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Abstract 

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, 
including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such 
as lightning). The present study presents a comprehensive and advanced methodology for assessing wildfire sus-
ceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques 
across Gujarat State, India. The primary goal of the study is to utilize Google Earth Engine to compare locations 
in Gujarat, India, before and after forest fires. High-resolution satellite data were used to assess the amount and types 
of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope 
orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and tempera-
ture to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random 
forest regression model is used to predict land surface temperature based on a set of environmental parameters. 
The maps that result depict the geographical distribution of normalized burn ratio and difference normalized burn 
ratio and land surface temperature forecasts, providing valuable insights into spatial patterns and trends. The find-
ings of this work show that an automated temporal analysis utilizing Google Earth Engine may be used successfully 
over a wide range of land cover types, providing critical data for future monitoring of such threats. The impact of for-
est fires can be severe, leading to the loss of biodiversity, damage to ecosystems, and threats to human settlements.

Keywords Wildfire susceptibility mapping, LST, Random forest, GEE, Landscape characteristics, Geospatial techniques

Resumen 

Los incendios de vegetación son eventos recurrentes en muchas partes del mundo, incluyendo la India. Estos incen-
dios pueden tener varias causas, incluyendo actividades humanas (tales como quemas agrícolas, fuegos de campings, 
y descartes de cigarrillos) y factores naturales (como los rayos). Este estudio presenta una metodología comprensiva y 
de avanzada para determinar la susceptibilidad a los incendios mediante la integración de diversas variables ambien-
tales y el aprovechamiento de experiencias innovadoras, mediante el uso de técnicas de aprendizaje automático, a lo 
largo del Estado de Gujarat en la India. El objetivo significativo de este estudio fue el utilizar el Google Earth Engine 
para comparar sitios en el Gujarat, India antes y después de incendios de vegetación. Datos de satélites de alta reso-
lución fueron usados para determinar el número y tipos de cambios causados por los incendios de vegetación. Este 
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estudio analiza meticulosamente variables ambientales (i.e. orientación de las pendientes, elevación, NDVI, densidad 
de drenaje, precipitación, y temperatura para entender las características del paisaje y determinar la susceptibilidad 
al fuego. Adicionalmente, un sofisticado modelo al azar de regresión forestal fue usado para predecir la temperatura 
de la superficie basado en un conjunto de parámetros ambientales. Los mapas resultantes muestran la distribución 
geográfica de los pronósticos del NDVI y de la temperatura en superficie, lo que provee insumos valiosos de patrones 
espaciales y tendencias. Los resultados de este trabajo muestran que un análisis temporal automático utilizando 
Google Earth Engine puede ser usado exitosamente sobre un amplio rango de diferentes tipos coberturas, provey-
endo de datos críticos para monitoreo de esas amenazas. Los impactos de fuegos de vegetación pueden ser severos, 
llevando a una pérdida en la biodiversidad, daños en los ecosistemas, y amenazas a los asentamientos humanos.

Introduction
Forests are envisaged as a vital natural resource that 
conserves stability in the environment, covering 
approximately one-third of the earth’s surface (Keenan 
et  al. 2015). They play a crucial role as essential envi-
ronmental resources and generate about two-thirds of 
the world’s oxygen (McKinley et al. 2011). Before indus-
trialization, forests spanned approximately 5.9  bil-
lion hectares of the earth’s land surface, but presently, 
they encompass around 4  billion hectares. Despite 
their significance, extreme conditions are vulnerable to 
the effects of climate change, anthropogenic activities 
(Gupta et  al. 2022c; Mckinley et  al. 2011; Omar et  al. 
2017, 2022; Singh et  al. 2023), and various disasters 
like drought (Gond et al. 2023a, b; Gupta et al. 2022a), 
flood (Abhash et al. 2023; Jodhani et al. 2023b; Shivhare 
et  al. 2016),  changes in the channel planforms (Jod-
hani et al. 2024) shoreline change (Jodhani et al. 2021) 
landslides,  pests (Lecina-Diaz et  al. 2021), and forest 
fires. Notable devastating wildfires in recent times have 
occurred in Australia, the Amazon region, the United 
States (Hantson et  al. 2015), and various forest areas 
in Iran (Ghorbanzadeh et  al. 2019). Forest fires stem 
from two main factors: human activities (exemplified 
by practices like deforestation) (Cochrane 2001; Skole 
and Tucker 1993) and natural events such as lightning 
strikes. The impact of forest fires has been extensively 
documented across various dimensions, including bio-
diversity (Granström 2001), human life (Fowler 2003), 
climate change (Wotton et  al. 2010), and their associ-
ated economic ramifications (Kim et  al. 2019; Molina 
et al. 2019). A significant 55% of India’s forests are vul-
nerable to intermittent fires, as reported by the Forest 
Survey of India in 2011. Moreover, the escalating popu-
lation growth in India has led to substantial deforesta-
tion, further exacerbating the fragmentation of existing 
forested areas (Omar et  al. 2017). The aftermath of 
these fires involves severe damage to burned forests, 
and the substantial presence of combustible wood 
markedly increases the likelihood of recurrent forest 

fires (Siegert et  al. 2001). The impact of these fires is 
exacerbated by climate change, as higher land surface 
temperatures create favorable conditions for their out-
break (Omar and Kumar 2021). Various traditional and 
advanced techniques were implemented to understand 
the trend and variability of extreme conditions (Gupta 
et al. 2021a, b, 2022b, 2023).

