 
correspond to the normalized integral of the burned 
area ( Ā in the x−axis) and the normalized treated area 
( T̄  in the y−axis). In the third plot, each point is associ-
ated with a different area configuration while the y−axis 
corresponds to the objective function G. The values of 
the optimal configurations for each case are reported in 
Table 2.

For the single ignition case, the optimal configuration 
is c∗ = 100000 for both the regrowth scenarios, with 

A(c∗;F1, I ,W) = 0.0 in the first regrowth scenario and 
A(c∗;F2, I ,W) = 11.53 in the second scenario. The null 
burned area for the regrowth scenario F1 is mainly due to 
the location of the ignition point in the patch c = 100000 
and the fuel type changed to non-vegetated; in this con-
dition, the wildfire simulation halts in its early stages 
due to the absence of fuel for propagation. In the multi-
ple ignitions case, the optimal configuration depends on 
the regrowth scenario. In F1 , we have c∗ = 001000 and 
A(c∗;F1, I ,W) = 185.94 . In the second scenario F2 , we 
have c∗ = 001100 and A(c∗;F2, I ,W) = 113.61.

The burned area curves Â(t; c,F , I ,W) show very dif-
ferent behavior in the single ignition and multiple ignitions 
cases (let us compare the first plot of Figs. 6 and 7). In the 
single ignition case, the curves are grouped depending 
on which treated patch is included first in the configura-
tion, counting the patches from West to East in Fig.  3b. 
In particular, the configurations where patch 100000 is 
included are characterized by zero or few burned areas 
(green lines in Fig.  6). The configurations where 010000 
is the first patch included show the effect in fire propaga-
tion later (blue lines in Fig. 6), followed by the configura-
tions where patch 001000 is the first treated (red lines in 
Fig. 6). The other configurations show a small impact on 
slowing fire propagation. The black line corresponds to 
the no prescribed fires scenario ( c = 000000 ), while the 
yellow line corresponds to the all prescribed fires scenario 
( c = 111111 ). The color palette remains consistent across 
all the plots. The result pattern presented before is absent 
in the multiple ignitions case, showing a more complex 
behavior where no simple patterns are highlighted.

Discussion
The subsequent section will delve into a comprehensive 
discussion of these results, offering a detailed examina-
tion and interpretation of the findings.

The PROPAGATOR model was designed specifically as 
a tool to be used during the emergency response. The 
limited amount of data required by the model and its 
rapidity of simulation make it suitable for this purpose. 
Thus, the user can explore numerous scenarios quickly, 
making informed decisions. We presented the Albenga 
Fire case study as an example of using the model for 
emergency response. All the data used in terms of topog-
raphy, fuel map, and weather conditions are potentially 
available for the operational use of the model. We used 
weather conditions retrieved from real observations, 
while weather forecasts can be used to provide scenarios 
of an upcoming fire evolution. The model efficiently pro-
vided possible fire scenarios in few minutes by providing 
a preliminary hypothesis on the ignition location. The 
model provided an indication of the potential burned 
area of the same order of magnitude as the real one. 
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Fig. 4 Results from Albenga Fire simulation: a probability map and isochrones related to the 75% probability threshold; b mean rate of spread; c 
mean fire-line intensity
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Fig. 5 The optimal area configurations obtained for the optimization of location problem: a optimal configuration c = 100000 obtained 
for the single ignition case, in both regrowth scenarios considered; b optimal configuration c = 001000 obtained for the multiple ignitions case 
and regrowth scenario F1 ; c optimal configuration c = 001100 obtained for the multiple ignitions case and regrowth scenario F2
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This is an essential information for firefighters, allowing 
them to modulate their response based on the potential 
extent of the fire. Further, the model identified a spot-
ting phenomenon in the neighboring hill. This was due 
to the presence of conifers in the area for which the spot-
ting model was triggered. Highlighting this potential fire 
behavior is important to take preventive measures and 
avoid enlarging the area where operations must be per-
formed. The performance indicators obtained in the pre-
sent study show smaller values as compared with respect 
to the other test cases presented in Trucchia et al. (2020). 
There are several reasons for this. The quantity and entity 
of firefighting operations during the Albenga Fire make 
it difficult to simulate it without including them. The 
effect of firefighting operations on simulation results will 
be taken into consideration in future studies. Another 
source of uncertainty is associated with the location of 
the ignition point, for which a hypothesis has been made.

Furthermore, we used weather conditions registered 
5 km from the fire location. Given the large burned area 
involved, the local topography and fire-induced convec-
tion could have affected the local wind conditions (Liu 
et  al. 2021). Considering local wind conditions could 
improve model performance.

