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Abstract 

Vegetation fires have major impacts on the ecosystem and present a significant threat to human life. Vegetation 
fires consists of forest fires, cropland fires, and other vegetation fires in this study. Currently, there is a limited amount 
of research on the long-term prediction of vegetation fires in Pakistan. The exact effect of every factor on the fre-
quency of vegetation fires remains unclear when using standard analysis. This research utilized the high proficiency 
of machine learning algorithms to combine data from several sources, including the MODIS Global Fire Atlas dataset, 
topographic, climatic conditions, and different vegetation types acquired between 2001 and 2022. We tested many 
algorithms and ultimately chose four models for formal data processing. Their selection was based on their perfor-
mance metrics, such as accuracy, computational efficiency, and preliminary test results. The model’s logistic regres-
sion, a random forest, a support vector machine, and an eXtreme Gradient Boosting were used to identify and select 
the nine key factors of forest and cropland fires and, in the case of other vegetation, seven key factors that cause a fire 
in Pakistan. The findings indicated that the vegetation fire prediction models achieved prediction accuracies ranging 
from 78.7 to 87.5% for forest fires, 70.4 to 84.0% for cropland fires, and 66.6 to 83.1% for other vegetation. Addition-
ally, the area under the curve (AUC) values ranged from 83.6 to 93.4% in forest fires, 72.6 to 90.6% in cropland fires, 
and 74.2 to 90.7% in other vegetation. The random forest model had the highest accuracy rate of 87.5% in forest fires, 
84.0% in cropland fires, and 83.1% in other vegetation and also the highest AUC value of 93.4% in forest fires, 90.6% 
in cropland fires, and 90.7% in other vegetation, proving to be the most optimal performance model. The models pro-
vided predictive insights into specific conditions and regional susceptibilities to fire occurrences, adding significant 
value beyond the initial MODIS detection data. The maps generated to analyze Pakistan’s vegetation fire risk showed 
the geographical distribution of areas with high, moderate, and low vegetation fire risks, highlighting predictive risk 
assessments rather than historical fire detections.

Keywords Machine learning, Forest fire, Crop fire, Other vegetation fire, Prediction models

Resumen 

Los fuegos de vegetación tienen grandes impactos en los ecosistemas y presentan una amenaza significativa para la 
vida humana. En este estudio, los fuegos de vegetación comprenden fuegos forestales, en cultivos, y otros fuegos de 
vegetación. Al presente, hay un limitado número de investigaciones sobre la predicción a largo plazo de los fuegos 
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de vegetación en Pakistán. El efecto exacto de cada factor en la frecuencia de los fuegos de vegetación es poco 
claro cuando se usan análisis estándar. Esta investigación utilizó la alta eficiencia de los algoritmos del aprendizaje 
automático (i. e. Machine Learning algorithms), para combinar datos de diversas fuentes, incluyendo datos del MODIS 
Global Fire Atlas, y datos topográficos, de condiciones climáticas, y de diferentes tipos de vegetación adquiridos 
entre 2001 y 2022. Probamos muchos algoritmos y finalmente elegimos cuatro modelos para procesar formalmente 
los datos. Su selección fue basada en la performance de sus medidas, como la exactitud, eficiencia computacional, 
y los resultados preliminares de estas pruebas. El modelo de regresión logística, bosque al azar (random forest), un 
algoritmo de aprendizaje supervisado (support vector machine), y una técnica de potenciación de gradiente extremo 
(extreme Gradient Boosting) fueron usados para identificar y elegir los nueve factores clave en fuegos forestales y en 
cultivos y, en caso de otro tipo de vegetación, siete factores clave que causan incendios en Pakistán. Los resultados 
indican que los modelos de predicción alcanzaron exactitudes que variaron entre 78,7 y el 87,5% para los fuegos 
forestales, el 70,4 al 84,0% en el caso de los fuegos en cultivos, y del 66,6 al 83,1% para otro tipo de vegetación. 
Adicionalmente, el área de los valores bajo la curva (AUC) variaron del 83,6 al 93,4% para fuegos forestales, del 72,6 al 
90,6% para los cultivos, y del 74,2 al 90,7% para otro tipo de vegetación. El modelo Random Forest fue quien presentó 
la mayor exactitud –87,5% en fuegos forestales, 84,0% en cultivos, y 83.1% en otro tipo de vegetación–, y también el 
AUC más alto (93,4%) para fuegos forestales, (90,6%) en cultivos, y 90,7 en otro tipo de vegetación, lo que probó ser 
el modelo más óptimo. Los modelos proveyeron de perspectivas predictivas en condiciones específicas y suscepti-
bilidades regionales a la ocurrencia de incendios, adicionando un valor significativo más allá de los datos iniciales de 
detección por MODIS. Los mapas generados para analizar el riesgo de incendio de la vegetación de Pakistán mos-
traron áreas de distribución geográfica con riesgo alto, moderado y bajo, señalando determinaciones predictivas más 
que detecciones históricas de fuegos.

Introduction
Wildfires represent a critical ecological and environmen-
tal challenge, impacting ecosystems and human com-
munities globally. This study narrows its focus on the 
scope of wildfires, particularly vegetation fires, highlight-
ing their frequency, spread, and management strategies. 
Forest loss and degradation, the emission of significant 
gasses and aerosols, etc., and the decrease in biodiver-
sity have been identified as significantly contributing to 
increased vulnerability to fires (Albar et  al. 2018). The 
global occurrence of wildfires shows considerable vari-
ation, with estimates suggesting they annually affect 
between 300 and 400 million hectares, varying signifi-
cantly by geographic intensity and local conditions (van 
Lierop et al. 2015; Attri et al. 2020). Over 80% of global 
wildfires occur in savannahs and grasslands, mainly in 
South America, Australia, Africa, and South Asia. Forest 
and shrub-dominated regions account for 20% (Schultz 

et  al. 2008). Annually, substantial funds are allocated 
towards fire management efforts to reduce or prevent the 
adverse consequences of wildfires (Thomas et  al. 2017). 
Wildfire events lead to the death and displacement of 
fauna (Tien Bui et al. 2016; Bhujel et al. 2017), pose risks 
to the lives and livelihoods of local communities, impact 
soil fertility and water cycles, release harmful pollutants, 
including particulate matter (Shahdeo et  al. 2020) that 
may contribute to global warming, and result in the loss 
of vegetation cover (Martell 2007; Usoltsev et  al. 2020; 
Shobairi et al. 2022; Anees et al. 2022b, 2024; Akram et al. 
2022; Aslam et al. 2022; Khan et al. 2024). Advancements 
in remote sensing technologies have contributed signifi-
cantly to the monitoring and evaluating of vegetation 
fires (Gitas et al. 2012). Previous research has leveraged 
multi-temporal and multi-sensor remote sensing tech-
nologies to assess and monitor vegetation fires (Table 1).

Table 1 List of sensers used for fire monitoring

Sensor package Source

SPOT 2A/2B (MSI)/SPOT 4–5 (VGT)/SPOT 1–7 (HRV) Krishna and Reddy 2012

Landsat TM/ETM + /OLI Manaswini and Sudhakar Reddy 2015

ENVISAT (MERIS) Saranya et al. 2014; Reddy and Sarika 2022

IRS AwiFS Reddy et al. 2017

SUOMI NPP VIIRS/Terra-Aqua (MODIS) Chuvieco et al. 2018

NOAA 7–19 (AVHRR)/PROBA V/Sentinel-1A/1B (SAR)/IRS LISS III Chuvieco et al. 2019
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Vegetation fires result from a complex network of 
interactions among various natural variables, includ-
ing climate and weather conditions (Andreevich et  al. 
2020), fuel composition, and topography. The ignition 
sources for these fires encompass hot surfaces, electri-
cal sparks, flames, friction, static electricity, mechani-
cal impacts (such as from machinery contact or falling 
rocks), and natural events like lightning (Vadrevu et  al. 
2008; Bui et al. 2017; Nami et al. 2018). Although human 
activities are globally recognized as predominant causes 
of fires, practices such as slash-and-burn for agricultural 
purposes are widely prevalent in South and Southeast 
Asia. Our study focuses on the climatic influences on 
fire occurrences in Pakistan. This study addresses how 
climatic factors, rather than direct human interventions, 
predominantly influence fire dynamics in Pakistan. While 
acknowledging the significant impact of human activities 
on fire occurrences as seen in regions such as the Eastern 
Ghats and northeast India (Vadrevu et al. 2008), Sarawak 
in Malaysia (Kleinman et  al. 1995), and the Chittagong 
hill tracts in Bangladesh (Borggaard et  al. 2003), our 
analysis focuses on how environmental variables (Anees 
et al. 2022b) like temperature, humidity, and solar radia-
tion play crucial roles in the region’s fire ecology. Topo-
graphic factors such as aspect, slope (Muhammad et  al. 
2023), and elevation are also considered for their effects 
on the extent of burnt areas and fire intensity based on 
comparisons across different studies (Nunes et  al. 2016; 
Pan et al. 2023).

