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Abstract 

Background Anthropogenic climate change is expected to catalyze forest conversion to grass and shrublands due 
to more extreme fire behavior and hotter and drier post-fire conditions. However, field surveys in the Northern Rocky 
Mountains of the United States show robust conifer regeneration on burned sites. This study utilizes a machine learn-
ing (GBM) approach to monitor canopy cover systematically on a census of burned areas in two large wilderness areas 
from 1985 to 2021, to contextualize these recent field surveys and create a monitoring baseline for future change.

Results A predictive model was developed from coincident LiDAR and Landsat observations and used to create 
time series of canopy cover on 352 burned sites (individual wildfires subset by number of times burned), which were 
then summarized using fire impact and recovery metrics. Fire impact, defined as canopy cover loss relative to pre-
fire condition, was highly correlated with burn severity (Spearman’s R = 0.70). Recovery was characterized by the fol-
lowing: (1) whether a burned area began gaining canopy cover and (2) how long would it take to reach pre-fire 
cover given observed rates of gain. Eighty-five percent of the land area studied showed evidence of recovery. Areas 
that are failing to recover are burning more recently than their recovering counterparts, with 60% of non-recovering 
sites burning for the first time after 2003. However, the 5-year probability of recovery is similar among recent burns 
and for those that burned earlier in the record, suggesting that they may recover with more time. Once sites begin 
recovering, median time to reach pre-fire cover is 40 years. Seven sites have expected recovery times greater than 200 
years, six of which burned for the first time after 2006.

Conclusion Overall, burned sites in wilderness areas of the Northern Rocky Mountains are broadly recovering 
from wildfire. However, anthropogenic climate change adds a layer of uncertainty to the future prognosis of coni-
fer recovery. This work provides a framework for systematic monitoring into the future and establishes a baseline 
of impact and recovery in the mountains of western Montana and northern Idaho.

Resumen 

Antecedentes Se presupone que el Cambio Climático de origen antropogénico podría catalizar la conversión de 
bosques a pastizales y arbustales debido a fuegos de comportamiento más extremos y condiciones post fuego más 
secas. Sin embargo, relevamientos de campo en las montañas rocosas del norte de los EEUU, muestran regenera-
ciones de coníferas muy robustas en sitios quemados. Este estudio usó una aproximación mediante el aprendizaje 
automático (GBM) para monitorear sistemáticamente la cobertura de dosel sobre un censo de áreas quemadas en 
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dos grandes áreas silvestres desde 1985 hasta 2021, de manera de contextualizar estos recientes relevamientos y crear 
una línea de base para el monitoreo de futuros cambios.

Resultados Un modelo predictivo fue desarrollado de manera coincidente con observaciones LIDAR y Landsat y 
usado para crear series de tiempo de cobertura de dosel sobre 352 sitios quemados (conjuntos de fuegos individu-
ales por el número de veces que se quemaron), los cuales fueron luego resumidos usando medidas de impacto 
del fuego y de recuperación. El impacto del fuego, definido como la pérdida de cobertura del dosel en relación a la 
cobertura pre fuego, se correlacionó altamente con la severidad del fuego (R de Spearman = 0,70). La recuperación 
fue caracterizada por (1) de qué manera el área quemada comienza a ganar cobertura en el dosel, y (2) cuánto tiempo 
lleva alcanzar la cobertura pre fuego dadas las tasas de ganancia de cobertura observadas. El 85% del área estudiada 
mostró evidencias de recuperación. Las áreas que no se han recuperado aún son aquellas que se han quemado más 
recientemente que sus pares en recuperación, con el 60% de los sitios no recuperados quemados por primera vez 
luego del 2003. Desde luego, la probabilidad de recuperación 5 años después del incendio es similar entre quemas 
recientes y aquellas que se quemaron antes y que aparecen en el registro, lo que sugiere que podrían recuperarse con 
más tiempo. Una vez que los sitios comienzan a recuperarse, la mediana para recuperar la cobertura previa al fuego es 
de 40 años. Siete sitios presentan una expectativa de recuperación mayor a los 200 años, seis de los cuales se que-
maron por primera vez luego de 2006.

Conclusiones En general, las zonas quemadas en áreas silvestres de las montañas rocosas del norte del EEUU, se 
están recuperando de manera amplia de los incendios. Sin embargo, el Cambio Climático antropogénico adiciona un 
manto de incertidumbre en el pronóstico a futuro sobre la recuperación de las coníferas. Este estudio provee de un 
marco conceptual para el monitoreo sistemático a futuro, y establece una línea de base de impacto y recuperación en 
las montañas del oeste de Montana y el norte de Idaho.

Introduction
Fire is a natural force of succession and evolution on 
western North American landscapes. Prior to European 
colonization, both individual species and ecosystems 
were maintained by episodic fire and evolved under the 
selective pressure of fire (Pausas and Keeley 2009; Ste-
vens et al. 2020). However, the nature of fire is chang-
ing under anthropogenic climate change and historic 
fire suppression. Wildland fuels are more abundant 
and continuous today than they were prior to European 
settlement (Hagmann et  al. 2021). At the same time, 
warmer and drier conditions are associated with more 
area burned (Westerling 2016; Abatzoglou et  al. 2021) 
and higher-severity fire (Parks and Abatzoglou 2020).

In light of shifting climatic conditions, there is a 
growing concern that some forests will not recover after 
fire and instead transition to shrub or grass systems. 
As more area burns at high severity (Parks and Abat-
zoglou 2020), stand replacing fire becomes more com-
mon on the landscape, which is the first step towards 
forest conversion (Parks et al. 2019). Failure to recruit 
a new cohort of trees in these areas ultimately leads to 
conversion (Davis et al. 2020), and small trees are more 
sensitive to climate extremes than their mature coun-
terparts (Trouillier et  al. 2019). Short-term drought 
(Young et  al. 2019), chronically dry conditions (Urza 
and Sibold 2017; Boucher et  al. 2020; Stewart et  al. 
2021), and temperature extremes (Kemp et al. 2019) all 
limit seedling recruitment in early seral forests.