In the last release of PROPAGATOR, the rate of spread 
and fire-line intensity maps have been introduced as addi-
tional output from simulations. These maps can be used 
to assess potential fire behavior during its spreading, high-
lighting areas where firefighting actions are more effec-
tive. Considering the maps obtained from the Albenga 

Fire, we can observe different patterns of areas character-
ized by high fire-line intensity due to topography condi-
tions and the presence of conifers. Firefighting actions can 
eventually be placed in predicted locations where fire-line 
intensity is lower to make them more efficient.

In the present study, we then analyzed the possible use 
of PROPAGATOR for the optimization of prescribed fire 
location. The objective was to identify areas where the 
effect of slowing wildfire propagation could be maxi-
mized, thus enhancing wildfire risk mitigation. Also, 
another objective is to reduce the area of treatment to 
contain costs. We made assumptions regarding regrowth 
scenarios, ignitions, and weather conditions to demon-
strate the methodology’s use. However, expert opinions 
can be incorporated in to any step of the process.

We split the analysis into two main cases. In the case 
of single ignition, we observed a strong dependence of 
the optimal configuration on the ignition point loca-
tion and weather scenarios. We observed different wild-
fire behaviors among various configurations based on 
the included areas. Configurations that included patch 
100000 exhibited significant reductions in wildfire propa-
gation from the initial stages due to their proximity to the 
ignition point. The wildfire simulation then is influenced 
from the beginning by the effect of prescribed fires, i.e., 
the change in fuel type. Other configurations displayed 
delayed effects on wildfire propagation. In the single igni-
tion case, weather conditions from the Albenga Fire are 
considered. Fire spread is then expected to move from 
West to East as for the fire incident. Consequently, the 

Fig. 6 Results of the optimization of location problem, for the single ignition case and regrowth scenario F2 . In the first plot (from top to bottom), 
the mean burned area curves Â(t; c,F2,I ,W) for each areas configuration. In the second row, each point is associated with a different 
configuration, with x-coordinate corresponding to normalized integral of burned area curve Ā and y-coordinate corresponding to the normalized 
treated area T̄  . In the third plot, each point is associated to a different configuration, with the y-coordinate corresponding to the objective function 
value G. The color palette has been chosen according to which patch has been considered first in the configuration (counting from West to East): 
green palette for configurations in which patch 100000 has been considered first; blue palette for patch 010000 as first; red palette for patch 
001000; magenta palette for patch 000100; purple palette for patch 000010; orange palette for patch 000001. Black color corresponds to no 
prescribed fires configuration 000000; yellow color corresponds to the all prescribed fires configuration 111111

(See figure on next page.)

Table 2 Optimal areas configuration for single ignition and multiple ignitions cases, for the two regrowth scenarios F1 and F2 . For 
each optimal configuration, there are also reported: values of the integral of the burned area function A and its normalized value Ā 
with respect to the no prescribed fires configuration c = 000000 ; values of treatment area T  and the normalized value T̄  with respect to 
the all prescribed fires configuration c = 111111 ; values of the objective function G 

Regrowth scenario Optimal configuration A Ā T T̄ G

Single ignition F1 100000 0.0 0.0 9.04 0.15 0.15

F2 100000 11.53 0.01 9.04 0.15 0.16

Multiple ignitions F1 001000 185.94 0.48 10.28 0.17 0.65

F2 001100 113.61 0.28 18.0 0.3 0.58
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effect in slowing fire propagation is delayed accordingly 
to the distance of the first patch considered in the config-
uration from the ignition point moving toward East. The 
optimal configuration was found among those includ-
ing the 100000 patch, particularly the configuration with 
the smallest treated area (i.e., the 100000 configuration) 
because of the smallest associated cost with respect to 
the other possible configurations. The same behavior is 
observed with both regrowth scenarios, leading to the 
same optimal configuration.

We then adopted a distribution of points in the mul-
tiple ignitions case to avoid a strong dependence on 
the ignition point. At this stage, the expert opinion can 
provide valuable information on possible ignition areas, 
given the area’s wildfire history. In this study, we used the 
susceptibility map to locate ignition points. The multiple 
ignitions case emphasized the role of certain patches in 
limiting the fire propagation, regardless of the ignition 
point location. In particular, the optimal configurations 
for both regrowth scenarios included the patches 001000 
and 000100. These patches divide the domain considered 
for prescribed fires into two smaller domains, limiting 
then fire propagation. The optimal configuration associ-
ated with regrowth scenario F1 consists of less treated 
area (10.28 hectares) than the one related to scenario F2 
(18 hectares), including only one patch. In the former, 
the effect of prescribed fires in wildfire propagation is 
stronger with respect to the latter due to the change of 
shrubs to non-vegetated areas. In fact, PROPAGATOR 
does not allow wildfire propagation in pixels whose fuel is 
set to “non vegetated”. Consequently, to obtain the same 
effects in reducing wildfire propagation, the total area of 
prescribed fires should be increased in regrowth scenario 
F2 with respect to F1.