Various models have been documented in the litera-
ture, focusing on distinct phases of the fire control cycle. 
These include vegetation fire occurrence models (Bote-
quim et  al. 2017), vegetation fire spread models (Zhai 
et  al. 2020), deployment and dispatch models, vegeta-
tion fire damage models, and decision and information 
systems as technological support platforms (Marques 
et al. 2012; Duff and Tolhurst 2015). The studies describ-
ing models briefly discuss prominent algorithms in 
each category, including supervised, unsupervised, and 
agent-based modeling approaches. Additionally, they 
included references on the fundamentals of machine 
learning. Supervised learning works to establish a corre-
lation between input data that has been labeled and the 
corresponding known output using a continuous target 
factor. A constant variable of interest is used in regres-
sion analyses, with various applications including fire 
vulnerability, fire occurrence, fire spread and burn area 
estimation, smoke and emissions prediction, and, finally, 
climate change assessment (Jain et  al. 2020). Unsuper-
vised learning aims to uncover patterns and relationships 
within data without using a specific target or outcome 
variable to guide the learning process. It is applicable for 
tasks involving clustering and dimensionality reduction. 

Clustering tasks in this context are used for fire mapping, 
fire detection, prediction of burnt areas, and fire weather 
prediction (Bot & Borges 2022). Some fire prediction 
algorithms, prominent for their computational speed 
and simplicity, utilize both supervised and unsupervised 
learning techniques to determine vegetation fire risks. 
These include neural networks, decision trees, random 
forest (Eslami et al. 2021), regression trees, and classifica-
tion algorithms (Cabral et al. 2018), along with K-nearest 
neighbor, support vector machines, K-means cluster-
ing, self-organizing maps, autoencoders, hidden Markov 
models, and hard competitive learning (Arnold et  al. 
2014). A prominent gap exists in long-term, predictive 
studies integrating environmental, meteorological, and 
human factors, particularly across broader geographical 
scales (Sohail et al. 2023). This gap highlights the need for 
enhanced predictive modeling to inform proactive fire 
management strategies. In response to these gaps, our 
research aims to (1) compile a comprehensive dataset of 
historical fire incidents in Pakistan from 2001 to 2022; (2) 
develop a predictive model for wildfire occurrences using 
MODIS data, incorporating various environmental and 
meteorological variables to forecast spatial and temporal 
patterns; and (3) conduct a long-term trend analysis to 
evaluate the frequency, distribution, and severity of wild-
fires in Pakistan over the past two decades.

Materials and methods
Study area
The research focused on Pakistan, covering the period 
from 2001 to 2022. Pakistan is located in the west-
ern zone of South Asia, northeast of the Arabian Sea, 
between latitudes 24° and 37° N and longitudes 62° and 
75° E (Qasim et  al. 2014). Pakistan covers an area of 
875,832 km2. Forests cover 2113 km2, croplands cover 
176,976 km2, and other vegetation covers 261,755 km2. 
According to MODIS data, there were 208,943 fire events 
recorded in Pakistan from 2001 to 2022, including 642 in 
forests, 158,474 in croplands, and 31,484 in other vegeta-
tion types. Figure 1 shows classifications of forested land, 
cropland, and other vegetated land.

The country is known for its diverse landscapes, which 
include towering mountains in the north and expansive 
arid regions in the southwest. It has four distinct sea-
sons: a mild and dry winter (December to February), a 
hot and dry spring (March to May), a rainy season (June 
to August), and a post-monsoon season (September to 
November) (Begum et  al. 2011). Pakistan’s forest cover 
is only 4.5%, a substantial concern considering the coun-
try’s agricultural-driven economy and location within 
the South Asian Ecological Zone (Oliveira et  al. 2011). 
Throughout the latter half of the twentieth century, evi-
dence indicated an escalating incidence of wildfires in 
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Pakistan, contributing to increased burn area (Rafaqat 
et  al. 2022a, b). Characterized by its lowest elevation at 
sea level and vulnerability to desertification, the eastern 
region of Pakistan requires targeted conservation and fire 
prevention strategies, particularly considering the avail-
ability of remote sensing technologies and worldwide 
databases that provide opportunities for a more detailed 
identification of factors causing fires and enhanced pre-
diction models (Rafaqat et  al. 2022a, b). This region is 
particularly vulnerable to wildfires due to its dry environ-
ment with little rainfall and susceptibility to desertifica-
tion (Kattel et al. 2019; Anees et al. 2022a).

Datasets
Handling of response variable
This study employs a comprehensive approach to analyze 
historical fire data, focusing on the period from January 
2001 to December 2022. This study used the MODIS fire 
product from the Fire Information for Resource Manage-
ment System (FIRMS), which gave information about 
active fires found by NASA’s Aqua and Terra satellites’ 
MODIS instruments (https:// firms. modaps. eosdis. nasa. 
gov) (Zhang et  al. 2021). We combined the monthly 
global 500  m grid product with 1  km of MODIS active 
fire observations to enhance the spatial analysis of the 
MCD64A1 Version 6 Burned Area data product (Giglio 
et al. 2018). This product facilitates the identification of 

per-pixel burned areas, detecting thermal anomalies and 
fire locations at a moderate resolution (Katagis and Gitas 
2022). We used this data to evaluate fire regimes on a 
national to continental scale, identify global hot spots of 
fire, and monitor trends in global vegetation fire occur-
rences (Giglio et al. 2006; Chuvieco et al. 2008). All fire 
events reported with a confidence level exceeding 50% 
were considered for detailed analysis. The analysis fol-
lowed a grid-based approach, examining each 1 × 1  km 
grid cell for vegetation fire occurrences, binary-labeled as 
“1” for presence and “0” for absence. In this study, analyz-
ing land use and land cover was crucial for understand-
ing the distribution and types of vegetation affected by 
fires. The International Geosphere-Biosphere Project 
(IGBP) classification scheme of the MODIS product 
MCD12Q1 was used in the study (Liang et al. 2015; Bad-
shah et  al. 2024). This product has 500-m-level data on 
land cover (Sulla-Menashe and Friedl 2018). The dataset 
available on the LP DAAC website (https:// lpdaac. usgs. 
gov/) greatly aided in identifying the surfaces beneath 
various types of vegetation in the study area (Usoltsev 
et al. 2022; Zhao et al. 2022). The research area shown in 
Table  2 underwent a careful process of mosaicking and 
reprojection using the Hierarchical Data Format-Earth 
Observing System (HDF-EOS) to Grid (HEG) tools. This 
step was crucial for achieving an accurate and coherent 
spatial representation of land cover types. The study area 

Fig. 1 Study area map along with various LULC

https://firms.modaps.eosdis.nasa.gov
https://firms.modaps.eosdis.nasa.gov
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
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divided grid cells into categories based on the land cover 
types a vegetation fire had affected, including forest fire, 
other vegetation, and cropland. Five hundred twelve out 
of 642 forest cells, 124,179 out of 158,474 cropland cells, 
and 22,663 out of 31,484 vegetation cells were marked as 
“fire cells” and given the number “1.”

During the dataset development, we created two ran-
dom subsets of the actual MODIS vegetation fire igni-
tion spots that were detected. We allocated 70% of this 
data for training the models and the remaining 30% for 
testing their performance. This division is standard prac-
tice in machine learning to validate models effectively, 

ensuring they can generalize well to new, unseen data. 
Using a 70–30 split, we aim to provide a robust dataset 
for training while retaining sufficient data for an accurate 
assessment of model performance in real-world scenarios 
(Rubí et al. 2023).

Selection and handling of predictor variables
This study utilized the Shuttle Radar Topography Mis-
sion’s (SRTM) Digital Elevation Model (DEM) dataset 
to investigate the impact of elevation, slope, and aspect 
as shown in Fig.  2 on the vegetation fire analysis. The 
SRTM dataset, downloaded from the SRTM Data Portal 

Table 2 Descriptions of vegetation types

Vegetation types Classes Source Resolution Unit Format Duration

Forest Evergreen broadleaf forest LP DAAC 500 m m2 HDF-EOS 2001–2021
Deciduous needle leaf forest
Deciduous broadleaf forest
Mixed forests

Other vegetation Closed shrublands
Open shrublands
Woody savannas
Savannas
Grassland

Crop Cropland
Cropland-natural vegetation mosaics

Fig. 2 Topographical factors. A Elevation. B Aspect. C Slope



Page 6 of 20Shahzad et al. Fire Ecology           (2024) 20:57 

(January 1, 2023), provide highly accurate nationwide 
coverage.

The historical monthly climatic data was downloaded 
from two different sources: WorldClim (https:// www. 
world clim. org/) (Barreto and Armenteras 2020) and ERA 
5 climate reanalysis data (https:// cds. clima te. coper nicus. 
eu/) (Zhang et  al. 2021) accessed on January 1, 2023). 
Key climatic variables extracted from WorldClim include 
minimum temperature (°C), maximum temperature (°C), 
and precipitation (mm), presented in GeoTiff format 
with a spatial resolution of approximately 2.5  min (~ 21 
km2). Additional climatic variables sourced from ERA 5 
climate reanalysis include northward and eastward com-
ponents of the 10  m wind (m/s), skin temperature (°C), 
surface net solar radiation (W/m2), surface net thermal 
radiation (W/m2), surface pressure (hPa), soil tempera-
ture (°C), and forecast albedo (unitless). These variables 
are provided in Netcdf format with a spatial resolution 
of about 9 km2. All data underwent meticulous preproc-
essing using RStudio, specifically employing the “raster” 
and “ncdf4” packages, alongside the ArcGIS software 
(Table 3).