In western North America, evidence is emerging of 
widespread conversion from forest to non-forest, cur-
rently and under expected future climate conditions. One 
third of forests in the Klamath region of northern Cali-
fornia and southern Oregon could transition to shrub-
lands by the end of the century (Serra-Diaz et al. 2018). In 
the boreal forests of Northern Alberta, Canada, wildfire 
is projected to facilitate the conversion of half of conifer 
forests to hardwoods or grass under some future climate 
scenarios (Stralberg et  al. 2018). In the southwestern 
United States, increased fire activity is already associated 
with less conifer regeneration and greater shrub presence 
(Keyser et al. 2020).

Forests in the Northern Rocky Mountains of the con-
terminous United States may be more resistant to con-
version than other systems in western North America. 
Under a 2  °C warming scenario, Montana forests are 
expected to experience less stand replacing fire and more 
post-fire recruitment than forests of the central and 
southern Rocky Mountains (Davis et al. 2020). Addition-
ally, recent field surveys of burn scars in the Northern 
Rockies indicate abundant conifer regeneration and sur-
vival when close to a seed source (Clark-Wolf et al. 2022). 
Similarly, Jaffe et al. (2023) documented abundant coni-
fer regeneration across all fire histories in mixed conifer 
forests of the Selway-Bitterroot wilderness. Further west, 
Povak et al. (2020) also found significant regeneration fol-
lowing wildfire in mixed conifer forests of the Okanogan 
Highlands and Eastern Cascades, which they partially 
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attribute to mild postfire weather conditions that may 
have reduced water stress on seedlings. Collectively, these 
findings indicate healthy forest recovery after wildfire in 
the region, at least in mixed-conifer forests. However, by 
mid-century, large swaths of the Northern Rockies are 
expected to experience summer heat extremes too warm 
to support widespread conifer seedling regeneration 
(Kemp et al. 2019). Northern Rockies forests currently sit 
at a crossroads: current conifer recruitment appears opti-
mistic, but widespread conversion and community reor-
ganization is possible before the end of the century.

Remote sensing is one of a few tools available to moni-
tor forest recovery systematically across large land areas. 
In particular, Landsat has been used extensively to study 
land surface change. Since the entire Landsat collec-
tion became free and publicly available in 2008, multiple 
metrics of analysis and methods for deriving ecological 
information from time series have been developed (Zhu 
2017). Indices such as normalized difference vegetation 
index (NDVI) (Kriegler et al. 1969) and normalized burn 
ratio (NBR) (García and Caselles 1991) are spectrally 
derived metrics that are commonly proxies for vegetation 
through time. These metrics are simple, easy to calculate, 
and correlate with a wide range of vegetative character-
istics in multiple biomes (Huang et  al. 2021). However, 
the proliferation of cheap and accessible computing 
power and the development of new machine learning 
techniques have reduced reliance on spectral proxies 
and allowed for more direct modeling of forest attributes 
such as cover (Matasci et al. 2018a), height (Hudak et al. 
2002; Pascual et  al. 2010), and biomass (Pflugmacher 
et al. 2014; Sun et al. 2022) from satellite imagery.

Additionally, there has been extensive development in 
methodology for deriving disturbance information from 
a time series of metrics (Zhu 2017). LandTrendr (Ken-
nedy et  al. 2010) uses a segmentation strategy to divide 
time series into components meant to reflect periods of 
landscape stasis and change and has been used exten-
sively for diverse monitoring tasks since its develop-
ment (Bright et al. 2019; de Jong et al. 2021; Runge et al. 
2022). It has been used to detect disturbance when the 
locations are unknown (Cohen et al. 2018) and has been 
designed for sensitivity to both abrupt and subtle change 
(Kennedy et  al. 2010). Similarly, the Vegetation Change 
Tracker (VTR) is designed to track abrupt change uti-
lizing thresholding (Huang et  al. 2010). However, both 
approaches are univariate and unable to accommodate 
multiple spectral indices in a single analysis. Recent 
innovations in remote sensing utilize machine learning 
to aggregate multiple spectrally derived metrics (Moran 
et al. 2020; D’Este et al. 2021; Sun et al. 2022). Machine 
learning approaches can also integrate information from 
other sensors such as LiDAR.

Aerial LiDAR is well-suited for quantifying forest struc-
ture because it has capacity for fine spatial resolution and 
is the best remote sensing tool available for measuring 
in the vertical dimension (Hyde et  al. 2006). The com-
parative advantage of LiDAR in machine learning is the 
massive training datasets it avails along with systematic 
and consistent measurements of forest structural attrib-
utes. However, LiDAR alone is limited as a monitoring 
tool because there is non-continuous spatial coverage 
and no temporal consistency compared to passive, sat-
ellite-based remote sensing systems such as Landsat and 
Sentinel.

LiDAR-Landsat covariance is the process of identifying 
relationships between coincident Landsat imagery and 
LiDAR observations to overcome the limitations of each 
respective sensor. This method can be used to extrapolate 
LiDAR-derived metrics beyond their original geographic 
footprints (Hudak et al. 2002; Wilkes et al. 2015; Matasci 
et al. 2018a) or to update older LiDAR data without col-
lecting another acquisition (Matasci et al. 2018b).

This study uses Lidar-Landsat covariance to produce a 
systematic assessment of fire impact and forest recovery 
on a census of large, burned areas in the Northern Rocky 
Mountains. The purpose of the remote sensing approach 
is to contextualize field-based findings indicating wide-
spread conifer regeneration with a growing body of liter-
ature describing the potential for future forest conversion 
(Stevens-Rumann et al. 2018; Stralberg et al. 2018; Serra-
Diaz et al. 2018; Keyser et al. 2020). The units of analysis 
for this study are wildfire events subset by the number of 
times they experienced reburning. Previous pixel-scale 
research has focused on segmenting time series into 
ecologically interpretable units (Kennedy et  al. 2010) or 
assigning categorical values to pixels corresponding to 
a modeled shapes (Moisen et  al. 2016). Our study uses 
simpler, more direct metrics to summarizing fire impact 
and recovery at the scale of individual wildfires with 
known locations and dates. The value of this approach 
is to reduce non-linear time series into intuitive, repro-
ducible metrics that can be compared across space and 
time at the scale of individual burned areas. Evaluating 
fire impact and recovery at event scale also increases rel-
evance to management as post-fire remediation and res-
toration efforts are usually funded and implemented on a 
fire-by-fire basis.