Various tools have been employed for the analysis 
and mapping of forest fire susceptibility. These tools 
include satellite imaging technology (Hernandez-Leal 
et  al. 2006), geographic information systems technol-
ogy (Kumar Jaiswal et  al. 2002; Teodoro and Duarte 
2013), fire area simulators with probabilistic models 
(Krasnow et al. 2009), fuel moisture content assessment 
(Chuvieco et  al. 2004), multivariate logistic regression 
(Pourghasemi 2016), and generalized additive mod-
els (Pourtaghi et  al. 2016). Additionally, multi-criteria 
decision-making techniques, such as the analytic hier-
archy process (Pourghasemi et  al. 2016), and stepwise 
weight assessment ratio analysis have been applied 
(Jaafari and Pourghasemi 2019). Recently, there has 
been a rise in both the frequency and intensity of 
wildfires, necessitating advanced prediction methods; 
studies have reported the use of artificial neural net-
works and machine learning as modeling approaches 
to achieve high accuracy in forest fire susceptibility 
analysis: fuzzy logic (Abedi Gheshlaghi et  al. 2020), 
artificial neural networks (Satir et  al. 2016), adaptive 
neuro-fuzzy inference systems, and ensemble models of 
metaheuristics algorithms (Moayedi et  al. 2020), clas-
sification and regression trees (CART) (Amatulli et  al. 
2006), boosted regression trees (BRTs) (Pourghasemi 
et  al. 2020; Pourtaghi et  al. 2016), and random forest 
(RF) algorithms. Modern machine learning (ML) mod-
els have demonstrated their ability to effectively handle 
non-linearity issues in spatial simulation, modeling, and 
mapping—particularly in the context of natural hazard 
susceptibility mapping (Shabani et  al. 2021). Machine 
learning algorithms can be used as soft computing 
models when statistical limitations are low (Jodhani 
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et  al. 2023a; Pourghasemi et  al. 2020). Machine learn-
ing algorithms, especially random forest (RF) (Breiman 
2001; Kam Ho 1995), have become valuable tools for 
wildfire prediction, utilizing data analysis and modeling 
techniques to identify patterns and make predictions. 
Google Earth Engine (GEE), accessible at  November 
03, 2023 https:// earth engine. google. com, stands out as 
a cloud-based platform for processing satellite imagery. 
Renowned for its high computational speed, GEE offers 
ease of application across extensive geographic areas 
(Gorelick et al. 2017; Jodhani et al. 2023c).

This study delves into the intricate relationships 
between environmental factors and fire vulnerability, 
focusing on predictive modeling techniques with an 
emphasis on key indicators such as land surface tem-
perature (LST), normalized burn ratio (NBR), and differ-
enced NBR (dNBR). Prediction of forest fire occurrence 
probability was carried out using an ensemble machine 
learning algorithm for Madhya Pradesh and Chhattis-
garh (Surbhi Singh and Jeganathan 2023). The research 
(Van Wagtendonk et al. 2004), centered in Gujarat’s for-
est region, utilizes diverse datasets capturing landscape 
characteristics like aspect (Pourtaghi et  al. 2016), eleva-
tion (Jaafari and Pourghasemi 2019), NDVI (Eskandari 
et  al. 2021), drainage density, precipitation (Bui et  al. 
2016), slope (Chen et al. 2016; Ljubomir et al. 2019), and 
temperature (Verde and Zêzere 2010). Understanding the 
fire behavior and spread in the region needs a prior idea 
of the relationship between existing topography, veg-
etation characteristics, and local climate. Changes in the 
aforementioned factors are greatly influenced by human 
disturbances and produce unintended consequences.

Understanding the factors that influence fire occur-
rence and its environmental and socio-economic con-
sequences is required for the sustainable management 
of forests in the Gujarat state, western region of India. 
Our study aims to generate a fire susceptibility map 
on Google Earth Engine by combining normalized 
burn ratio (NBR) and land surface temperature (LST) 
with random forest (RF) to identify forest fire suscep-
tible zones by spatial clustering of fire incidences with 
prevailing fire-responsible variables. The main tasks of 
the study are (i) selection of data and preparation of 
shapefile for Gujarat state; (ii) identification of factors, 
processing in GEE, and map generation; (iii) NBR and 
dNBR calculation; (iv) LST prediction; and (v) fire sus-
ceptibility mapping. Implement a random forest model 
on GEE, training it to predict susceptibility based on 
NBR, LST, and additional features. The fire suscep-
tibility map was prepared with five classes very low, 
low severity, moderate, high severity, and very high. 

The variables are supposed to reveal the effect of natu-
ral conditions in the study area, the importance of fire 
occurrence assessment, and susceptibility prediction. 
Overall, the novelty and research gap addressed by this 
study make it an important contribution to the field of 
environmental management and conservation for the 
well-being of human society. The results of the study 
will provide valuable insights into the factors that con-
tribute to forest fire susceptibility in western India and 
inform strategies for reducing the risk of future fires.