Detection of violations of assumptions about independent 
variables
A linear regression model may encounter multicollin-
earity, characterized by a substantial correlation among 
its independent variables. This multicollinearity has the 
potential to distort the model’s estimation and impede 
accurate predictions (Chang et  al. 2013). The correla-
tion matrix shown in Fig.  3 uses a color scale ranging 
from blue (low correlation) to red (high correlation) to 
identify significant correlations between variables. Each 

cell in the matrix represents the correlation coefficient 
between two variables, providing a visual aid to detect 
potential multicollinearity issues. Analysis of multicol-
linearity involves assessing variance inflation factors 
(VIF) and tolerance levels (TOL), which are commonly 
utilized to evaluate the relationships among independ-
ent variables. It is widely acknowledged that a TOL value 
below 0.1 and a VIF value exceeding 10 indicate the pres-
ence of multicollinearity (Bui et al. 2019; Li et al. 2022). 
These thresholds suggest that multicollinearity could 
significantly impact the reliability of regression and clas-
sification model estimates. TOL and VIF are computed 
as follows (Eqs. 1 and 2):

where the coefficient of complex determination is 
denoted by R2.

Mann–Kendall mutation test
The Mann–Kendall mutation test is a statistical method 
used to analyze temporal fluctuations and detect signifi-
cant trends or “mutational changes” within time series 
data. These “mutational changes” refer to substantial 
alterations in the trend of the data, such as shifts from 
increasing to decreasing values or vice versa, which could 
indicate environmental or systemic changes. This method 
is valued for its straightforward implementation, high 
precision, broad applicability across diverse datasets, 
minimal human intervention, and efficient validation 
capabilities (Yue et al. 2002). The time series x, including 

(1)TOL = 1− R2

(2)VIF =
1

1− R2
=

1

TOL

Table 3 Descriptions of independent variables

Category Predictors Abbreviations Source Resolution Unit Format Duration

Topography Slope S https:// earth explo rer. usgs. gov/ 30 m M Geo.Tiff 2020

Aspect A

Elevation E

Climatic data Minimum temperature Temp_min WorldClim 21  km2 °C Geo.Tiff 2001–2021

Maximum temperature Temp_max °C

Precipitation Ppt mm

Northward components of the 10 m wind Wind U ERA 5 climate reanalysis data 9  km2 ms−1 Netcdf 2001–2022

Eastward components of the 10 m wind Wind V ms−1

Skin temperature Mean_temp °C

Surface net solar radiation Net_solar jm−2

Surface net thermal radiation Net_termal jm−2

Surface pressure SF Pa

Soil temperature soil_temp °C

Forecast albedo FA %

https://www.worldclim.org/
https://www.worldclim.org/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://earthexplorer.usgs.gov/
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n samples, represents  the fundamental temporal varia-
tions. By analyzing these patterns, it is possible to obtain 
knowledge of the historical evolution of the environ-
mental system, including weather variables and MODIS-
detected changes that generated the data (Mehmood 
et al. 2024d). The test calculates a sequence of detecting 
mutations according to the Eq. 3:

The sequence dk is a succession of independent units 
that adhere to the common scoring factors for calculating 
(dk) (Zhang et al. 2020):

(dk) indicates the expected value, Var(dk) is the vari-
ance, and UFk is a standard distribution of values. The 
statistical order is determined by analyzing the time 

(3)dk =
k

i=1
γi(k = 2, 3 . . . , n).

(4)UF(dk) =
[dk − E(dk)]√

var(dk)

series x in the order x1, x2, …., xn. The reverse sequence of 
x ( xn, xn-1…, x1) is computed. This procedure is repeated, 
and the value of dk is assessed by comparing each com-
puted dk to its expected statistical properties, including 
the mean and variance, to determine deviations that sug-
gest trends. A UB or UF value greater than 0 indicates 
the presence of both positive and negative trends in the 
time series. When these values exceed or fall below the 
key threshold (significance level), the time series trends 
upward or downward. The area beyond the threshold line 
is the mutation time region of the significant line (Feng 
et al. 2016).

Methodological overview machine learning models
Logistic regression
The logistic regression method is a classical statistical 
modeling method used to model binary outputs given 
one or more independent variables (Balboa et al. 2024). It 
is effective in different geographic locations for predict-
ing and analyzing the variables that drive fire occurrence 

Fig. 3 The Spearman rank correlation heat maps for a forest, b crop, and c other vegetation
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at different topographical levels (Garcia et al. 1995; Mar-
tínez et al. 2009). Many researchers have included model 
applicability (Oliveira et  al. 2012; Rodrigues and De la 
Riva 2014). The formula for LR is:

The equation represents the relationship between 
the probability of vegetation fire occurrence (P) and the 
number of variables (n), where (a1, a2, …, an) are the 
coefficients for each variable and (× 1, × 2, …, xn) are the 
factors that impact the rate of vegetation fires (Peng et al. 
2002; Zhang et al. 2021).

Random forest
The random forest (RF) model was employed to deter-
mine the variables that drive vegetation fires and their 
respective influences on the probability of vegetation 

fires in the geographical areas of Pakistan. The RF model, 
presented by Breiman (2001), employs multiple decision 
trees to train and predict samples, rendering it a clas-
sifier (Haddouchi and Berrado 2019). RF is a machine 
learning method based on an ensemble of classification 
and regression trees (CARTs). Each tree in the RF model 
is built using bootstrap samples, enhancing the model’s 
robustness against outliers and variability, which is criti-
cal for predictive accuracy in forest fire forecasting (Su 
et  al. 2018; Zhang et  al. 2022). The RF model is a fast 
machine-learning approach that can handle many input 
factors and delivers high predicted accuracy (Sarkar et al. 
2024). Still, it is sensitive to the danger of overfitting (Luo 
et al. 2024).

Hyperparameter adjustment was critical to derive the 
final models (Probst et  al. 2019; Mehmood et  al. 2024a, 
b, c). The number of trees (n = 1000), tree depth (maxi-
mum depth of 8), and minimum node size (minimum of 
7 samples per leaf node) were optimized in the forest and 
crop fire prediction, but in the case of other vegetation, a 
minimum size of 6 for each node. The final prediction is 
obtained by taking the mean of each regression subtree 
{h(x, θt)} , T represents the number of decision trees, θt rep-
resents a random vector that is independently and identi-
cally distributed, and x represents the input vector. The 

(5)Logit(p) = ln

(
p

P − 1

)

(6)h(x) =
1

T

∑T

t=1
h(x, θt)

predictive efficacy of the model is determined by the quan-
tity of random features and trees (Segal and Xiao 2011).

eXtreme Gradient Boosting
eXtreme Gradient Boosting (XGBoost), presented by Chen 
and Guestrin in 2016, is an innovative gradient-boosting 
decision tree (GBDT) algorithm (Chen and Guestrin 2016). 
It utilizes Taylor’s second-order expansion to optimize the 
loss function, exhibiting improved computing efficiency and 
generalization ability compared to other machine learning 
algorithms (Xie et al. 2022). The XGBoost model represents:

Here, ŷi is the predicted value for the ith sample, k 
denotes the number of decision trees, xi is the input data 
for the ith sample, fk(xi) is the k th decision tree generated 
in the k th iteration, and fk belongs to the tree collection 
space F (Luo et al. 2024).

The objective function for XGBoost is:

In Eq.  (8), the first part represents the loss function, 
the difference between the predicted and observed num-
bers. The second component is a regularization term that 
essentially governs the complexity of the model, guides the 
construction of a tree structure, and prevents overfitting 
(Piraei et al. 2023).

Support vector machines
Pattern classification and nonlinear regression widely uti-
lize support vector machines (SVMs). SVMs are based on 
the idea of minimizing structural risk (Jodhani et al. 2024). 
The fundamental concept behind SVMs is to create a classi-
fication hyperplane that serves as a decision boundary. The 
distance between positive and negative examples achieves 
superior generalization accuracy(Naderpour et  al. 2019). 
SVMs specialize in manipulating data in high-dimensional 
environments by effectively employing kernel functions to 
tackle diverse nonlinear problems(Rossi and Villa 2006). 
For a two-class SVM, considering a training set T = {(x1, y1), 
··· ( x1, y1)} ∈ (X × Y)1, where xi ∈ X=Rn and yi ∈ {1, − 1} for 
(i =1,2,…, l ) which represents the feature vector. The con-
sequence parameter C and the kernel function K ( x, x′ ) are 
specified. The problem of optimization is then formulated 
and resolved in the following manner (Boubeta et al. 2015):

(7)ŷi =
∑k

k=1fk(xi), fk ∈ F

(8)Obj =
∑N

i=1l
(
yi, ŷi

)
+

∑k
k=1�

(
fk
)
=

∑N
i=1 l

[
yi, ŷ

t−1
i + ft(xi)

]
+

∑k
k=1�

(
fk
)

(9)min
α

1
2�

j
i=1�

1
j=1yiyjaiajk

(
κ, x′

)
−�1

j=1αj
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The optimal solution α∗ = (α∗, . . . ,α∗)T is obtained. A 
positive component α∗ : 0 ≤ α∗

j ≤ C is then selected, and 
the threshold is computed as follows (Pang et al. 2022):

Finally, the decision function is constructed:

Model performance evaluation methods
Accuracy serves as a metric for evaluating categorical 
models, representing the percentage of correctly pre-
dicted outputs by the model as follows (Shao et al. 2023):

TP is  the percentage of true  positive cases, TN  is  the 
proportion of true  negative cases, FP indicates the per-
centage of false  positive cases, and FN  is false  negative 
cases (Pang et  al. 2022). Recall or sensitivity, also pre-
sented as part of our evaluation metrics in Table 5, meas-
ures the proportion of actual positives that are correctly 
identified by the model and is calculated as (Eq. 15). The 
F1 score, which combines precision and recall into a sin-
gle metric, is particularly useful when dealing with imbal-
anced datasets and is computed using (Eq. 16).