Our impact and recovery metrics were derived from 
time series of modeled annual canopy cover. A gradient 
boosted regression model (GBM) was developed to pre-
dict canopy cover from five spectral indices and three 
topographic variables. The model was trained on forest 
cover measurements derived from ten LiDAR datasets 
encompassing 160,000 ha. Annual cover estimates were 
then produced for the period 1985–2021 at 30 m spatial 
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resolution across the Selway-Bitterroot and Bob Marshall 
wilderness complexes, to create 352 individual 35-year 
time series depicting the progression of canopy cover on 
a census of burned sites, where each time series corre-
sponds to an area with a unique fire history. Fire impact 
on canopy cover and recovery rate were then calculated 
from each time series.

Fire impact was defined as the difference between 
mean pre-fire canopy cover and the absolute minimum 
post-fire canopy cover, which could occur at any point 
after a fire event to account for secondary mortality. Sites 
were considered to be recovering if they were gaining 
canopy cover post-fire, as evidenced by a positive slope of 
a linear regression fit to annual canopy cover predictions 
occurring after the observed absolute minimum. On 
recovering sites, a recovery rate was also calculated by 
using the regression slope to project how many years it 
would take to recover to each site’s pre-fire canopy cover. 
Sites were considered non-recovering if they never began 
gaining canopy cover post-event or if they had projected 
recovery times greater than 500 years. Because the prog-
nosis for conifer regeneration is often correlated with fire 
severity (Davis et  al. 2020) and fire history (number of 
times burned), impact and recovery were also evaluated 
as a function of area burned at high severity and number 
of times burned during the observation period.

The objectives of this study are to:

1. Monitor canopy cover on a census of 352 burned wil-
derness sites from 1985–2021 using machine learn-
ing to integrate forest observations from multiple 
sensors

2. Quantify fire impact and recovery of individual 
burned areas using direct, reproducible metrics

3. Determine if impact and recovery correlate with fire 
severity and number of times burned

4. Assess whether length of record influences the prob-
ability of observing recovery

Methods
Study area
The study area includes two adjacent wilderness areas 
(Fig. 1) representing a vast swath of relatively intact eco-
systems with similar vegetation and fire regime charac-
teristics and covering 1.13 million ha (Teske et al. 2012). 
It is topographically complex, with elevations ranging 
from 530 to 3200 m. Precipitation ranges from 63 cm in 
the south to over 178 cm (Teske et al. 2012). Plant com-
munities are diverse, with Pinus ponderosa (Ponderosa 
pine) occurring at low elevations, transitioning to Pseu-
dotsuga menziesii (Douglas fir) and Larix occidenta-
lis (western larch) on cooler sites (Parks et  al. 2015). 

Remnant patches of the pacific maritime community 
are widespread, including Tsuga heterophylla (western 
hemlock) and Thuja plicata (western red cedar) (Rollins 
et  al. 2002; Larson et  al. 2020). Abies lasiocarpa (subal-
pine fir) and Pinus contorta (lodgepole pine) are common 
at higher elevations (Rollins et al. 2002; Teske et al. 2012; 
Larson et al. 2020).

These forests contain diverse fire regimes, character-
ized by both mixed severity and infrequent stand replac-
ing fire (Teske et  al. 2012), with observed fire rotations 
ranging from 35 to 350 years (Rollins et al. 2002). Total 
area burned area is primarily driven by large wildfires, 
though the vast majority of fires are small. Teske et  al. 
(2012) estimate that 71–75% of fires in the BMC and SB 
are less than 405 ha. High-severity fire is common on the 
landscape, with roughly 35–40% of the land area burning 
in high severity events per century (Morgan et al. 2017; 
Teske et  al 2012). Reburned patches are common but 
they tend to be spatially small, as existing burn scars tend 
to limit fire spread (Teske et al. 2012).

Fire history and units of analysis
A census of 352 individual sites (total area of 4523  km2) 
were included in the analysis (Fig.  2). Of the 352 sites 
studied, 175 burned once, representing 89% of the stud-
ied land area. One hundred forty sites burned twice 
(10.5% by area), and 37 sites burned three or four times 
(0.38% by area). Portions of fires that reburned in subse-
quent incidents were treated as unique sites. For exam-
ple, the Footstool Fire burned in the central Selway in 
1988. A portion then reburned in the 2016 Moose Fire. 
The once- and twice-burned portions of the Footstool 
Fire are separate units of analysis for this study.

Response variable: LiDAR‑derived canopy cover
Gradient boosted machine learning (Hastie et al. 2001) 
was used to predict LiDAR-derived canopy cover from 
Landsat and topographic inputs. Canopy cover was 
defined conventionally as the proportion of LiDAR 
returns where Z is greater than 2 m in height (Peter-
son et  al. 2015; Moran et  al. 2020). The model was 
trained on spatially coincident Landsat and LiDAR data 
from 10 sites (160,000 ha) across Montana and Idaho 
(Fig.  1), representing a wide range of forest structures 
and biomes present in the study area. Sites ranged from 
4681 to 36,299 ha in area. Each of the ten sites was 
collected as part of different LiDAR acquisition initia-
tives over the course of a decade, so sensor and col-
lection date varied. However, all LiDAR was collected 
during the summer months between 2009 and 2020. 
Each LiDAR acquisition had at minimum 10 cm verti-
cal accuracy, more than 8 returns per  m2, and nominal 



Page 5 of 17Epstein et al. Fire Ecology           (2024) 20:56  

pulse spacing < 0.35 m. Canopy cover was calculated 
at 30 m using a Landsat raster as a template to avoid 
resampling the LiDAR once processed. Machine learn-
ing was performed using the R package H2O (2021). 
Raster processing and data cleaning and visualization 
were performed with packages raster (Hijmans 2022), 
terra (Hijmans 2023), dplyr (Wickham et al. 2022), and 
ggplot2 (Wickham et al. 2023).