Study area and data used
Gujarat state, located on India’s west coast, lies between 
latitude 20°06′ to 24°42′ N and longitude 68°10′ to 
74°28′ E and has a diverse natural environment with 
diverse ecosystems, including vital lush forests for bio-
diversity (Fig.  1). The state’s arid and semi-arid climate 
exacerbates its vulnerability to common forest fires. The 
aridity poses a potential threat to farmlands and crops, 
necessitating a thorough understanding of fire severity 
to intervene in time. Over the past four decades, a dec-
adal analysis revealed a notable increase in the number 
of moderate and severe heat wave days (Ray et al., 2013). 
High temperatures and low rainfall during the summer 
months increase the fire risk, while the monsoon season 
from June to September provides relief with moderate to 
heavy rainfall.

  Gujarat’s diverse woodland areas encompass a range 
of forest ecosystems, comprising tropical deciduous for-
ests, thorn forests, and mangrove forests. These habi-
tats are host to a significant array of pivotal tree species, 
such as teak, bamboo, Sal, and acacia, contributing to 
the region’s rich ecological diversity. However, the dry 
and hot temperature makes the flora very combustible 
at times, posing a huge danger to the region’s biodiver-
sity and natural ecosystems. Another significant goal of 
the study is to utilize Google Earth Engine to compare 
places in Gujarat, India, before and after forest fires. The 
study also attempts to analyze high-resolution satellite 
data to assess the amount and types of changes caused by 
forest fires Table 1. This study will offer insight into how 
these fires alter ecosystems, landscapes, and environ-
mental conditions for determining the intensity of a for-
est fire. Forested regions are frequently encroached upon 
because of rapid development. Understanding the influ-
ence of diverse plant and animal species on forest fire 
intensity is critical for conserving biodiversity. Machine  
learning algorithms, especially random forest (RF) (Breiman 
2001; Kam Ho 1995), have become valuable tools for  
wildfire prediction, utilizing data analysis and modeling 

https://earthengine.google.com
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techniques to identify patterns and make predictions. 
Google Earth Engine (GEE), accessible at November 03, 
2023 https:// earth engine. google. com, stands out as a 
cloud-based platform for processing satellite imagery.

Methodology
To fully understand landscape characteristics and 
assess wildfire susceptibility, this study meticulously 
analyzes various environmental variables such as slope 
orientation, elevation, NDVI, drainage density, precipi-
tation, and temperature. Beginning with a novel slope 

Fig. 1 The geographic location of the Gujarat state and map of India

Table 1 Datasets used for implementation of various methods for the Gujarat State, India

S.No Methods applied Datasets used

1 NBR methodology Sentinel-2 (A&B)

2 Elevation NASADEM is a reprocessing of STRM data, with improved 
accuracy by incorporating auxiliary data from ASTER 
GDEM, ICESat GLAS, and PRISM datasets

3 NDVI MOD13Q1.006 Terra Vegetation Indices 16-Day Global 25

4 Precipitation CHIRPS Pentad: Climate Hazards Group InfraRed

5 LST MOD11A2.061 Terra Land Surface Temperature

6 Drainage density USGS/SRTMGL1_003

7 TWI USGS/SRTMGL1_003, WWF/HydroSHEDS/03CONDEM

8 Slope and aspect USGS/SRTMGL1_003, COPERNICUS/S2_SR

9 LST prediction MOD13Q1.061 Terra Vegetation Indices 16-Day Global, 
NASADEM: NASA NASADEM Digital Elevation 30 m, 
openLandMap/CLM/CLP1 PRECIPITATION SM2RAIN

https://earthengine.google.com
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orientation derivation formula, the study employs cut-
ting-edge remote sensing techniques to acquire eleva-
tion data, providing insights into terrain variations, 
slope dynamics, and drainage patterns. NDVI values are 
critical in assessing vegetation health and identifying 
fire-prone areas. Furthermore, the study incorporates 
drainage density, CHIRPS annual precipitation, and tem-
perature into a holistic fire risk assessment model, which 
considers a variety of meteorological, topographic, and 
vegetation-related parameters. Using Landsat satel-
lite imagery, the calculation of the normalized burn 
ratio (NBR) and the difference NBR (dNBR) provides 
a quantitative measure of the severity of fire impact on 
landscapes. In addition, a sophisticated random forest 
regression model is used to predict land surface temper-
ature (LST) based on a set of environmental parameters. 
The maps that result depict the geographical distribution 
of NBR, dNBR, and LST forecasts, providing valuable 
insights into spatial patterns and trends. The flow of the 
recent works is illustrated in Fig. 2.

In step 2
Aspect
It is a dataset that gives useful insights into slope ori-
entation, as well as information on the directional 
alignment of landforms and probable fire paths. This 
dataset’s aspect variable is produced via the deriva-
tion of aspect values using the digital elevation model 
(DEM). In this instance, aspect refers to the com-
pass direction that a slope faces. The aspect values 
are derived from the DEM and represent the compass 
direction of each slope. These numbers normally vary 
from 0 to 360 degrees, representing the azimuthal 
orientation.

dz is the elevation change over a given distance dx or 
dy. The change in longitude is denoted by dx, and the 
change in latitude is denoted by dy.