The F1 score, combining precision and recall, is com-
puted as:

The kappa coefficient is an indicator of statistical signif-
icance used to assess the level of reliability in testing. The 
expression is given by the following (Watson and Petrie 
2010):

where Po is the accuracy of the prediction, and Pe is 
the probability of chance agreement, derived from the 
class probabilities, and is crucial in understanding the 
kappa calculation as it considers both the observed and 
expected agreements. Kappa coefficients are categorized 
into five categories to represent varying degrees of accu-
racy: 0.0 to 0.20 for extremely low accuracy, 0.21 to 0.40 
for medium accuracy, 0.41 to 0.60 for high accuracy, 0.61 

(10)s.t.�
j
i=1yiαi̇ = 0,0 ≤ αi̇ ≤ C , i̇ = 1, . . . , l

(11)b∗ = yj −
∑1

i=1yiαiK
(
xi − xj

)

(12)f (x) = sgn(
∑1

i=1
αi ∗ yiK (x, xi)+ b∗

(13)Accuracy = TP+TN
TP+TN+FP+FN

(14)Sensitivity =
TP

TP + FN

(15)F1Score = 2. Precision . Recall
Precision+Recall

(16)Kappa = P0−PE
1−PE

to 0.80 for excellent accuracy, and 0.81 to 1 for virtually 
perfect accuracy (Landis and Koch 1977).

The ROC curve plots the true positive rate (sensitiv-
ity) against the false positive rate (1-specificity), illustrat-
ing the trade-offs between true positive and false positive 
rates across different thresholds (Carter et al. 2016). The 
area measures the accuracy of the results under the curve 
(ROC). The equations for the sensitivity and specific-
ity are as follows (El Emam et al. 2001; Pang et al. 2022). 
The AUC quantifies the overall ability of the model to 
discriminate between classes and is discussed in terms 
of effectiveness (Muschelli III 2020). The area under the 
curve (AUC) measures the model’s predictive power, 
categorized into four distinct groups: 0.5–0.85 denotes 
medium performance, 0.85 ~ 0.95 signifies high perfor-
mance, and 1.0 indicates ideal performance (Yingyongy-
udha et al. 2016; Sun et al. 2021). Figure 4 illustrates the 
workflow depicted in this paper.

Results
This study examined the multicollinearity of various 
environmental and topographic factors; their tolerance 
(TOL) values are more than 0.1, and variance inflation 
factors (VIF) are less than 10 across different vegeta-
tion types: forest, crop, and other vegetation, as shown 
in Table 4. This indicates a lack of covariance among the 
factors that may initiate fires, suggesting that these vari-
ables can inform fire risk assessments within the defined 
constraints of this study area and period.

Mann–Kendall mutation
The Mann–Kendall test applied to vegetation fires in 
Pakistan from 2001 to 2022 reveals fluctuating but over-
all upward trends in fire hotspots. Specifically, from 2006 
to 2007, UF values were negative, indicating a tempo-
rary decline in fire occurrences. Conversely, from 2001 
to 2006 and 2008 to 2022, UF values were consistently 
above zero, demonstrating a rising trend in the frequency 
of fires. Notably, the UF curve surpasses the 0.05 confi-
dence level (± 1.96 standard deviations), suggesting that 
the decline and rise in fire frequencies are statistically 
significant. These trends are visually detailed in Fig. 5. In 
Fig. 6, the temporal evolution of vegetation fires spanning 
the years 2001 to 2022 is depicted, with a detailed legend 
categorizing the data into distinct types, including forest 
fires, crop fires, and other vegetation fires.

The cumulative anomaly curve on the vegetation fire 
points in Pakistan showed negative, indicating a consist-
ent buildup of negative anomalies from 2001 to 2022, as 
shown in Fig.  7. The Mann–Kendall test shows a sub-
stantial increase trend in vegetation fires, but the curve’s 
below-zero position suggests consistent deviations from 
predicted values. These anomalies suggest that hotspots 
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frequently go below expectations, requiring further 
investigation into specific time frames and environmental 
variables. The point at which UF and UB meet the con-
fidence line validates its validity to detect an essential 
change in the number of national hotspots between 2001 
and 2022.

Logistic regression
To assess prediction accuracy across different vegetation 
types, a logistic regression modeling approach was used. 

The accuracy and AUC scores for each type of vegetation 
are as follows: in forest fire, the model achieved 81.6% 
accuracy and 87.3% AUC; in crop fire, the accuracy was 
70.4% and the AUC 72.6%; and in other vegetation fires, 
the accuracy was 66.6% with an AUC of 74.2%. These 
results are presented concurrently in Table  5 for forest 
vegetation, crop vegetation, and other vegetation. The 
ROC curves, which predict the rates of the four modeling 
approaches, are shown in Fig. 8. This figure illustrates the 
effectiveness of each approach in distinguishing between 

Fig. 4 Flowchart illustrating the stages involved in data processing and the outputs

Table 4 Results of multicollinearity analysis

Num Factor TOL for forest TOL for crop TOL for other 
vegetation

VIF for forest VIF for crop VIF for other vegetation

1 Slope 0.67 0.5 0.4 1.48 1.96 2.45

2 Aspect 0.98 0.9 0.99 1.01 1 1

3 Elevation 0.67 0.5 Not significant 1.48 1.96 Not significant

4 Minimum temperature 0.19 0.39 Not significant 5.07 2.5 Not significant

5 Precipitation 0.44 0.25 0.25 2.24 3.95 3.86

6 Northward components 
of the 10 m wind

0.47 0.77 0.73 2.11 1.28 1.35

7 Eastward components 
of the 10 m wind

0.64 0.47 0.56 1.54 2.12 1.77

8 Soil temperature 0.18 0.52 0.3 5.36 1.89 3.32

9 Surface net thermal 0.44 0.45 0.34 2.24 2.21 2.86
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the presence and absence of fire under various condi-
tions. Additionally, In Fig. 9, the analysis reveals that the 
importance of initiating factors varies significantly across 

different types of vegetation. Notably, while weather-
related variables tend to dominate across all categories, 
their impact is not uniformly distributed. For forest fires, 

Fig. 5 Mann–Kendall mutation test curve illustrating the temporal trends of fire hotspots from 2001 to 2022

Fig. 6 The incidence of vegetation fires during the same period, categorized by fire types such as forest fires, crop fires, and other vegetation fires, 
highlighting spatial variations
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variables such as wind speed (wind V), Soil Temp, and 
Tmin appear as the most influential, whereas for crop 
fires, factors like net thermal and ppt take precedence. 
This variation underscores the complexity of fire risk fac-
tors and the need to tailor fire management strategies to 
specific vegetation types and environmental conditions.

Random forest
The present study used advanced features of tidy mod-
els and ranger packages to predict forest, crop, and 

other vegetation fire RF models. This investigation led 
to the model’s configuration space and found the great-
est accuracy balance shown in Table  5. When modified 
with these parameters, the forest fire model predicted 
accuracy of 87.5% and 93.4; in crop fire, the model had 
84.0% accuracy and 90.6% AUC; and in other vegeta-
tion fire, the model exhibited 83.1% accuracy and 90.7% 
AUC. Figure 8 demonstrates that the RF model surpassed 
the performance of the other three modes, as evaluated 
with accuracy and AUC metrics. Hence, we deemed the 

Fig. 7 Cumulative distance leveling curve for vegetation fires

Table 5 Results from the evaluation of the four models for different types of vegetation

Model type Vegetation type Accuracy (%) AUC (%) Precision (%) Recall (%) F1 score (%)

Logistic regression Forest fire 81.6 87.3 90.0 71.0 79.4

Crop fire 70.4 72.6 69.3 74.3 71.7

Other vegetation 66.6 74.2 66.2 68.7 67.4

Random forest Forest fire 87.5 93.4 83.5 86.9 90.6

Crop fire 84.0 90.6 83.0 85.9 84.4

Other vegetation 83.1 90.7 83.1 83.3 83.2

SVM Forest fire 78.7 83.6 89.3 65.1 75.3

Crop fire 74.5 80.7 71.6 81.1 76.1

Other vegetation 68.7 74.8 64.9 81.1 72.1

XGBoost Forest fire 86.0 92.6 89.7 81.3 85.3

Crop fire 83.9 90.0 82.3 86.1 84.2

Other vegetation 79.4 87.6 77.7 82.2 79.9
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RF model as the most appropriate choice out of the four 
models for predicting forest fires in Pakistan. Figure  10 
shows the variable importance factors of forests, crops, 
and other vegetation.

Support vector machine
In this section of the study, the accuracy and generaliz-
ability of the SVMs model are used to predict forest, 
crop, and other vegetation fires. The forest fire model 
predicted accuracy of 78.7% and 83.6 AUC; in crop fire, 
the model had 74.5% accuracy and 80.7% AUC; and in 
other vegetation fire, the model exhibited 68.7% accu-
racy and 74.8% AUC. The ROC curve of prediction rates 
of the SVM model is shown in Fig. 8. Overall, the SVM 

models provided significant predictive capability for dif-
ferent types of vegetation fire. These findings highlight 
the SVM model’s robust predictive performance across 
various vegetation types, underscoring its potential util-
ity in designing targeted and effective fire prevention and 
management strategies. Further investigation into feature 
influence using advanced interpretative methods could 
enhance the model’s applicability and provide deeper 
insights into critical factors driving vegetation fire risks.

eXtreme Gradient Boosting
This study showed how well the XGBoost models we 
built can predict different types of vegetation fire. The 
accuracy and performance of the XGBoost model were 

Fig. 8 AUC curve of prediction rates of four models: a forest, b crop, and c other vegetation
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constantly evaluated to ensure that, they were suitable 
for diverse prediction conditions. The XGBoost model’s 
accuracy and AUC scores are shown in Table 5. The for-
est fire model showed an accuracy of 86.0% with an AUC 
of 92.6%; for crop fires, the model achieved an accuracy 
of 83.9% with an AUC of 90.0%; and for other vegetation 
fires, it recorded an accuracy of 79.4% with an AUC of 
87.6%. Figure 8 displays the AUC curves, illustrating the 
predictive performance of the XGBoost model across dif-
ferent types of vegetation. The results show that XGBoost 
models are second best for vegetation fire prediction in 
Pakistan using this set of variables for fires from 2001 to 
2022. The model could be used to improve management 
and mitigation approaches for vegetation fire.