Predictor variables: LANDSAT spectral indices 
and topographic metrics
Landsat and topographic metrics served as the predictor 
variables in model training and were also used to predict 
beyond the spatial and temporal extent of existing LiDAR 
acquisitions. Landsat Tier 1 Collection 1 images were 
acquired for the flight year of each LiDAR acquisition in 
Google Earth Engine (Gorelick et al. 2017). Pixels with a 

Fig. 1 Map of the study area with fire history polygons, which includes the Selway-Bitterroot (SBW, top left) and Bob Marshall Complex (BMC, top 
right). Darker colors correspond to areas that reburned during the study period. The gradient-boosted machine learning model was trained on ten 
LiDAR sites shown in dark grey on the bottom map. The study area falls in Idaho and Montana, United States
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Fig. 2 Methodology of study. “CC” refers to canopy cover
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medium or high confidence of clouds, shadow, or snow 
and ice were removed. Median and maximum compos-
ite images were calculated for the May–October growing 
season of each year. Each image has 5 bands: normalized 
difference vegetation index (NDVI), normalized burn 
ratio (NBR), and Tasseled Cap brightness, greenness, and 
wetness, for a total of 10 bands per year. The LANDFIRE 
Existing Vegetation Type (EVT) (US Geological Survey 
and Department of Agriculture 2016) dataset was used to 
query out bare ground, urban development, and irrigated 
cropland. Pixels were removed for every year of analysis 
if they fell into one of these categories in 2016.

The GBM model was also trained on elevation, slope, 
aspect, and topographic heat load index. These factors 
were included to capture a range of geophysical site char-
acteristics that control, in part, the distribution of canopy 
cover on the landscape. Elevation, slope, and aspect were 
taken from LANDFIRE (US Department of Interior and 
US Department of Agriculture 2022). Aspect was then 
used to calculate topographic heat load (McCune and 
Keon 2002) (Table 1).

The 35-year study period spanned three generations 
of Landsat sensors, incorporating imagery from Landsat 
5, 7, and 8 at various points. Landsat 8 was used from 
2013 to 2021, Landsat 5 was used from 1985 to 2012, 
and Landsat 5–7 composites were used in 2012 to offset 
the impact of the scan line corrector failure on Landsat 
7 (Markham et  al. 2004). Linear regression was utilized 
to transform the Landsat 8 Operational Land Imager 
(OLI) sensor raw spectral data to match Landsat 5 and 
7 Enhanced Thermal Mapper (ETM+) prior to machine 
learning (Roy et al. 2016). The GBM model was also given 
a binary variable identifying the source sensor of each 
pixel to internally correct for subtle differences between 
the ETM+ and OLI sensors.

GBM modeling
GBM is a supervised machine learning method that iter-
ates through a series of regression or classification trees 
and improves as it builds more trees. It is an ensemble 
method in the sense that final predictions are drawn from 

a composite of multiple regression trees (Hastie et  al. 
2001). GBM was chosen for this study because a previ-
ous study indicated that a single, general GBM model can 
perform well on varied landscapes (Moran et al. 2020).

Two grid searches were used for model tuning. First, a 
preliminary grid tested several tree depths while holding 
all other hyperparameters constant. This grid search was 
performed first because initial experimentation indicated 
that tree depth had the single biggest impact on model 
performance of any user-defined control. The number 
of trees in the ensemble was not limited to encourage 
the machine to build a shallow forest of many trees as a 
method to prevent overfitting (Elith et al. 2008) and was 
allowed to sequentially add trees until constrained by a 
stopping function. Then, once the optimal tree depth 
was defined, a second grid search was performed across 
learning rate (0.05 or 0.1), sample rate (testing values 
between 0.1 and 1 on 0.1 intervals), and column sample 
rate (values between 0.3 and 1 on 0.1 intervals) to find the 
best performing overall model. The two-step approach 
was chosen because it is a systematic, computationally 
efficient hyperparameter search. An 80/20 training/test-
ing split was used during model development, independ-
ent of the 5% validation holdback. Ultimately, after all 
quality control and validation holdbacks, the model was 
trained on 4,005,816 samples, with at least 83,913 sam-
ples from each training landscape.

Sampling and validation
GBM models improve along a gradient relative to a loss 
function. In this study, model gradients were calculated 
relative to root mean square error. Unbalanced datasets are 
difficult to evaluate using this metric (Branco et al. 2019) so 
each site was up-sampled or down-sampled to the mean 
number of samples across all ten sites. Then, the sites were 
combined and shuffled. Five percent of the data was ran-
domly held back for validation. Samples spaced at distances 
less than the estimated variogram ranges at each site were 
removed to address potential bias in the model perfor-
mance evaluation due to spatial autocorrelation, leaving a 
count of 37,777 samples in the final validation dataset.

Table 1 Covariates used in model training and prediction. A median and maximum value was calculated for each Landsat covariate, 
for a total of 10 Landsat and 3 LANDFIRE observations per pixel. Only pixels with observations available for all 13 covariates were used

Source Covariates Filtering

Landsat (median and maximum pixel value) NDVI
NBR
Tasseled Cap brightness
Tasseled Cap greenness
Tasseled Cap wetness

QA_pixel band used to filter clouds, shadow, 
snow, and ice

LANDFIRE Aspect (used to calculate topographic heat load)
Slope
Elevation

Existing Vegetation Type (EVT) used to filter 
bare ground, urban development, and irrigated 
cropland
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Predicting on burned landscapes and generating time 
series
The validated model was used to predict canopy cover 
of each burned pixel in the study area from 1985 to 2021 
and then aggregated to each unit of analysis. Fire perim-
eters were acquired from MTBS. Portions of fires that 
fell outside the bounds of the study area were removed. 