(1)A = arctan
dz

dx
,
dz

dy

Fig. 2 Methodology flow diagram
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The result (A) is expressed in radians and then con-
verted to degrees (Eq. 1). This formula helps determine 
a slope’s orientation based on changes in elevation 
along the x and y axes. Notably, aspect values offer 
crucial information for understanding topographi-
cal features in geographic information systems (GIS) 
or remote sensing applications, such as how sunlight 
exposure varies across landscapes and helps determine 
fire susceptibility.

Elevation
Data provides a thorough picture of the terrain’s height, 
which aids in understanding how topography affects fire 
dynamics. The elevation variable represents the verti-
cal position of the land surface concerning sea level and 
influences the physical features of the landscape. Eleva-
tion data is produced from a digital elevation model 
(DEM) and is commonly given in meters or feet. This 
data facilitates the understanding of terrain height vari-
ations, which can significantly influence aspects, slope, 
drainage patterns, and fire behavior. Elevation cannot 
be calculated in a single, universal formula; however, 

data are often acquired through a range of remote sens-
ing techniques, including satellite measurements, aerial 
surveys, or altimetry. At a specific place, elevation is 
expressed as a numerical value.

NDVI
It is an essential metric for evaluating the amount and 
quality of the vegetation as well as the susceptibility of 
individual plants to the spread of fire. A popular veg-
etation indicator is the normalized difference vegetation 
indicator, which is calculated from reflectance values 
derived from remote sensing data in the red and near-
infrared bands (Eq. 2).

The following equation expresses the NDVI calculation:

NDVIband the values in the “NDVI” band of the MODIS 
MOD13Q1 image. The division by 10,000 is applied 
to scale the NDVI values back to their original range. 
Resulting NDVI values typically range from − 1 to 1, with 
distinct interpretations, where negative values indicate 

(2)NDVI =
NDVIband

10, 000

Fig. 3 Spatial variation of aspect over the study area
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non-vegetated surfaces and close to zero values indicate 
sparse or stressed vegetation. Values close to 1 signify 
healthy and dense vegetation. These NDVI values provide 
valuable information about the level of greenness and 
vitality of vegetation, aiding in the identification of areas 
prone to fire risk and supporting effective wildfire man-
agement strategies.

Drainage density
This dataset provides a quantitative estimate of the den-
sity of stream channels in each geographic area, offering 
helpful information about soil moisture content and fire 
risk in the area. The drainage density is calculated using 
the ratio of Flow Accumulation Scaled to the Digital Ele-
vation Model (DEM) (Eq.  3). The concentration of flow 
accumulation about elevation is represented by this ratio, 
which shows how dense or concentrated the drainage 
network is at the specified location.

The following is the mathematical formula for esti-
mating drainage density (DD) using Flow Accumulation 
Scaled (FA) and DEM:

Flow Accumulation Scaled reflects the cumulative flow 
of water throughout the landscape, scaled to account for 
topographical changes, and DEM refers to the Digital 
Elevation Model, which provides the terrain’s elevation 
values. The resulting drainage density values show the 
distribution of stream channels across the landscape con-
cerning elevation. Elevated ratings for drainage density 
could suggest a more intricate and interconnected system 
of streams, potentially influencing soil moisture content 
and consequently the area’s susceptibility to wildfires.

Precipitation
Information is essential, especially historical informa-
tion, to comprehend a landscape’s moisture content, 
which is a major component of fire risk. The CHIRPS 
Image Collection is used in this study to calculate annual 
precipitation. Filtering the CHIRPS collection for each 
year, totaling the precipitation values for individual 

(3)Drainage Density =
Flow Accumulation Scaled

DEM

Fig. 4 Spatial variation of elevation over the study area
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pixels, and then aggregating this information to generate 
a picture reflecting the yearly precipitation are all part of 
the process.

The formula for calculating annual precipitation 
Pannual is expressed as the summation of precipitation 
values Pi for each pixel over the specified time range 
given in Eq. 4:

Pi represents the precipitation value for each pixel in 
the CHIRPS dataset for the ith year, and the total num-
ber of years in the specified time range is denoted by n. 
This equation, in essence, collects the cumulative pre-
cipitation for each pixel across numerous years, provid-
ing a complete assessment of yearly precipitation for a 
specific region. This yearly precipitation data is critical 
for understanding the moisture conditions in the land-
scape, which influences the evaluation of fire risk in the 
study region.

(4)Pannual =
∑n

i=1Pi

Temperature
Data is a fundamental component that offers critical 
insights into the prevailing climatic conditions, exerting a 
significant influence on both fuel moisture levels and the 
likelihood of fire ignition. This information is crucial for 
assessing the environmental conditions that can either 
mitigate or exacerbate the risk of wildfires. Data is a cru-
cial component that provides critical insights into the 
current meteorological conditions, which have a substan-
tial impact on both fuel moisture levels and the possibil-
ity of fire ignition. This data is critical for understanding 
environmental variables that might either reduce or 
increase the danger of wildfires.