Vegetation fire risk assessment
By assessing the precision of the four models, we selected 
the RF model, which had the best accuracy, to determine 
the likelihood of vegetation fire happening in the whole 

country. We used ArcGIS 10.8 to create a cartographic 
representation of Pakistan’s potential danger of vegeta-
tion fires. The values indicated in the legends in Fig. 11 
represent the expected probability of vegetation fires in 
Pakistan. For example, a vegetation fire has a probability 
of 1, showing the highest possibility of occurrence. The 
number of red regions ranges from 0.8 to 1, showing a 
high danger where vegetation fires are very likely to hap-
pen. Figure  11 illustrates that the prevalence of vegeta-
tion fires in Pakistan mainly occurs in specific regions. 
These regions include the northwest, covering various 
districts of Khyber Pakhtunkhwa (KP), such as Malakand 
Division, Bannu, Parachinar, Tank, and Kohat. Addition-
ally, the northeast region, comprising Azad Jammu and 
Kashmir (AJK) and Gilgit-Baltistan (GB), demonstrates a 
high incidence of vegetation fires. The southeast region, 
which includes Punjab and Sindh, along with Islamabad, 
Dera Ghazi Khan, Multan, Karachi, Hyderabad, and Mir-
pur Khas, also faces many vegetation fires. Lastly, the 

Fig. 9 The importance of initiating factor indicators in the LR model: a forest, b crop, and c other vegetation
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southwestern region, specifically Baluchistan, including 
Quetta, is prone to vegetation fires. Generally, the like-
lihood of vegetation fires is more significant in western 
areas of Pakistan than in the eastern regions. Addition-
ally, the possibility of vegetation fires is higher in south-
ern Pakistan than in the northern areas.

Discussion
In our study, we examined the various factors influ-
encing vegetation fire risk. Our analysis incorporates a 
detailed evaluation of meteorological variables such as 
average annual daily high temperature, annual average 
relative humidity, total annual precipitation, and aver-
age annual wind speed. We also considered broader 
climatic factors, topological features, and different 
vegetation types as significant determinants of fire risk 
(Li et  al. 2022). In this study, we selected nine vari-
ables for analyzing forest and crop fires and seven for 
other types of vegetation based on their demonstrated 

association with fire occurrences and their statisti-
cal significance in preliminary models. The associated 
variables identified include soil temperature, minimum 
temperature, northward and eastward components of 
the 10 m wind, precipitation, surface net thermal radia-
tion, slope, aspect, and elevation. For other vegetation 
types, elevation and minimum temperature were less 
significant in predicting fire ignition. These factors 
were crucial in training our machine learning models to 
predict vegetation fires effectively and were instrumen-
tal in the development of risk maps using the RF model. 
Fire factors and conditions vary by area (Abid 2021). 
This is primarily due to country-specific environmen-
tal and socioeconomic variables. It is also related to 
the investigated region and the environment of every 
country (Oliveira et al. 2012; Sun et al. 2023). Accord-
ing to Chang et al. (2013), land use intensity, precipita-
tion, and vegetation type are the key variables affecting 
Durango State, Mexico fires. Fuel moisture, vegetation 

Fig. 10 Importance of initiating factor indicators in the RF model: a forest, b crop, and c other vegetation
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type, and human activity in northeast China greatly 
influence man-made fires. In eastern Kentucky, height 
and slope are the high-influence variables that affect 
vegetation fires. The most critical factors affecting veg-
etation fires in Swaziland are elevation, mean annual 
rainfall, mean annual temperature, and land cover 
(Dlamini 2010).

This study tested four machine learning meth-
ods to predict fire occurrence and show each model’s 
strengths and applications on vegetation fire in Paki-
stan. The classic LR models provide a good prediction 
with an 81.6% predicted accuracy for forest fires, 69.2 
for crop fires, and 66.5 for other vegetation fires. The 
performance of LR in many predictive modeling situ-
ations was robust, achieving high accuracy and reli-
ability, although it did not always outperform the more 
complex models. However, it may not effectively cap-
ture complex non-linear interactions compared to 
more advanced algorithms (Khalaji et  al. 2022). The 
literature often acknowledges that advanced machine 
learning models, such as RF, SVM, and XGBoost, per-
form better than LR, particularly in complex predic-
tion tasks like mapping and vulnerability of vegetation 
fire risk assessment. This study demonstrated that RF 
exhibited outstanding results, achieving an 87.5% accu-
racy for forest fires, 84.0% in crop fires, and 81.7% in 
other vegetation. This corresponds to previous stud-
ies in environmental modeling, which emphasize the 
tendency toward RF and similar ensemble techniques. 
These methods were selected for their ability to quickly 

analyze data with many variables and to capture a wide 
variety of interactions (Shmuel and Heifetz 2022). An 
integrated approach may show outstanding results in 
the context of the SVM model, which demonstrated 
functional flexibility in previous research (Rodrigues 
and De la Riva 2014).

XGBoost has a powerful technique for prediction anal-
ysis, showing outstanding results in several fields, such 
as vegetation fire prediction. The XGBoost models show 
a remarkable degree of accuracy and ROC AUC values, 
which aligns with the present literature  that indicates 
their value in accurate overall classification (Mohajane 
et al. 2021; Mehmood et al. 2024a, b, c). The model’s abil-
ity to manage insufficient data and its optimal utilization 
of gradient boosting make it an essential tool for assessing 
environmental risks. Research has identified the intellec-
tual capacities required to develop effective approaches 
to managing and mitigating risks in different vegetation 
environments (Tehrany et al. 2019). Comparing different 
models reveals little complexity, understanding, and vari-
ation in predictive capabilities. While models like RF and 
XGBoost could show better predictive accuracy, LR pro-
vides a more understandable framework, which is essen-
tial to policy formulation and strategic decision-making 
(Peng et al. 2021).

Furthermore, the SVM model uses a unique kernel 
method, which provides a highly flexible solution for 
non-linear problems with the environment. Therefore, it 
can be highly beneficial in analyzing datasets with com-
plex feature associations (Lopez-Martin et al. 2019). Our 

Fig. 11 Vegetation fire risk assessment map
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research methodology also included the key foundational 
adjustment of hyperparameter modification, which sig-
nificantly impacts model performance. Modifying the 
parameters of models like RF and XGBoost (e.g., num-
ber of trees, depth of trees, or minimum size for a node) 
significantly affects their accuracy and ability to general-
ize. These methods are supported by research highlight-
ing the importance of model optimization (Jiang et  al. 
2022). According to the Mann–Kendall mutation test, 
vegetation fires showed an unstable increasing trend 
in Pakistan. This test is flexible and responsive, which 
is necessary to consistently show the temporal fluctua-
tions and various kinds of change (Vadrevu et  al. 2019; 
Mehmood et al. 2024a, b, c).

The result suggests that future studies should use a 
broader range of data sources, including remote sensing 
data and socio-economic aspects, to  enhance the accu-
racy and applicability of prediction models. Moreover, 
it is essential to take advantage of  the advancements in 
hybrid models, which enable the combination of various 
techniques to enhance prediction accuracy while  main-
taining accessibility. Therefore, the prediction and analy-
sis of vegetation fires continue to be a significant area of 
research with substantial potential to avoid disasters and 
protect natural resources. The consistent and dependable 
performance of advanced machine learning models in the 
field of vegetation fire provides numerous possibilities for 
future research efforts and practical implementations. 
Both scholars and professionals could actively contrib-
ute to advancing more efficient methods in mitigating 
fire hazards and minimizing the impact of vegetation fire. 
This may be achieved through continuous improvement 
of these models and their integration with comprehen-
sive data sources.

Conclusion
This research applied feature selection techniques to 
identify the most important variables associated with 
vegetation fire incidents in Pakistan. The key factors 
influencing the occurrence of vegetation fires were 
identified as meteorological and topographical, includ-
ing soil temperature, minimum temperature, north-
ward and eastward components of the 10  m wind, 
precipitation, surface net thermal radiation, and slope. 
We constructed four different types of prediction mod-
els for every kind of vegetation fire (forest, crop, and 
other vegetation) using the following ML algorithms: 
logistic regression (LR), random forest (RF), support 
vector machine (SVM), and eXtreme Gradient Boosting 
(XGBoost). The RF model demonstrated the best over-
all predictive capability, with an accuracy rate of 87.5% 
in forest fires, 84% in crop fires, and 83.1% in other veg-
etation fires. Hence, given its balance of computational 

speed and minimal variable requirements, the RF 
model is the most efficient choice for vegetation fire 
prediction in Pakistan. Using these probabilities, we 
created a map illustrating the annual likelihood of veg-
etation fires occurring throughout Pakistan during the 
study period. The study has significant implications for 
wildfire management policy and strategy. These algo-
rithms accurately predict fires, helping governments 
and firefighting agencies allocate resources and devise 
preventative methods. The study’s long-term trend 
analysis shows an unpredictable increase in vegetation 
fires in Pakistan, underscoring the importance of adapt-
able and flexible models to reflect temporal fluctuations 
and changes in fire dynamics. Further research should 
include remote sensing and socio-economic elements 
to enhance predictive model accuracy and applicabil-
ity. Hybrid models, which integrate multiple machine 
learning methods, can improve prediction accuracy 
while remaining user-friendly.