Intersecting polygons from multiple fires produced indi-
vidual burned units that were analyzed separately. These 
areas were identified and separated using a spatial union 
between all fire polygons in the study area and catego-
rized as once-burned, twice-burned, and > 3 × burned.

A time series of median canopy cover per year was cal-
culated for each site. Time was normalized to the time of 
the incident, with year zero being the fire year. Units that 
burned more than once were normalized to their first 
fire. Fires were removed from analysis if the most recent 
burn occurred after 2016 to give adequate time to track 
recovery. Fires that occurred in 1985 were also removed 
so that only fires with a known pre-fire canopy cover 
were included.

Defining impact and recovery
Pre-fire mean canopy cover was calculated for each time 
series—providing the reference value for estimation of 
impact. The absolute minimum canopy cover (blue verti-
cal dashed line, Fig.  3) was calculated from a three-year 

moving window to minimize the effects of atmospheric 
variations in satellite imagery year to year.

Impact was defined as the proportion of pre-fire can-
opy cover lost post-fire. It includes both primary loss 
from combustion (year 1 post-fire) and secondary mor-
tality (> year 1 post-fire). The mathematical definition of 
impact was calculated as follows:

Two metrics were used to assess recovery: (1) 
whether a burned area began gaining canopy cover 
(recovery) during the study period, as evidenced by a 
positive slope of a linear regression fit to annual canopy 
cover predictions occurring after the observed absolute 
minimum, and (2) how long it would take to reach pre-
fire cover given observed gain rates (projected recovery 
time). Rates of gain were calculated by fitting a linear 
regression model between canopy cover and years since 
fire, beginning after the observed absolute minimum 
cover and including a minimum of 3 years post-min-
ima. Projected recovery time was then defined as years 
to reach pre-fire canopy cover at the observed rate of 
change, plus the number of years of secondary mor-
tality before the absolute minimum was reached. Sites 
were considered non-recovering if they never began 
gaining canopy cover over the course of the study or if 
their projected time to recovery was greater than 500 
years. The methodology for projecting years to recov-
ery is shown in Eq.  2. Recovery rate was derived by 

(1)Impact =
(Pre− fire mean canopy cover)− (Absolute minimum canopy cover)

Pre− fire mean canopy cover

Fig. 3 Example time series of the Conger Creek Fire. Conger Creek yielded four separate units of analysis: a once-burned unit that burned in 2007, 
a twice-burned unit with fires in 2007 and 2012, a twice-burned unit with fires in 1988 and 2007, and thrice-burned area with fires in 1988, 2001, 
and 2007. This time series depicts the once-burned unit. The pre-fire canopy cover was 63%. Fifty-nine percent of pre-fire canopy cover was lost 
during the fire (impact). Absolute minimum canopy cover was 25.8%, which was observed 4 years post-event. After this point, the site began 
recovering (gaining canopy cover). It is expected to take 76 years to recover to its pre-fire canopy cover



Page 9 of 17Epstein et al. Fire Ecology           (2024) 20:56  

fitting a linear model to the portion of the time series 
that occurs after the absolute minimum canopy cover.

Nine burned areas increased in cover immediately fol-
lowing fire. Collectively, these nine sites made up 0.8% 
of the studied land area. Fire impacts on these latter 
sites were restricted to expanses of low cover, south-fac-
ing slopes that greened in the year following fire. These 
sites are likely non-forested based on their locations and 
response to fire and were not included for further analysis.

Correlation with severity and fire history
The proportion of area burned at high severity for each 
unit was calculated to assess whether severity corre-
lates with impact or recovery. Severity was defined using 
the US Geological Survey Monitoring Trends in Burn 
Severity (MTBS) dataset (USDA Forest Service and US 
Geological Survey 2017). Severity was defined as the pro-
portion of a unit’s area that burned at high severity at any 
point in the study period and was calculated cumulatively 
on sites that burned multiple times. Thirty percent of the 
study area burned at high severity at least once during the 
study period. Fire history was considered by comparing 
burned area impact and recovery among once-burned, 
twice-burned, and ≥ 3x-burned landscapes.

Statistical testing
Because ignitions occurred across the 36-year time series, 
each site had a variable number of post-fire observations 
available for assessing recovery. Two statistical tests were 
performed to determine if length of observation post-event 
controls recovery. First, time series were truncated to 5, 10, 
and 15 years post-event to standardize time series length 
regardless of year of ignition. Then, a binomial GLM model 
estimated the probability of a site recovering based on year 
of ignition and length of observation post-event (5, 10, 
15 years, plus entire available record). Second, a series of 
analysis of variance (ANOVA) tests were used to compare 
projected times to recover between ignition years when 
normalized to 5, 10, and 15years post-event.

Results
Model performance
The best performing GBM model produced an overall 
root mean square error (RMSE) of 9.70% and an R2 of 
0.905. Performance varied across the ten training sites, 
with R2 values ranging from 0.75 to 0.99 and RMSE val-
ues ranging from 1.33–13.1. The site with the R2 value of 
0.99 is a low canopy cover, short-statured ponderosa pine 

(2)
Years to Recovery =

Impact

Recovery Rate
+Years between fire event and absolute minimum CC

and juniper woodland in northeastern Montana (Phil-
lips County). The most important variables for predicting 

canopy cover were median wetness, median brightness, 
and median NBR.