Because of variances in the models employed, the spe-
cific equation for ambient temperature (T) does not have 
a widely recognized form, although it often requires the 
measurement of air temperature in degrees Celsius or 
Fahrenheit. Temperature, for example, might be included 
among other elements in a more thorough fire risk 
assessment model. An example Eq. 5 might be:

Fig. 5 Spectral index map for NDVI of the study area
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Temperature represents the ambient temperature and 
k1 Fuel Moisture signifies the moisture content in vegeta-
tion. The (k1, k2, lots) terms represent weights assigned to 
each factor, indicating their relative importance in influ-
encing fire risk. The specific values of these weights would 
be determined based on empirical observations and mod-
eling efforts specific to the study area. In practice, the link 
between temperature and fire danger is frequently more 
subtle, and it may be part of a wider prediction model that 
considers a variety of meteorological, topographic, and 
vegetation-related parameters. Temperature analysis in 
conjunction with other variables gives a fuller knowledge 
of the circumstances that contribute to fire susceptibility.

In step 3
NBR and dNBR calculation
The calculation of the normalized burn ratio (NBR) for 
both pre-and post-fire situations is an important stage 

(5)
{

Fire Risk
}

= k1{Temperature} + k2
{

Fuel Moisture
}

+ k3
{

Other Factors
}

in the research process. The difference NBR (dNBR) 
is produced by subtracting post-fire NBR from pre-
fire NBR using the information inherent in the NDVI 
dataset. This quantitative metric provides vital insights 
about the severity of the fire’s impact on the landscape, 
laying the groundwork for comprehending the fire’s 
ecological implications. NBR is typically derived from 
Landsat satellite imagery, which captures multi-spectral 
data. It is calculated using the near-infrared (NIR) and 
short-wave infrared (SWIR) bands provided in Eq. 6:

Positive values of NBR indicate healthy vegetation and 
negative values suggest burned or bare surfaces. The 
magnitude of negative values in the NBR can be indica-
tive of the severity of fire damage (Eq. 7).

dNBR is computed by subtracting the post-fire NBR 
from the pre-fire NBR:

(6)NBR = (NIR + SWIR)�(NIR − SWIR)

Fig. 6 Drainage density map of the study area
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Positive dNBR values represent an increase in vegeta-
tion (post-fire recovery) and negative dNBR values indi-
cate a decrease in vegetation, which corresponds to the 
severity of fire damage. More negative values generally 
imply higher severity.

Step 4
LST prediction
To forecast land surface temperature (LST), the study 
applies sophisticated machine learning techniques, nota-
bly a random forest regression model. To forecast LST, 
this model uses the specified environmental characteris-
tics (aspect, elevation, NDVI, drainage density, precipi-
tation, slope, and temperature) as features. The model 
assures accuracy and dependability in forecasting future 
temperature conditions by going through a thorough 
training procedure using historical data with known LST 
values. Machine learning improves prediction capacities, 
allowing for a more detailed knowledge of temperature 
changes driven by external variables. Analyze the impact 
of each environmental element on LST fluctuations. 

(7)dNBR =
(

NBRpre−fire −NBRpost−fire

) Some machine learning models, such as random forest, 
offer feature significance scores that reflect how much 
each feature contributes to the model’s predictions.

Visualization, interpretation, and reporting
A map depicts the geographical distribution of NBR, 
dNBR, and LST forecasts. Color ramps and legend 
scales have been carefully chosen to make it possi-
ble to effectively communicate the severity or magni-
tude of each variable. This visual depiction is critical 
for understanding geographical patterns, trends, and 
specific regions of interest. The use of modern visu-
alization tools converts complicated statistics into 
accessible and usable insights, assisting academics and 
stakeholders in understanding the environmental ele-
ments that influence fire vulnerability. Observe geo-
graphic patterns and fluctuations in vegetation health 
and fire severity by visualizing the calculated NBR and 
dNBR pictures. The graphical findings are thoroughly 
analyzed to reveal geographic patterns and detect the 
deep linkages between environmental elements and 
fire-related variables. The study findings are com-
piled into a complete report that presents significant 

Fig. 7  Spatial map for annual average precipitation over the study area
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insights, ramifications, and prospective applications. 
Expert opinion, statistical analysis, and contextualiza-
tion of data within the larger fields of environmental 
science and fire ecology are all part of the interpreta-
tion step.

Results
The fire susceptibility assessment involves the utiliza-
tion of seven key factors (aspect, elevation, slope, NDVI, 
drainage density, precipitation, temperature) processed 
through Google Earth Engine (GEE). Additionally, 
preNBR (normalized burn ratio) and postNBR, along 
with land surface temperature (LST), were derived based 
on these identified factors. These factors served as crucial 
input variables in the analysis using random forest for fire 
susceptibility mapping.

Aspect
The aspect factor, which has significant importance in 
terrain analysis, refers to the compass direction that 
a slope faces. It is an important topographic variable 
that influences the distribution of solar radiation, wind 
direction, temperature, and moisture on a landscape. 