The proposed analysis presents some similarities 
with the work of Matsypura et  al. (2018). However, in 
the mentioned work, the authors use the graph theory, 
and the objective was to identify the right node to treat 
to disconnect the graph and slow fire propagation. We 
adopted the idea of identifying critical areas in a dif-
ferent modeling framework, considering directly the 
fire propagation simulations in different ignitions and 
weather scenarios.

It should be noted that defining regrowth scenarios 
remains a critical aspect of the methodology. Ongoing 
research aims to establish more specific regrowth sce-
narios based on experimental results, considering differ-
ent prescribed fire intensities or fuel types. In Cassagne 
et  al. (2011), authors used data from past prescribed 
fires to consider different regrowth scenarios in different 
time frames after treatment. However, the authors used 
these data to simulate the effect of a single prescribed 
fire in reducing fire risk. To the best of our knowledge, 
these scenarios have not been used to identify the opti-
mal prescribed fire location. The multiple ignitions 
case highlights the impact of these scenarios on post-
prescribed fire effects and their influence on the opti-
mal configuration. This aspect will be further explored 
in future studies. Likewise, it would be beneficial to 
consider more detailed objective functions that incor-
porate not only the burned area but also fire behavior 
such as fire-line intensity. Prescribed fires aim to reduce 
the intensity of future wildfires, facilitate management 
efforts, and minimize negative effects on ecosystems. 
Additionally, incorporating more detailed cost-of-treat-
ment information can be advantageous. These aspects 
will be taken into account for future studies.

Another critical aspect is the computational costs 
of simulations. As already mentioned, PROPAGATOR 
model offers a limited computation cost thanks to the 
Cellular Automata framework adopted. However, the 
number of simulations performed considering all areas 
configurations increase exponentially with the number of 
patches involved. Future study will assess the feasibility 
of increasing the patches number, and if some strategies 
could be adopted to reduce the computational cost.

The methodology proposed to find the optimal pre-
scribed fire locations allows for the incorporation of 
expert opinions or prescribed fire regulations in each 
step of the process. This was demonstrated, for instance, 
in the selection of the six possible patches. The same 
could be done in defining ignition points and weather 
scenarios. We chose this approach so that the method-
ology can serve as an additional tool for the users, com-
plementing their expertise. Starting from some choices 
made by the expert, the methodology indeed provides 

(See figure on next page.)
Fig. 7 Results of the optimization of location problem, for the multiple ignitions case and regrowth scenario F2 . In the first plot (from top 
to bottom) the mean burned area curves Â(t; c,F2,I ,W) for each areas configuration. In the second row, each point is associated with a different 
configuration, with x-coordinate corresponding to normalized integral of burned area curve Ā and y-coordinate corresponding to the normalized 
treated area T̄  . In the third plot, each point is associated to a different configuration, with the y-coordinate corresponding to the objective function 
value G. The color palette has been chosen according to which patch has been considered first in the configuration (counting from West to East): 
green palette for configurations in which patch 100000 has been considered first; blue palette for patch 010000 as first; red palette for patch 
001000; magenta palette for patch 000100; purple palette for patch 000010; orange palette for patch 000001. Black color corresponds to no 
prescribed fires configuration 000000; yellow color corresponds to the all prescribed fires configuration 111111
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quantitative information on which are the optimal areas 
for prescribed burning. This approach can, however, 
undermine the portability of the methodology for a com-
parative study among different study areas. A future 
study is required to understand which aspects of the pro-
posed methodology can potentially be generalized and 
which are necessarily based on expert opinion.

Furthermore, we believe that the proposed method-
ology can be adapted to various fire simulators (e.g., 
BEHAVE) with some adjustments to tailor it to the cho-
sen simulator’s characteristics. In fact, the Monte Carlo 
approach for the different scenarios and the assessment 
of prescribed fire effects in wildfire propagation remains 
valid, regardless of the simulator used for the fire propa-
gation scenarios. Future research will be conducted to 
identify the portability of the methodology employing 
different wildfire simulators.