Fire impact
Fires burned across a full range of pre-fire canopy cover 
but were concentrated in areas of 50–70% CC (Fig.  4). 
Burned areas lost a median 55% of pre-fire cover with 
loss occurring both immediately and for several years 
post incident. On many sites, these delayed losses were 
greater than the initial impact. The median proportion 
of impact that occurred after the first-year post-fire was 
43%, meaning that secondary loss accounted for roughly 
half of total cover loss for half of the burned areas. The 
median time to begin recovering was 9 years, with 25% 
of sites starting in 4 years, 75% in 16 years, and 90% in 
20 years. The longest period observed before recovery 
started was 31 years, on two sites in the SB. Both sites 
burned in separate 1986 incidents and then again in the 
2015 Meeker Fire on a high elevation ridgeline north of 
the Selway River. Although high-severity fire made up a 
relatively small proportion of burned area (median: 14%; 
IQR 4–35%), it was highly correlated with fire impact 
(Spearman’s Rs = 0.70) (Fig.  4) and much less correlated 
with pre-fire mean canopy cover and subsequent years 
to begin recovering. Twice- and thrice-burned sites were 
associated with greater impact than their once-burned 
counterparts. However, the variability within fire histo-
ries is greater than the difference in impact observed in 
once-, twice-, and thrice-burned sites (Table 2).

Fire recovery
Sixty-two burned areas (14% of landscape by area) do not 
show a recovery signal. 281 appear to be recovering, rep-
resenting 85% of the studied area. Initial canopy cover, 
fire severity, and fire impact were similar between recov-
ering and non-recovering sites (Table  1). Time was the 
primary delineating variable, with more recently burned 
areas less likely to show recovery. Of the sixty-two sites 
that are failing to recover, thirty-seven occurred since 
2003 and 28 occurred since 2010.

Probability of recovery by year
The probability of a site recovering was calculated for 
each ignition year to evaluate if the length of observation 
period impacts the probability of recovery. The probabil-
ity of a burned area gaining canopy cover (e.g., recovering) 
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approaches one when given 30 years of recovery and 
declines to 0.5 in the last year of observation (2016) 
(Fig. 5, gray ribbon). However, when fires are normalized 
to record length by evaluating only the first 5, 10, and 15 
years post-event (Fig. 5, colored ribbons), it becomes evi-
dent that the probability of recovery is similar for modern 
fires and fires occurring early in the record. The mid-part 

of the record (1994–2003) experienced longer periods of 
time between fire year and initiation of recovery regard-
less of length of observation, highlighting an element of 
temporal variability in recovery. However, once these fires 
began recovering, the total time to regain pre-fire cover 
was not different than other sites that burned earlier and 
later in the period (ANOVA, P < 0.05).

Table 2 Characteristics of recovering and non-recovering sites. Impact is defined as the proportion of pre-fire canopy cover lost 
during and after a fire. Pre-fire canopy cover, area burned at high severity, and impact were all similar between recovering and non-
recovering sites. Non-recovering sites generally burned more recently

Fig. 4 Spearman’s correlation between the proportion of a site burned at high severity (Y axis) and pre-fire mean canopy cover (left), fire impact 
(center), and years to begin recovering canopy cover (right). The box plots depict the distribution of each variable, with the notch in the box 
corresponding to the median. Impact is proportion of pre-fire canopy cover lost and includes both immediate and delayed loss
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Projected recovery time by year
Median recovery time was 40 years and was stable 
through the period of record (Fig. 6). No difference was 
observed in median recovery times between ignition 
years across the period of record (ANOVA, P < 0.05). 
Even when normalized to 5, 10, and 15 years of observa-
tion post-fire, there was no difference in time to recover 
between fire years (ANOVA, P < 0.05), indicating that 
rates of change are stable regardless of how many years of 
observation are available. In sum, the year a fire occurred 
is not related to median recovery time. Ignition year, 
however, is related to both the probability that a fire will 
begin recovery and the length of time between the fire 
year and initiation of recovery (Fig. 4).

Patterns in recovery time
Seven burned areas have projected recovery times longer 
than 200 years (Fig.  6). Five of those fires experienced 
a single burn during the study period and two burned 
twice. The single longest recovery time observed was 365 
years, on a 14-km2 site in the South Selway that burned 
once in the 2012 Green Mountain Fire. The areas with 

projected recovery times greater than 200 years appear 
to be burning later in the record compared to their faster 
recovering counterparts. One of these slow recovering 
sites burned in 1988, while the remaining six experienced 
their first ignition after 2006. Fire impact on these outlier 
sites was also greater than the study area at large, with a 
median impact of 70% compared to 55% in the broader 
study area.

Additional elements of complexity
Repeated fire during the 35-year period of record 
impacted a modest proportion of the landscape, with 102 
sites (13.5% of burned area) burning twice, and twenty-
eight sites (0.5% of area) burning three or four times. 
Time series were normalized to the first fire, so repeated 
fire had a cumulative effect on impact. Once-burned sites 
lost a median 51% pre-fire canopy, twice-burned lost 59% 
and thrice-burned lost 69%. Repeated fire was associated 
with non-recovery, though the cumulative effect of addi-
tional fire was small. Seventeen percent of single burned 
sites failed to begin recovery, compared to 18% of twice-
burned and 21% of thrice-burned sites. On recovering 

Fig. 5 Probability of sites recovering by ignition year, determined by logistic regression. The beginning of recovery is defined as the point 
post-event at which a site begins gaining more canopy cover than it loses. Lines represent probabilities, and ribbons represent standard error. The 
grey band depicts the probability of recovery when observed for the entire available record, the length of which varies based on ignition year. The 
colored bands represent the probability of recovering when observed for 5, 10, or 15 years post-event. All probabilities are calculated by a binomial 
glm model
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sites, the median time to reach pre-fire canopy cover was 
37 years on once-burned sites, 43 on twice-burned, and 
47 on thrice-burned sites.

Median fire impact was greater on the BMC (64%) than 
the SBW (50%). However, the SBW experienced more 
variation in fire impact, with an interquartile range of 
38% compared with 16% on the BMC. This is consistent 
with the more varied forest communities, fire regimes, 
and terrain on the SBW. The BMC also experienced more 
widespread recovery, with 89% of the burned area show-
ing recovery compared to 79% of the SBW. However, 
once sites began recovering, recovery took longer on the 
BMC at 49 years, compared to 37 years on the SBW.