Understanding the relation of the aspect factor with fire 
susceptibility mapping is crucial for comprehending how 
terrain characteristics contribute to the likelihood of 
wildfires as shown in Fig. 3.

Elevation
The correlation between elevation and fire susceptibility 
is intricate, entwining temperature nuances, vegetation 
diversity, topographical intricacies, and human interven-
tions. By infusing elevation data into fire susceptibility 
mapping, a richer comprehension of the terrain emerges. 
Elevation (Fig. 4), acting as a linchpin, unveils tempera-
ture gradients influencing ignition likelihood, delineates 
vegetation shifts impacting fuel dynamics, and unravels 
topographical configurations shaping fire behavior.

NDVI
The normalized difference vegetation index (NDVI) is 
integral to fire susceptibility mapping, serving as a key 
indicator of vegetation health and density. High NDVI 
values signify lush, dense vegetation, highlighting poten-
tial fuel sources for fires indicated in the southern part 
of Gujarat in Fig. 5. Conversely, low NDVI may indicate 

Fig. 8 Spatial variation of slope for fire susceptibility 
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stressed or sparse vegetation prone to ignition, as shown 
in the northeastern part of the Kutch region in Fig.  5. 
Integrating NDVI into mapping provides a nuanced 
understanding of spatial vegetation dynamics, aiding in 
the identification of high-risk areas. Its temporal analy-
sis captures seasonal variations and contributes to early 
detection. By considering NDVI alongside other factors, 
such as topography and weather, fire susceptibility map-
ping becomes a robust tool for comprehensive wildfire 
risk assessment and mitigation strategies.

Drainage density
Drainage density, representing the concentration of 
watercourses in a landscape, plays a pivotal role in fire 
susceptibility mapping. Higher drainage density often 
indicates increased moisture availability, acting as a nat-
ural barrier against wildfires. Areas with lower drainage 
density, conversely, may experience drier conditions, 
elevating the risk of ignition and fire spread as indicated 
in Fig. 6. Integrating drainage density into susceptibility 
mapping facilitates the identification of regions where 
limited water presence may amplify fire susceptibility. 
This hydrological factor complements other variables, 

such as vegetation and topography, providing a compre-
hensive understanding of the landscape. The inclusion of 
drainage density enhances the accuracy of mapping, aid-
ing in targeted wildfire risk assessment and mitigation 
strategies.

Precipitation
Precipitation is a critical factor in fire susceptibility 
mapping, influencing fuel moisture content and overall 
fire risk. Adequate rainfall reduces vegetation dryness, 
acting as a natural deterrent to wildfires. Conversely, 
prolonged periods of low precipitation contribute to 
drought conditions, increasing the likelihood of igni-
tion and fire spread. Integrating precipitation data 
(Fig. 7) into susceptibility mapping enables the identifi-
cation of areas susceptible to dry spells and heightened 
fire risk. Seasonal precipitation patterns also inform 
temporal variations in susceptibility. By consider-
ing precipitation alongside factors like vegetation and 
topography, mapping becomes a comprehensive tool 
for assessing and mitigating wildfire risks, aiding in the 
allocation of resources for effective fire management 
strategies.

Fig. 9 Spatial variation of temperature over the study area 
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Slope
Slope inclination is pivotal in fire susceptibility mapping 
due to its influence on fire behavior. Steeper slopes accel-
erate fire spread, intensifying the risk, while flatter terrain 
may impede it. The topography affects wind patterns and 
moisture retention, further shaping fire dynamics. Inte-
grating slope data into susceptibility mapping enables the 
identification of areas prone to rapid fire propagation. 
High slopes often correlate with increased fuel availabil-
ity, amplifying susceptibility. This topographical factor, 
when coupled with other variables like vegetation and 
climate, enriches the mapping’s accuracy. Consideration 
of slope (Fig.  8) in fire susceptibility analysis provides 
valuable insights for targeted mitigation strategies and 
resource allocation.

Temperature
Temperature is a crucial determinant in fire suscepti-
bility mapping, intricately influencing various factors 
that contribute to wildfire risk. Higher temperatures 
elevate the likelihood of vegetation drying, creating 
favorable conditions for ignition. Warm temperatures 

also accelerate evaporation, reducing soil moisture 
content and increasing the flammability of vegeta-
tion. Integrating temperature data into susceptibility 
mapping allows for the identification of regions expe-
riencing prolonged periods of high temperatures, sign-
aling heightened fire risk. Temperature fluctuations 
influence the duration and severity of fire seasons, 
impacting the overall susceptibility of an area. Warmer 
climates can extend fire seasons and intensify fire 
behavior. Moreover, temperature influences atmos-
pheric conditions, affecting wind patterns that, in turn, 
influence fire spread. In fire-prone regions, mapping 
temperature patterns (Fig. 9) aids in recognizing areas 
prone to extreme heat, enhancing the precision of risk 
assessments. This information is invaluable for imple-
menting targeted preventive measures, resource allo-
cation, and developing effective strategies for wildfire 
management and mitigation. Overall, the relationship 
between temperature and fire susceptibility is funda-
mental, underscoring the need to incorporate tem-
perature data for a comprehensive understanding of 
wildfire risk.