Acknowledgements
We are grateful to Precision Forestry Key Laboratory of Beijing, Beijing Forestry 
University for providing assistance and platforms for this research.

Institutional review board statement
Not applicable.

Informed consent statement
Not applicable.

Authors’ contributions
Fahad Shahzad: conceptualization, methodology, software, formal analysis, 
visualization, data curation, writing—original draft, investigation, validation, 
writing—review and editing. Kaleem Mehmood: visualization, writing—
review and editing, Zhongke Feng: writing—review and editing, Supervision. 
Khadim Hussain: writing—review and editing. Ijlal Haidar: writing—review 
and editing. Shoaib Ahmad Anees: formal analysis, investigation, writing—
review and editing. Sultan Muhammad: writing—review and editing. Jamshid 
Ali: writing—review and editing. Muhammad Adnan: writing—review and 
editing. Zhichao Wang: writing—review and editing, Supervision. All authors 
have read and agreed to the published version of the manuscript.

Funding
This study was supported by 5·5 Engineering Research & Innovation Team 
Project of Beijing Forestry University (BLRC2023A03) and the Natural Science 
Foundation of Beijing (8232038, 8234065) and the Key Research and Develop-
ment Projects of Ningxia Hui Autonomous Region (2023BEG02050).

Availability of data and materials
The data used to support the findings of this study are available from the cor-
responding author upon request.

Declarations

Ethics approval and consent to participate
This research did not involve human or animal subjects; therefore, formal 
ethical approval was not required. The study strictly adheres to general ethical 
principles, and the authors are committed to upholding the highest standards 
of ethical research conduct. Any potential conflicts of interest that could have 
influenced the ethical conduct of this research have been declared.
Informed consent was obtained from all participants involved in this study. 
Participants were provided with detailed information about the research 
objectives, procedures, potential risks, and benefits before agreeing to 
participate. They were assured that their participation was voluntary, and 



Page 18 of 20Shahzad et al. Fire Ecology           (2024) 20:57 

they had the right to withdraw from the study at any time without facing any 
consequences.
All participants were informed about the confidentiality measures in place 
to protect their identity and personal information. Data collected during the 
study will be used solely for research purposes and will be securely stored.
This study was conducted in accordance with ethical standards and guidelines, 
and participants were encouraged to ask questions and seek clarification at 
any stage of the research process. If you have any further questions or concerns 
regarding the consent process, please contact fahadshahzadbjfu@gmail.com.

Competing interests
The authors declare no competing interests.

Author details
1 Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 
Beijing 100083, China. 2 Key Laboratory of Genetics and Germplasm Innovation 
of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, 
College of Tropical Crops Hainan University, Hainan University, Haikou 570228, 
China. 3 State Forestry and Grassland Administration Key Laboratory of For-
est Resources and Environmental Management, Beijing Forestry University, 
Beijing 100083, P. R. China. 4 Key Laboratory for Silviculture and Conservation 
of Ministry of Education, Beijing Forestry University, Beijing 100083, P. R. China. 
5 Institute of Forest Science, University of Swat, Main Campus Charbagh, 
Swat 19120, Pakistan. 6 Department of Forestry, The University of Agriculture 
Dera Ismail Khan, Dera Ismail Khan 29050, Pakistan. 7 State Key Laboratory 
of Resources and Environmental Information System, Institute of Geographic 
Sciences and Natural Resources Research, CAS, Beijing 100101, China. 

Received: 14 February 2024   Accepted: 26 May 2024

References
Abid, F. 2021. A survey of machine learning algorithms based forest fires pre-

diction and detection systems. Fire Technology 57 (2): 559–590.
Akram, M., U. Hayat, J. Shi, and S.A. Anees. 2022. Association of the female 

flight ability of Asian spongy moths (Lymantria dispar asiatica) with 
locality, age and mating: A case study from China. Forests 13 (8): 1158.

Albar, I., et al. 2018. Spatio-temporal analysis of land and forest fires in Indone-
sia using MODIS active fire dataset. Land-Atmospheric Research Applica-
tions in South and Southeast Asia 105–127.

Andreevich, U.V., S.S.O. Reza, T.I. Stepanovich, A. Amirhossein, Z. Meng, S.A. 
Anees, and C.V. Petrovich. 2020. Are there differences in the response 
of natural stand and plantation biomass to changes in temperature 
and precipitation? A case for two-needled pines in Eurasia. Journal of 
Resources and Ecology 11 (4): 331.

Anees, S.A., et al. 2022a. Estimation of fractional vegetation cover dynamics 
and its drivers based on multi-sensor data in Dera Ismail Khan, Pakistan. 
Journal of King Saud University-Science 34 (6): 102217.

Anees, S.A., X. Zhang, M. Shakeel, M.A. Al-Kahtani, K.A. Khan, M. Akram, and 
H.A. Ghramh. 2022b. Estimation of fractional vegetation cover dynam-
ics based on satellite remote sensing in Pakistan: A comprehensive 
study on the FVC and its drivers. Journal of King Saud University-Science 
34 (3): 101848.

Anees, S.A., X. Yang, and K. Mehmood. 2024. The stoichiometric characteristics 
and the relationship with hydraulic and morphological traits of the 
Faxon fir in the subalpine coniferous forest of Southwest China. Ecologi-
cal Indicators 159: 111636.

Arnold, J.D., S.C. Brewer, and P.E. Dennison. 2014. Modeling climate-fire con-
nections within the great basin and upper colorado river basin, western 
united states. Fire Ecology 10: 64–75.

Aslam, M.S., P. Huanxue, S. Sohail, M.T. Majeed, S.U. Rahman and S.A. Anees. 
2022. Assessment of major food crops production-based environmen-
tal efficiency in China, India, and Pakistan. Environmental Science and 
Pollution Research 1–10.

Attri, V., R. Dhiman, and S. Sarvade. 2020. A review on status, implications and 
recent trends of forest fire management. Archives of Agriculture and Envi-
ronmental Science 5 (4): 592–602.

Badshah, M.T., et al. 2024. The role of random forest and Markov chain models 
in understanding metropolitan urban growth trajectory. Frontiers in 
Forests and Global Change 7: 1345047.

Balboa, A., et al. 2024. Logistic regression vs machine learning to predict 
evacuation decisions in fire alarm situations. Safety Science 174: 106485.

Barreto, J.S., and D. Armenteras. 2020. Open data and machine learning to 
model the occurrence of fire in the ecoregion of “llanos colombo–ven-
ezolanos.” Remote Sensing 12 (23): 3921.

Begum, B.A., et al. 2011. Long–range transport of soil dust and smoke pol-
lution in the South Asian region. Atmospheric Pollution Research 2 (2): 
151–157.

Bhujel, K.B., R. Maskey-Byanju, and A.P. Gautam. 2017. Wildfire dynamics in 
Nepal from 2000–2016. Nepal Journal of Environmental Science 5: 1–8.

Borggaard, O.K., A. Gafur, and L. Petersen. 2003. Sustainability appraisal of 
shifting cultivation in the Chittagong Hill Tracts of Bangladesh. AMBIO: 
A Journal of the Human Environment 32 (2): 118–123.

Bot, K., and J.G. Borges. 2022. A systematic review of applications of machine 
learning techniques for wildfire management decision support. Inven-
tions 7 (1): 15.

Botequim, B., et al. 2017. Modeling post-fire mortality in pure and mixed forest 
stands in Portugal—a forest planning-oriented model. Sustainability 9 
(3): 390.

Boubeta, M., et al. 2015. Prediction of forest fires occurrences with area-level 
Poisson mixed models. Journal of Environmental Management 154: 
151–158.

Breiman, L. 2001. Random forests. Machine learning 45: 5–32.
Bui, D.T., et al. 2017. A hybrid artificial intelligence approach using GIS-based 

neural-fuzzy inference system and particle swarm optimization for for-
est fire susceptibility modeling at a tropical area. Agricultural and Forest 
Meteorology 233: 32–44.

Bui, D.T., et al. 2019. A novel hybrid approach based on a swarm intelligence 
optimized extreme learning machine for flash flood susceptibility map-
ping. CATENA 179: 184–196.

Cabral, A.I.R., et al. 2018. Burned area estimations derived from Landsat ETM+ 
and OLI data: Comparing genetic programming with maximum 
likelihood and classification and regression trees. ISPRS Journal of Photo-
grammetry and Remote Sensing 142: 94–105.

Carter, J.V., et al. 2016. ROC-ing along: Evaluation and interpretation of receiver 
operating characteristic curves. Surgery 159 (6): 1638–1645.

Chang, Y., et al. 2013. ‘Predicting fire occurrence patterns with logistic regres-
sion in Heilongjiang Province, China. Landscape Ecology 28: 1989–2004.

Chen, T., and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In 
Proceedings of the 22nd acm sigkdd international conference on knowl-
edge discovery and data mining, 785–794.

Chuvieco, E., L. Giglio, and C. Justice. 2008. Global characterization of fire activ-
ity: Toward defining fire regimes from Earth observation data. Global 
Change Biology 14 (7): 1488–1502.