Discussion
Canopy cover change following wildfire is a complex 
phenomenon. We found that cover continues to decline 
for a period of time after fire, perhaps due to secondary 
mortality and falling snags. At the same time, surviving 
small trees release into canopy caps and intermediate 
and dominant stems expand their crowns in response 
to better access to light, water, and nutrients. In most 
cases, a new cohort eventually emerges, grows above 2 
m in height, and contributes to cover increases. Given 
that burned forests are highly heterogeneous, all of the 

aforementioned processes are happening together at 
variable intensities and time scales across large burned 
areas. It is therefore difficult to ascribe the specific eco-
logical causes of cover change consistently from one fire 
to another. For this reason, we caution against interpret-
ing increases in cover after wildfire as the result of regen-
erating trees exclusively and we acknowledge that our 
definitions of impact and recovery are simplistic relative 
to the inherent ecological complexity of these systems.

The 2-m height threshold used to define cover is nec-
essary to avoid over-estimating due to debris, shrubs, 
rocks, and other terrain features. While the LiDAR based 
response variable necessitated a 2-m threshold, the 
underlying Landsat indices of NDVI, NBR, and Tasse-
led Cap brightness, greenness, and wetness likely detect 
regenerating conifers before they reach 2 m in height. 
Thus, we do not know at what stage in early tree growth 
this model becomes sensitive to regeneration, particu-
larly in the context of other simultaneous processes 
such as mature canopies expanding into gaps. Addition-
ally, we are not able to distinguish the vegetation types 
contributing to cover, and it is possible that some of the 
early recovery detected is due to emerging shrubs such 
as snowberry, ceanothus, and serviceberry. Our findings 
are contextualized by post-burn field surveys indicating 

Fig. 6 Time to recover by year of ignition in conventional box-and-whisker notation. Non-recovering sites are depicted as a simple count 
below the X axi.s
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abundant tree regeneration of primarily western larch, 
ponderosa pine, and Douglas fir in the Bob Marshall 
Complex (Berkey 2020) grand fir and Douglas fir in the 
Selway (Jaffe et  al. 2023) and Douglas fir and lodgepole 
pine in the non-wilderness forest between the two study 
areas (Wolf 2021). However, the inability to distinguish 
between short trees and tall shrubs is a limitation of our 
approach.

Burned sites were used as the unit of analysis in this 
study because they are the common unit for assess-
ing, planning, and funding forest restoration. However, 
this approach does not capture intra-fire variability in 
recovery, which is of particular importance for evaluat-
ing fauna habitat (Sitters et al. 2016; Parkins et al. 2018). 
A pixel-based approach would enable a different analysis 
more focused on the biophysical factors related to impact 
and recovery such as elevation, temperature, water avail-
ability, and distance to a seed source. Such an approach 
would be a worthy follow-on investigation.

Impact
Impact was defined as the proportion of pre-fire canopy 
cover lost during and after an incident (Fig. 3). Our esti-
mates found a median 55% impact across sites, with an 
interquartile range of 23% to 87%. Area burned at high 
severity was positively associated with fire impact. This is 
consistent with previous work showing that high-severity 
fire increases tree mortality (Hood et al. 2018), and may 
be of some management concern, as area burned under 
high severity is expected to increase under future climate 
scenarios (Parks and Abatzoglou 2020).

Many sites continued to lose canopy cover years after a 
fire. Roughly half of sites experienced more impact from 
secondary effects than immediate combustion, with a 
median 43% of impact occurring after year 2. Second-
ary mortality has not previously been quantified in the 
region. However, this finding is consistent with surveys of 
ponderosa pine in the American southwest that similarly 
found secondary mortality to be almost equal to initial 
impact (Stoddard et  al. 2018). While immediate mor-
tality is typically caused by thermal injury (Hood et  al. 
2018), the mechanisms of secondary mortality are less 
understood and may be related to pre-fire competition, 
drought stress, and post-fire conditions (van Mantgem 
et al. 2018).

Repeated fire was uncommon, with 14% of the studied 
area burning more than once. While there was a positive 
association between number of reburns and cumulative 
impact to cover, the additive contribution of each subse-
quent fire was modest, with an 8% difference in median 
impact between once- and twice-burned sites and 10% 
difference between twice- and thrice-burned sites. This 
impact also translated to present but small differences in 

recovery probability. Nine of the ten burned areas ≥ 100 
ha that are not recovering or recovering slowly from a fire 
early in the period of record are multi-fire landscapes. 
The one exception is a part of the Helen Creek Fire in 
the northwest Bob Marshall which burned in 2000 in a 
rocky, high-elevation, subalpine forest that is expected to 
recover slowly.

Because the study period covers only 35 years, all 
observed fire-on-fire interactions occurred on relatively 
short intervals. Previous work has defined short inter-
val fire in similar systems as 15 years in Glacier National 
Park (Hoecker and Turner 2022), 12 years in the central 
Cascades (Busby et al. 2020), and 30 years in Yellowstone 
National Park (Turner et  al. 2019). Short interval fire is 
rare on this landscape (Rogeau and Armstrong 2017). 
Previous work on the SBW, BMC, and neighboring land-
scapes indicates that fire is generally self-limiting (Parks 
et al. 2014), and reburned patches tend to be small (Teske 
et al. 2012).

Parts of the study area likely experienced frequent, low-
severity fire prior to European colonization (Brown et al. 
1994) and could reasonably be expected to be resilient to 
cover loss under repeated fire. Our findings indicate that 
reburned sites have only slightly less recovery potential 
than their once-burned counterparts, indicating some 
resilience to repeated fire. However, short interval fire 
can also be associated with departure from historic plant 
communities in the Greater Yellowstone area (Hoecker 
and Turner 2022) particularly in fire intolerant woody 
species (Enright et  al. 2015) and species dependent on 
serotinous reproduction (Buma et al. 2013; Turner et al. 
2019). Additionally, climate-fire models with strong 
feedback between fire and subsequent fuel constraints 
still indicate an increase in area burned between 2021 
and 2050 (Abatzoglou et  al. 2021), suggesting that the 
self-moderating effect of fire on the landscape might be 
dampened and reburning might soon affect more area.