Fig. 10 Classified map of pre-fire normalized burn ratio (Pre-NBR)
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NBR
The integration of pre- and post-normalized burn ratio 
(NBR) into fire susceptibility mapping is instrumen-
tal in understanding and predicting wildfire behav-
ior. NBR is a remote sensing index that quantifies the 
severity of vegetation burns, providing crucial insights 
into landscape changes caused by fires. Analyzing both 
pre- and post-NBR values facilitates a comprehensive 
assessment of fire susceptibility. Pre-NBR (Fig.  10), 
representing vegetation conditions before a fire event, 
serves as a baseline for assessing the initial state of veg-
etation health. Areas with lower pre-NBR may indicate 
pre-existing stress or sparse vegetation, potentially 
influencing fire initiation. On the other hand, post-
NBR reflects the severity of fire impact on vegetation, 
highlighting areas where the landscape has undergone 
significant changes. Comparing pre- and post-NBR 
(Fig. 11) allows for the identification of areas that expe-
rienced more substantial vegetation loss during a fire, 
aiding in the delineation of high-impact zones. High 
post-NBR values indicate severe burn severity, signaling 
heightened susceptibility in those regions. Conversely, 
areas with low post-NBR may suggest less severe burns 
or areas where the vegetation remained relatively 

intact. The temporal analysis of NBR, comparing con-
ditions before and after a fire event, contributes to 
a dynamic understanding of fire susceptibility. This 
approach enhances the precision of mapping by consid-
ering the evolving landscape due to fire disturbances. 
Integrating pre- and post-NBR data into susceptibility 
mapping provides a valuable tool for identifying areas 
prone to severe vegetation loss and understanding the 
aftermath of wildfires. Pre- and post-NBR analysis 
(Fig. 12) in fire susceptibility mapping contributes to a 
nuanced evaluation of fire-prone areas. It enables the 
identification of regions with pre-existing vulnerabili-
ties and offers insights into the severity of recent fire 
events. The integration of these indices enhances the 
overall accuracy of mapping, assisting in targeted miti-
gation efforts, resource allocation, and long-term land-
scape management strategies.

The northeast section of Gujarat, the coastline 
region of Saurashtra, and certain regions in Kutch 
have higher dNBR values (Fig.  12). Higher positive 
dNBR values imply a more severe burn, whereas lower 
or negative values indicate post-fire recovery or bet-
ter vegetation. The higher dNBR readings in Gujarat’s 
northeast region, Saurashtra coastline region, and 

Fig. 11 Classified map of post fire normalized burn ratio (Post-NBR)
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certain regions in Kutch indicate a greater severity of 
fire effect in certain areas. Analyzing dNBR values is 
critical for determining the level of fire damage, pri-
oritizing post-fire recovery operations, and develop-
ing landscape restoration and fire control policies in 
affected regions.

LST
Land surface temperature (LST) is a crucial factor in 
fire susceptibility mapping, offering insights into ther-
mal conditions that influence vegetation flammability. 
Elevated LST often corresponds to increased vegeta-
tion dryness, elevating the risk of ignition. Integrating 
LST into mapping enables the identification of areas 
experiencing persistent high temperatures, signaling 
heightened fire risk (Fig. 13). The relationship between 
LST and fire susceptibility is intricate, considering fac-
tors such as topography and land cover. Steep slopes 
and certain land covers may contribute to higher LST, 
indicating areas prone to rapid fire spread. Temporal 
analysis of LST adds a dynamic dimension, allowing for 
the assessment of seasonal variations and prolonged 

periods of elevated temperatures, contributing to a 
comprehensive understanding of fire susceptibility. The 
inclusion of LST in susceptibility mapping aids in pri-
oritizing interventions, resource allocation, and devel-
oping effective strategies for wildfire prevention and 
management.

Land surface temperature (LST) prediction on 
Google Earth Engine (GEE) involves leveraging its vast 
computational capabilities and satellite imagery; sen-
tinel data has been used for the same. Figure  14 illus-
trates the LST prediction map for Gujarat state. GEE 
provides a platform for processing, analyzing, and 
visualizing geospatial data, making it ideal for LST 
modeling. Utilizing machine learning algorithms and 
random forest was implemented on GEE to predict 
LST based on various input parameters. The process 
begins with data preprocessing, including atmospheric 
correction and feature selection. Subsequently, the 
algorithm is trained on historical temperature data to 
establish a predictive model. The trained model is then 
applied to new imagery for LST prediction and vali-
dated with actual LST (Fig. 15). GEE’s scalability allows 

Fig. 12 Classified map of differenced normalized burn ratio (dNBR)
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for large-scale and temporal analyses, making it a pow-
erful tool for dynamic LST mapping, and facilitating 
research in wildfire risk assessments. Figure 15 demon-
strates the validation for predicted LST performed on 
GEE; results indicate a good amount of accuracy in the 
predicted LST with actual LST.