Chuvieco, E., et al. 2018. Generation and analysis of a new global burned 
area product based on MODIS 250 m reflectance bands and thermal 
anomalies. Earth System Science Data 10 (4): 2015–2031.

Chuvieco, E., et al. 2019. Historical background and current developments for 
mapping burned area from satellite Earth observation. Remote Sensing 
of Environment 225: 45–64.

Dlamini, W.M. 2010. A Bayesian belief network analysis of factors influencing 
wildfire occurrence in Swaziland. Environmental Modelling & Software 25 
(2): 199–208.

Duff, T.J., and K.G. Tolhurst. 2015. Operational wildfire suppression modelling: A 
review evaluating development, state of the art and future directions. 
International Journal of Wildland Fire 24 (6): 735–748.

El Emam, K., W. Melo, and J.C. Machado. 2001. The prediction of faulty classes 
using object-oriented design metrics. Journal of Systems and Software 
56 (1): 63–75.

Eslami, R., et al. 2021. GIS-based forest fire susceptibility assessment by random 
forest, artificial neural network and logistic regression methods. Journal 
of Tropical Forest Science 33 (2): 173–184.

Feng, X., et al. 2016. Evolution of spatial pattern of county regional economy in 
Yangtze River economic belt. Economic Geography 36: 18–25.

Garcia, C.V., et al. 1995. A logit model for predicting the daily occurrence of 
human caused forest-fires. International Journal of Wildland Fire 5 (2): 
101–111.



Page 19 of 20Shahzad et al. Fire Ecology           (2024) 20:57  

Giglio, L., et al. 2018. The Collection 6 MODIS burned area mapping algorithm 
and product. Remote Sensing of Environment 217: 72–85.

Giglio, L., I. Csiszar, and C.O. Justice. 2006. Global distribution and seasonality of 
active fires as observed with the Terra and Aqua Moderate Resolution 
Imaging Spectroradiometer (MODIS) sensors. Journal of Geophysical 
Research: Biogeosciences, 111 (G2): 1–12.

Gitas, I., et al. 2012. Advances in remote sensing of post-fire vegetation recov-
ery monitoring—a review. Remote Sensing of Biomass-Principles and 
Applications 1: 334.

Haddouchi, M., and A. Berrado. 2019. A survey of methods and tools used for 
interpreting random forest. In 2019 1st International Conference on Smart 
Systems and Data Science (ICSSD), 1-6. IEEE.

Jain, P., S.C. Coogan, S.G. Subramanian, M. Crowley, S. Taylor, and M.D. Flanni-
gan. 2020. A review of machine learning applications in wildfire science 
and management. Environmental Reviews 28 (4): 478–505.

Jiang, L., et al. 2022. Prediction of coronary heart disease in gout patients using 
machine learning models. Mathematical Biosciences and Engineering 20 
(3): 4574–4591.

Jodhani, K.H., et al. 2024. Assessment of forest fire severity and land surface 
temperature using Google Earth Engine: A case study of Gujarat State, 
India. Fire Ecology 20 (1): 23.

Katagis, T., and I.Z. Gitas. 2022. Assessing the accuracy of MODIS MCD64A1 
C6 and FireCCI51 burned area products in Mediterranean ecosystems. 
Remote Sensing 14 (3): 602.

Kattel, D.B., et al. 2019. Seasonal near-surface air temperature dependence on 
elevation and geographical coordinates for Pakistan. Theoretical and 
Applied Climatology 138: 1591–1613.

Khalaji, A., et al. 2022. Machine learning algorithms for predicting mortal-
ity after coronary artery bypass grafting. Frontiers in Cardiovascular 
Medicine 9: 977747.

Khan, W.R., M. Nazre, S. Akram, S.A. Anees, K. Mehmood, F.H. Ibrahim, ..., and X. 
Zhu. 2024. Assessing the productivity of the Matang Mangrove Forest 
reserve: review of one of the best-managed mangrove forests. Forests, 
15 (5): 747.

Kleinman, P.J.A., D. Pimentel, and R.B. Bryant. 1995. The ecological sustainability 
of slash-and-burn agriculture. Agriculture, Ecosystems & Environment 52 
(2–3): 235–249.

Krishna, P.H., and C.S. Reddy. 2012. Assessment of increasing threat of forest 
fires in Rajasthan, India using multi-temporal remote sensing data 
(2005–2010). Current Science 1288–97.

Landis, J.R., and G.G. Koch. 1977. The measurement of observer agreement for 
categorical data. Biometrics 159–174.

Li, W., et al. 2022. Predictive model of spatial scale of forest fire driving factors: 
A case study of Yunnan Province, China. Scientific Reports 12 (1): 19029.

Liang, D., et al. 2015. Evaluation of the consistency of MODIS Land Cover 
Product (MCD12Q1) based on Chinese 30 m GlobeLand30 datasets: A 
case study in Anhui Province, China. ISPRS International Journal of Geo-
Information 4 (4): 2519–2541.

Lopez-Martin, M., et al. 2019. Shallow neural network with kernel approxima-
tion for prediction problems in highly demanding data networks. Expert 
Systems with Applications 124: 196–208.

Luo, M., et al. 2024. Improving Forest Above-Ground Biomass Estimation by 
Integrating Individual Machine Learning Models. Forests 15 (6): 975.

Manaswini, G., and C. Sudhakar Reddy. 2015. ‘Geospatial monitoring and prior-
itization of forest fire incidences in Andhra Pradesh, India. Environmen-
tal Monitoring and Assessment 187: 1–12.

Marques, S., et al. 2012. Assessing wildfire occurrence probability in Pinus 
pinaster Ait. stands in Portugal. Forest Systems 21: 111–120.

Martell, D.L., 2007. Forest fire management: current practices and new chal-
lenges for operational researchers. In Handbook of operations research in 
natural resources, eds. A Weintraub, C Romero, T Bjørndal, R Epstein, pp. 
489–509. New York: Springer Science+ Business Media.

Martínez, J., C. Vega-Garcia, and E. Chuvieco. 2009. Human-caused wildfire 
risk rating for prevention planning in Spain. Journal of Environmental 
Management 90 (2): 1241–1252.

Mehmood, K., S.A. Anees, M. Luo, M. Akram, M. Zubair, K.A. Khan, and W.R. 
Khan. 2024a. Assessing chilgoza pine (Pinus gerardiana) forest fire 
severity: remote sensing analysis, correlations, and predictive modeling 
for enhanced management strategies. Trees, Forests and People 100521.

Mehmood, K., S.A. Anees, A. Rehman, A. Tariq, Q. Liu, et al. 2024b. Assess-
ing forest cover changes and fragmentation in the Himalayan 

temperate region: implications for forest conservation and manage-
ment. Journal of Forestry Research 35 (1): 82. https:// doi. org/ 10. 1007/ 
s11676- 024- 01734-6.

Mehmood, K., S.A. Anees, A. Rehman, A. Tariq, M. Zubair. et al. 2024c. Exploring 
spatiotemporal dynamics of NDVI and climate-driven responses in 
ecosystems: Insights for sustainable management and climate resil-
ience. Ecological Informatics 102532.

Mehmood, K., et al. 2024d. Analyzing vegetation health dynamics across sea-
sons and regions through NDVI and climatic variables. Scientific Reports 
14 (1): 11775.

Mohajane, M., et al. 2021. Application of remote sensing and machine learning 
algorithms for forest fire mapping in a Mediterranean area. Ecological 
Indicators 129: 107869.

Muhammad, S., K. Mehmood, S.A. Anees, M. Tayyab, F. Rabbi, K. Hussain, H.U. 
Rahman, M. Hayat, and U. Khan. 2023. Assessment of regeneration 
response of Silver Fir (Abies pindrow) to slope, aspect, and altitude in 
Miandam area in District Swat, Khyber-Pakhtunkhwa, Pakistan. Interna-
tional Journal of Forest Sciences. 4: 246–252.

Muschelli, J., III. 2020. ROC and AUC with a binary predictor: A potentially 
misleading metric. Journal of Classification 37 (3): 696–708.

Naderpour, M., et al. 2019. Forest fire induced Natech risk assessment: A survey 
of geospatial technologies. Reliability Engineering & System Safety 191: 
106558.

Nami, M.H., et al. 2018. Spatial prediction of wildfire probability in the Hyrcan-
ian ecoregion using evidential belief function model and GIS. Interna-
tional Journal of Environmental Science and Technology 15: 373–384.

Nunes, A.N., L. Lourenço, and A.C.C. Meira. 2016. Exploring spatial patterns 
and drivers of forest fires in Portugal (1980–2014). Science of the Total 
Environment 573: 1190–1202.

Oliveira, S.L.J., J.M.C. Pereira, and J.M.B. Carreiras. 2011. Fire frequency analysis 
in Portugal (1975–2005), using Landsat-based burnt area maps. Interna-
tional Journal of Wildland Fire 21 (1): 48–60.

Oliveira, S., et al. 2012. Modeling spatial patterns of fire occurrence in Mediter-
ranean Europe using multiple regression and random forest. Forest 
Ecology and Management 275: 117–129.

Pan, S.A., S.A. Anees, X. Li, X. Yang, X. Duan, and Z. Li. 2023. Spatial and temporal 
patterns of non-structural carbohydrates in Faxon fir (Abies fargesii var. 
faxoniana), subalpine mountains of Southwest China. Forests 14 (7): 
1438.

Pang, Y., et al. 2022. Forest fire occurrence prediction in China based on 
machine learning methods. Remote Sensing 14 (21): 5546.