Once the locations for prescribed fires are identified, 
the next step would be the actual simulation of per-
forming prescribed fires to support the definition of the 
prescribed fire plan. Considering different scenarios, 
eventually incorporating local prescribed fire regula-
tions, the expert could use the quantitative information 
from simulations to make informed decisions regarding 
the fire management strategies to be performed. Simi-
lar assessments can be performed during prescribed fire 
execution. Given the actual state of the prescribed fire 
and the subsequent hours of weather forecast, fire propa-
gation scenarios can help properly manage the fire. Some 
tests on the use of PROPAGATOR to simulate prescribed 
fires in Liguria region can be found in the Supplementary 
Material.
PROPAGATOR can  offer some notable advantages 

when simulating prescribed fires. First, the model is not 
affected by a change in temporal resolution. The flexibil-
ity in changing the temporal resolution of simulations is 
helpful for prescribed fires. A more detailed simulation 
can be required because of the higher vigilance required 
to manage the fire and prevent it from getting out of 
control. The users can then simulate rapid changes in 
weather conditions to assess the prescribed fire behavior. 
The rapid simulation time required by PROPAGATOR is 
important to simulate many fire propagation scenarios in 
different conditions. The comparison of multiple scenar-
ios helps the expert to make informed decisions. Further, 
PROPAGATOR makes it possible to consider different 
ignition patterns, as usually used in prescribed fires. Last, 
the model can include firefighting actions, such as the 
ones performed during prescribed fires.

However, some important changes should be made 
to make PROPAGATOR able to simulate prescribed fires 
properly. A good opportunity to assess PROPAGATOR 
limitations in simulating prescribed fires is provided by 

the comparison with QUIC-fire (Linn et al. 2020), devel-
oped specifically for prescribed fires. In Linn et al. (2020), 
authors highlighted the importance of considering fire-
wind interactions and the effect of fuel structure on wind 
to simulate prescribed fires. The fire-wind interaction can 
play an important role, especially when multi-ignitions 
patterns are performed. Also, the role of topography in 
changing wind locally can play a remarkable role, espe-
cially in areas characterized by a complex topography. 
In the current release of PROPAGATOR, the fire-wind 
interaction is not considered, as well as the interaction of 
the wind field with topography. A proper wind-fire and 
wind-topography interaction module could be consid-
ered in a future release of PROPAGATOR, to make it able 
to simulate prescribed fires properly.

Last, a study on the effect of changing spatial resolution 
in PROPAGATOR could be performed. As already men-
tioned, a detailed simulation can be valuable to properly 
manage the fire and prevent it from getting out of con-
trol. In Linn et al. (2020), the simulation resolution cor-
responds to 2 m, while the native PROPAGATOR model 
adopts a 20-m resolution. The underlying technology of 
the model can handle the same propagation dynamics 
by changing its resolution. However, it remains an open 
question whether the probabilities of propagation should 
be adjusted with the change in scale. This question will be 
addressed in future studies.

Conclusion
In conclusion, our study utilized the PROPAGA-
TOR model to investigate its applicability in both the 
emergency phase and the planning of prescribed fires. 
Through the case study of the Albenga Fire, we demon-
strated the model’s effectiveness in generating fire sce-
narios during the emergency phase, providing valuable 
information for firefighters in modulating their response 
based on the potential behavior of the fire. The perfor-
mance indicators obtained in this study showed promis-
ing results, albeit with smaller values compared to other 
test cases, highlighting the unique challenges posed by 
highly anthropized fires such as the Albenga case study.

Furthermore, we explored the use of PROPAGATOR for 
planning prescribed fire, addressing the key problem of 
optimizing prescribed fire location. Our methodology 
involved incorporating expert opinions throughout the 
process, allowing for a comprehensive approach to defin-
ing prescribed fire plans. The optimization of prescribed 
fire location revealed the significance of ignition point 
location and regrowth scenarios, with different con-
figurations exhibiting varying effects on wildfire propa-
gation. We demonstrated the role of specific areas in 
limiting fire spread, regardless of the point of ignition, 
and identified optimal configurations for both regrowth 
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scenarios. However, future studies should focus on refin-
ing regrowth scenarios based on experimental results. 
Further, a more complex formulation of the objective 
function should be tested to consider better the positive 
effects of prescribed fires and the resources they require.

Overall, our findings highlight the potential of PROPA-
GATOR as a valuable tool for both the emergency phase and 
planning of prescribed fires. We decided to show a case 
study in the Liguria region because the model is already 
embedded in the regional wildfire risk management sys-
tem as an emergency response tool. Its role already in the 
system can also facilitate its operational use for other pur-
poses, such as prescribed fires, as shown in the paper.

While further research is necessary to address spe-
cific challenges and refine the methodology, PROPA-
GATOR offers significant advantages in assessing fire 
behavior, optimizing prescribed fire locations, and 
facilitating informed decision-making by experts. These 
advancements can contribute to more effective wildfire 
risk mitigation strategies and promote safer and more 
efficient fire management practices in the future.
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