The fire susceptibility map on the Google Earth Engine 
is generated by combining normalized burn ratio (NBR) 
and land surface temperature (LST) with random forest 
(RF) and the map is illustrated in Fig.  16. Utilize GEE’s 
extensive satellite imagery dataset. Compute NBR and 
LST, integrate them, and select relevant features. Com-
pile a training dataset with historical fire occurrences. 
Implement a random forest model on GEE, training it to 
predict susceptibility based on NBR, LST, and additional 
features. The fire susceptibility map was prepared with 
five classes very low, low severity, moderate, high sever-
ity, and very high as shown in Fig. 16. The major region 
under the study is susceptible to a very low to moderate 
risk of fire. Coastal regions of the Saurashtra peninsula, 
Central Gujarat, and some northern parts are susceptible 
to high risk of fire.

Discussions
Wildfires pose significant threats to ecosystems, human 
lives, and infrastructure globally, emphasizing the need 
for accurate prediction and effective management. 
Critical to mitigating the destructive impact of forest 
fires, preserving biodiversity, and safeguarding eco-
nomic interests are effective interventions like early 
warning systems, community engagement, and robust 
legislation (Skole and Tucker 1993). The evaluation of 
fire susceptibility includes the analysis of seven essen-
tial factors (aspect, elevation, slope, NDVI, drainage 
density, precipitation, temperature) using Google Earth 
Engine (GEE). Furthermore, pre-NBR (normalized 
burn ratio) and post-NBR, along with land surface tem-
perature (LST), were calculated using these identified 
factors. These factors played a vital role as input vari-
ables in the application of random forest for the map-
ping of fire susceptibility. A fire susceptibility map was 
generated, categorizing areas into five classes: very low, 
low severity, moderate, high severity, and very high (as 
illustrated in Fig.  16). The primary focus of the study 
reveals that the major region is prone to a risk ranging 

Fig. 13 Spatial variation of land surface temperature (LST) 
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Fig. 14 LST prediction map using random forest approach 

Fig. 15  Validation between the actual LST and predicted LST
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from very low to moderate. Notably, the coastal regions 
of the Saurashtra peninsula, Central Gujarat, and cer-
tain northern areas exhibit a higher susceptibility to the 
risk of fire.

Conclusion
To mitigate the catastrophic impact of wildfires, it is 
critical to correctly and rapidly detect active flames in 
their early stages. There are very few studies that focus 
on monitoring ongoing flames using AI-ML and geospa-
tial techniques. A thorough assessment of wildfire sus-
ceptibility by implementing advanced methodology by 
integrating diverse environmental variables and lever-
aging cutting-edge machine learning techniques across 
Gujarat State, India. The present study meticulously 
analyzes various environmental variables, i.e., slope 
orientation, elevation, NDVI, drainage density, precipi-
tation, and temperature to understand landscape char-
acteristics and assess wildfire susceptibility. In addition, 
a sophisticated random forest regression model is used 
to predict land surface temperature (LST) based on a 
set of environmental parameters. The significant goal of 

the study is to utilize Google Earth Engine to compare 
places in Gujarat, India, before and after forest fires. 
High-resolution satellite data were used to assess the 
amount and types of changes caused by forest fires. The 
results of this study contribute to a better understand-
ing of fire dynamics in this area by shedding light on 
the spatial distribution and severity levels of forest fires 
within the state. A more nuanced understanding of the 
susceptibility of different locations is made possible by 
the efficient application of a categorization model that 
divides fire severity into multiple levels: low, moderate, 
high, and very high. Densely wooded areas, particularly 
national parks and animal sanctuaries, were identified 
as hotspots for catastrophic fires, while open areas and 
non-forest regions had lower severity levels. Our find-
ings emphasize the need for accurate forest fire sever-
ity estimations in guiding decision-making. Gujarat has 
efficient forest fire management measures. The result-
ing fire severity maps are useful decision-making tools, 
aiding resource allocation, rehabilitation planning, and 
the execution of targeted fire preventive and mitigation 
measures. By adopting the research’s insights, we go one 

Fig. 16 Fire susceptibility classification map of the Gujarat state
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step closer to constructing a more resilient and sustain-
able future in the face of the rising problems posed by 
forest fires. But it is important to understand the limi-
tations of our approach. The availability and quality of 
the training and validation datasets have a direct impact 
on the classification model’s accuracy. Taking this into 
consideration, we feel that additional field validation 
and comparison with past fire data are essential steps 
toward enhancing the overall precision and depend-
ability of our severity rating. Furthermore, this study 
was primarily concerned with assessing the intensity 
of forest fires and did not go into the underlying causes 
and drivers of forest fires in Gujarat. While our find-
ings give a thorough picture of the spatial distribution 
and severity levels of forest fires in the region, future 
studies should seek to untangle the intricacies of the 
variables driving forest fires in the region. Taking these 
factors into account, our research serves as a basic step 
toward successful forest fire control in Gujarat. We set 
the ground for future developments in the discipline by 
identifying the strengths and limits of our research. The 
findings of this study offer decision-makers a helpful 
toolkit for developing evidence-based policies and strat-
egies for maintaining ecosystems, saving biodiversity, 
and protecting communities from the ever-increasing 
threat of climate change Forest fires pose a risk. Moving 
forward, a commitment to continuous refinement and 
development of our approaches will be critical in pro-
moting a more robust and sustainable coexistence with 
Gujarat’s changing landscapes.
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