Peng, C.-Y.J., K.L. Lee, and G.M. Ingersoll. 2002. An introduction to logistic 
regression analysis and reporting. The Journal of Educational Research 
96 (1): 3–14.

Peng, J., et al. 2021. An explainable artificial intelligence framework for the 
deterioration risk prediction of hepatitis patients. Journal of Medical 
Systems 45: 1–9.

Piraei, R., S.H. Afzali, and M. Niazkar. 2023. Assessment of XGBoost to estimate 
total sediment loads in rivers. Water Resources Management 37 (13): 
5289–5306.

Probst, P., M.N. Wright, and A. Boulesteix. 2019. Hyperparameters and tuning 
strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining 
and Knowledge Discovery 9 (3): e1301.

Qasim, M., S. Khlaid, and D.F. Shams. 2014. Spatiotemporal variations and 
trends in minimum and maximum temperatures of Pakistan. J Appl 
Environ Biol Sci 4 (8S): 85–93.

Rafaqat, W., M. Iqbal, R. Kanwal, and S. Weiguo. 2022a. Evaluation of wildfire 
occurrences in Pakistan with global gridded soil properties derived 
from remotely sensed data. Remote Sensing 14 (21): 5503.

Rafaqat, W., M. Iqbal, R. Kanwal, and W. Song. 2022b. Study of driving factors 
using machine learning to determine the effect of topography, climate, 
and fuel on wildfire in Pakistan. Remote Sensing 14 (8): 1918.

Reddy, C.S., et al. 2017. Nationwide assessment of forest burnt area in India 
using Resourcesat-2 AWiFS data. Current Science 1521–1532.

Reddy, C.S., and N. Sarika. 2022. Monitoring trends in global vegetation fire hot 
spots using MODIS data. Spatial Information Research 30 (5): 617–632.

Rodrigues, M., and J. De la Riva. 2014. An insight into machine-learning 
algorithms to model human-caused wildfire occurrence. Environmental 
Modelling & Software 57: 192–201.

Rossi, F., and N. Villa. 2006. Support vector machine for functional data clas-
sification. Neurocomputing 69 (7–9): 730–742.

https://doi.org/10.1007/s11676-024-01734-6
https://doi.org/10.1007/s11676-024-01734-6


Page 20 of 20Shahzad et al. Fire Ecology           (2024) 20:57 

Rubí, J.N.S., P.H.P. de Carvalho, and P.R.L. Gondim. 2023. Application of machine 
learning models in the behavioral study of forest fires in the Brazilian 
Federal District region. Engineering Applications of Artificial Intelligence 
118: 105649.

Saranya, K.R.L., et al. 2014. Decadal time-scale monitoring of forest fires in 
Similipal Biosphere Reserve, India using remote sensing and GIS. Envi-
ronmental Monitoring and Assessment 186: 3283–3296.

Sarkar, M.S., et al. 2024. Ensembling machine learning models to identify forest 
fire-susceptible zones in Northeast India. Ecological Informatics 81: 
102598.

Schultz, M.G., et al. 2008. Global wildland fire emissions from 1960 to 2000. 
Global Biogeochemical Cycles 22(2): 1–17.

Segal, M., and Y. Xiao. 2011. Multivariate random forests. Wiley Interdisciplinary 
Reviews: Data Mining and Knowledge Discovery 1 (1): 80–87.

Shahdeo, Ananya, et al. 2020. Wildfire prediction and detection using random 
forest and different color models. International Research Journal of 
Engineering and Technology 7 (06): 7326–7332.

Shao, Y., et al. 2023. An ensemble model for forest fire occurrence mapping in 
China. Forests 14 (4): 704.

Shmuel, A., and E. Heifetz. 2022. Global wildfire susceptibility mapping based 
on machine learning models. Forests 13 (7): 1050.

Shobairi, S.O.R., H. Lin, V.A. Usoltsev, A.A. Osmirko, I.S. Tsepordey, Z. Ye, and S.A. 
Anees. 2022. A comparative pattern for Populus spp. and Betula spp. 
stand biomass in Eurasian climate gradients. Croatian Journal of Forest 
Engineering: Journal for Theory and Application of Forestry Engineering 43 
(2): 457–467.

Sohail, M., S. Muhammad, K. Mehmood, S.A. Anees, F. Rabbi, M. Tayyab, K. 
Hussain, M. Hayat, and U. Khan. 2023. Tourism, threat, and opportuni-
ties for the forest resources: A case study of Gabin Jabaa, District Swat, 
Khyber-Pakhtunkhwa, Pakistan. International Journal of Forest Sciences 3 
(3): 194–203.

Su, Z., et al. 2018. Using GIS and random forests to identify fire drivers in a 
forest city, Yichun, China. Geomatics, Natural Hazards and Risk 9 (1): 
1207–1229.

Sulla-Menashe, D., and M.A. Friedl. 2018. User guide to collection 6 MODIS land 
cover (MCD12Q1 and MCD12C1) product. Usgs: Reston, Va, Usa 1: 18.

Sun, D., et al. 2021. Assessment of landslide susceptibility mapping based on 
Bayesian hyperparameter optimization: A comparison between logistic 
regression and random forest. Engineering Geology 281: 105972.

Sun, L., et al. 2023. The development of a set of novel low cost and data 
processing-free measuring instruments for tree diameter at breast 
height and tree position. Forests 14 (5): 891.

Tehrany, M.S., et al. 2019. A novel ensemble modeling approach for the spatial 
prediction of tropical forest fire susceptibility using LogitBoost machine 
learning classifier and multi-source geospatial data. Theoretical and 
Applied Climatology 137: 637–653.

Thomas, D., et al. 2017. The costs and losses of wildfires. NIST Special Publication 
1215 (11): 1–72.

Tien Bui, D., et al. 2016. Tropical forest fire susceptibility mapping at the Cat 
Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel 
logistic regression. Remote Sensing 8 (4): 347.

Usoltsev, V.A., B. Chen, S.O.R. Shobairi, I.S. Tsepordey, V.P. Chasovskikh, and S.A. 
Anees. 2020. Patterns for Populus spp. stand biomass in gradients of 
winter temperature and precipitation of Eurasia. Forests 11 (9): 906.

Usoltsev, V.A., H. Lin, S.O.R. Shobairi, I.S. Tsepordey, Z. Ye, and S.A. Anees. 2022. 
The principle of space-for-time substitution in predicting Betula spp. 
Biomass change related to climate shifts. Applied Ecology and Environ-
mental Research 20 (4): 3683–3698.

Vadrevu, K.P., K.V.S. Badarinath, and E. Anuradha. 2008. Spatial patterns in 
vegetation fires in the Indian region. Environmental Monitoring and 
Assessment 147: 1–13.

Vadrevu, K.P., et al. 2019. Trends in vegetation fires in south and southeast 
Asian countries. Scientific Reports 9 (1): 7422.

van Lierop, P., et al. 2015. Global forest area disturbance from fire, insect pests, 
diseases and severe weather events. Forest Ecology and Management 
352: 78–88.

Watson, P.F., and A. Petrie. 2010. Method agreement analysis: A review of cor-
rect methodology. Theriogenology 73 (9): 1167–1179.

Xie, L., et al. 2022. Wildfire risk assessment in Liangshan Prefecture, China 
based on an integration machine learning algorithm. Remote Sensing 
14 (18): 4592.

Yingyongyudha, A., et al. 2016. The Mini-Balance Evaluation Systems Test 
(Mini-BESTest) demonstrates higher accuracy in identifying older adult 
participants with history of falls than do the BESTest, Berg Balance 
Scale, or Timed Up and Go Test. Journal of Geriatric Physical Therapy 39 
(2): 64–70.

Yue, S., P. Pilon, and G. Cavadias. 2002. Power of the Mann-Kendall and Spear-
man’s rho tests for detecting monotonic trends in hydrological series. 
Journal of Hydrology 259 (1–4): 254–271.

Zhai, C., et al. 2020. Learning-based prediction of wildfire spread with real-time 
rate of spread measurement. Combustion and Flame 215: 333–341.

Zhang, L., et al. 2020. Analysis of drought evolution in the Xilin River basin 
based on standardized precipitation evapotranspiration index. Arid 
Zone Research 37: 819–829.

Zhang, Z., et al. 2021. Spatiotemporal analysis of active fires in the Arctic region 
during 2001–2019 and a fire risk assessment model. Fire 4 (3): 57.

Zhang, F., et al. 2022. Performance of multiple machine learning model simula-
tion of process characteristic indicators of different flood types. Progress 
in Geography 41: 1239–1250.

Zhao, Y., et al. 2022. Temporal and spatial patterns of biomass burning fire 
counts and carbon emissions in the Beijing–Tianjin–Hebei (BTH) region 
during 2003–2020 based on GFED4. Atmosphere 13 (3): 459.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Comparing machine learning algorithms to predict vegetation fire detections in Pakistan
	Abstract 
	Resumen 
	Introduction
	Materials and methods
	Study area
	Datasets
	Handling of response variable

	Selection and handling of predictor variables
	Detection of violations of assumptions about independent variables
	Mann–Kendall mutation test

	Methodological overview machine learning models
	Logistic regression
	Random forest
	eXtreme Gradient Boosting
	Support vector machines
	Model performance evaluation methods


	Results
	Mann–Kendall mutation
	Logistic regression
	Random forest
	Support vector machine
	eXtreme Gradient Boosting
	Vegetation fire risk assessment

	Discussion
	Conclusion
	Acknowledgements
	References