Probability of recovery
Most sites, when given enough time, begin recovering 
canopy cover. Field surveys of the area have observed 
robust regeneration (Jaffe et  al. 2023), particularly when 
near a seed source (Clark-Wolf et al. 2022). Our findings 
are consistent with these studies. When sites are observed 
for 5, 10, and 15 years post event, the probability of recov-
ery is similar for most years of ignition. The exception is 
the period from roughly 1994–2003, during which the 
probability of recovery is dampened in the first 15 years 
post-fire compared to earlier and later years in the record.

The region experienced multiple exceptionally dry 
periods during the late 1990s into the 2000s, includ-
ing an extended drought from Fall of 1999 to Spring 
of 2005 (NOAA National Centers for Environmental 
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Information 2023). Multiple studies indicate that hot 
and dry conditions following wildfire tend to suppress 
conifer regeneration, though the actual timespans stud-
ied range from just the year of germination (Davis et al. 
2019), 3 years (Harvey et  al. 2016; Stevens-Rumann 
et  al. 2018), or 5 years (Urza and Sibold 2017; Stewart 
et  al. 2021). This drought could explain the observed 
decreased probability of recovery in the first 15 years 
after fire. However, despite their initial lag, these sites 
eventually began recovering at rates indistinguishable 
from those that burned in more normal moisture condi-
tions. Although this finding indicates that forests in the 
region may be resilient to episodic drought despite ini-
tially delayed recovery, it suggests a sensitivity of forest 
recovery to climate. It also indicates that longer moni-
toring may be required to fully evaluate conifer regener-
ation, particularly if sites have only been observed in 
periods of drought.

Sixty-two sites (14% of studied land area) did not show 
a recovery signal during the period of record. These sites 
represent a relatively small portion of the landscape but 
may be of critical management importance as early har-
bingers of forest conversion. Most of these non-recovering 
sites burned recently, particularly from 2011 onward. Our 
analysis shows a high likelihood many of these recently 
burned sites will recover with time. However, the North-
ern Rocky Mountains have trended hotter and drier since 
the beginning of the study period (Hansen et  al. 2006; 
Hornbach et  al. 2016), with a notable increase in maxi-
mum summer temperatures (Joyce et al. 2018). While the 
widespread recovery from fires in 1980s through 2000s is 
reassuring, the trend has potential to break down as post-
fire conditions diverge from historic normals.

Time to recover
Median time to recover canopy cover was 45 years. Once 
sites begin the recovery process, there was no difference 
in projected time to recover when observing sites for 5, 
10, and 15 years post incident, indicating that most sites 
are stable in their rate of recovery. Median recovery time 
was also stable through time (Fig. 6), but outliers became 
more common in recent years. Six fires occurring after 
2006 had projected recovery times greater than 200 
years, compared to one fire pre-2006.

Parts of the study area have fire return intervals up 
to 350 years (Teske et  al. 2012). This study observed 
the landscape for 35 years, and almost certainly cap-
tured more fire in systems that burn frequently and have 
evolved resistance to impact (Stevens-Rumann et  al. 
2018). It is possible that the long recovery outliers in this 
study represent stand replacing fire in a climax forest 
community that will naturally take a long time to recover 
but still exist within the bounds of the historic normal. 

Additionally, this study utilizes pre-fire state as the base-
line to which recovery is calculated. While wilderness 
areas have generally been allowed to burn unhindered 
since the late 1960s, they still experienced fire suppres-
sion and subsequent fuel buildup in the decades prior 
(Berkey 2020). Thus, pre-fire state on these six outlier 
sites could potentially be an overstocked relic of historic 
fire suppression, artificially inflating the time to recovery. 
However, their clustering in recent years raises suspi-
cion that a biophysical or climatic factor may be slowing 
recovery. Further work is needed to monitor these six 
sites going forward and contextualize them within their 
ecological settings relative to factors such as distance to 
seed source, patch severity, and water availability.

Conclusion
This research builds on a legacy of remote sensing for 
studying forest impact and recovery from disturbance 
(Kennedy et al. 2010; Moisen et al. 2016). Time to recover 
from disturbance, expressed in years, has not been 
examined in the Northern Rocky Mountains of the US, 
although similar spectral-based approaches have been 
used to monitor boreal forests north of the study area 
(Schroeder et  al. 2011; Bolton et  al. 2015; Pickell et  al. 
2016). The work’s novelty is in the integration of multiple 
sensors to inform a growing debate around the progno-
sis of forest recovery. It harnesses a training set of four 
million pixels to produce consistent cover estimates with 
known accuracy, and it can be updated easily to moni-
tor into the future. Designated wilderness is well-suited 
for this investigation because its unique management 
context provides a natural laboratory for observing fire 
and vegetation dynamics relatively unfettered by human 
influences such as harvesting, planting, and reseeding 
(Kreider et al. 2022).

Forest recovery after wildfire is broadly evident in the 
Selway-Bitterroot and Bob Marshall Wildernesses, con-
sistent with field surveys showing widespread conifer 
regeneration across a variety of fire histories. This study 
identifies some sites that are either failing to recover or 
have projected recovery times greater than 200 years, 
most of which have occurred since the mid-2000s. Con-
tinued monitoring is required to determine if these sites 
will track similarly to burn scars of the 1980s and 1990s 
or if future environmental conditions will fundamentally 
alter their trajectories. However, in the broader context 
of the nearly 1.2 million ha of burned forest analyzed for 
35 years, we conclude that forests in the study area are 
currently recovering back to a forested state. Given the 
high likelihood of a warmer, drier future, the primary 
strength of this study is in defining baseline conditions 
and providing a framework for monitoring to detect 
changes in patterns of recovery as early as possible.
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