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Abstract 

Background Data assimilation (DA) techniques have played a significant role in improving the prediction accu-
racy of forest fire spread. The dynamic correction technique weights the predicted and observed values to obtain 
an analytical value that better reflects the position of the fire perimeter. The weighted importance of each contribu-
tion is determined by the magnitude of its associated error. However, as a crucial parameter affecting prediction 
accuracy, the covariance matrix of observation errors is often inaccurate and neglects its own temporal correlation. 
This is unfriendly to spread prediction results. To address this issue, we proposed a targeted technique for estimat-
ing the observation error covariance matrix (R matrix) based on the Fire Line Convolutional Gated Recurrent Unit 
(FLC-GRU).

Results We integrated this method into the DA framework and validated its applicability and accuracy using 
Observing System Simulation Experiment (OSSE). Through comparisons with traditional methods, the results indicate 
that using the FLC-GRU estimated R matrix for correction calculations leads to wildfire prediction locations that are 
closer to the true values.

Conclusions The proposed approach learns the covariance matrix directly from time-series observed fire line data, 
without requiring any prior knowledge or assumptions about the error distribution, in contrast to classical posterior 
tuning methods. The proposed method significantly improves the rationality and accuracy of R matrix estimation, 
enhances the utility of observational data, and thereby improves the correction accuracy of forest fire spread predic-
tions. Moreover, the study also demonstrates the applicability of the proposed method within the DA framework.
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Resumen 

Antecedentes Las técnicas de asimilación de datos (DA) han jugado un rol significativo en el mejoramiento de la 
exactitud en la predicción de la propagación de fuegos de vegetación. La técnica de corrección dinámica sopesa los 
valores predichos y los observados para obtener un valor analítico que refleja la posición del perímetro del fuego. La 
importancia balanceada de cada contribución es determinada por la magnitud de su error asociado. Desde luego, 
como un parámetro crucial que afecta la exactitud de la predicción, el error de observación de la matriz de covarianza 
es frecuentemente inexacta y reniega de su propia correlación temporal. Esto aparece como poco amigable para 
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diseminar los resultados predichos. Para afrontar este tema, proponemos una técnica enfocada a estimar el error de 
observación de la matriz de covarianza (Matriz R), basada en la unidad de línea de fuego convolucional cerrada.

Resultados Integramos este método en el marco de trabajo DA y validamos su aplicabilidad y exactitud usando el 
Experimento de Observación del Sistema de Simulación (OSSE). A través de comparaciones con métodos tradicion-
ales, los resultados indican que usando la matriz R estimada (FLC-GRU) para la corrección de cálculos, se llega a pre-
dicciones de ubicación de los fuegos que son cercanas a los valores reales.

Conclusiones La propuesta presentada toma la matriz de covarianza directamente de los datos de las series de 
tiempo observadas en la línea de fuego, sin la necesidad de un conocimiento previo o de suposiciones sobre el error 
de la distribución, en contraste con los métodos clásicos de ajuste a posteriori. El método propuesto mejora significa-
tivamente la racionalidad y exactitud de la estimación de la Matriz R, aumenta la utilidad de los datos observacionales, 
y por lo tanto mejora la corrección en la exactitud de las predicciones de la propagación de fuegos de vegetación. 
Además, el estudio también demuestra la aplicabilidad del método propuesto dentro del marco de trabajo de la 
técnica DA.

Background
Accurately predicting the development of forest fire 
spread is one of the most crucial aspects in emergency 
management of forest fires. To address the issue of low 
prediction accuracy in traditional computer simulation 
due to errors in input data or the model itself, data assim-
ilation (DA) techniques have been applied in this field. 
The main idea is to assimilate observed values into the 
predicted values obtained through methods like physical 
models. This is achieved by weighting the predicted val-
ues and observed values to obtain analytical values that 
better reflect the system state. Mandel et al. first applied 
the idea of DA to the field of forest fire spread predic-
tion (Mandel et  al. 2008). Subsequently, scholars such 
as Rochoux and Trouvé conducted extensive research 
on ensemble Kalman filter (EnKF) algorithms (Rochoux 
et al. 2014, 2015; Zhang et al. 2019), which became one of 
the mainstream correction methods in the field of forest 
fire spread prediction. In recent studies, Zhou et al. first 
applied the ensemble transform Kalman filter (ETKF) 
to forest fire spread prediction, improving the correc-
tion effect (Zhou et  al. 2019). Building upon this, Zhou 
et  al. explored improvements to the correction algo-
rithm under conditions of large observation data errors 
or missing data (Zhou et  al. 2021). In a recent study, 
the author’s research team found that the deterministic 
ensemble Kalman filter (DEnKF) has a superior correc-
tion ability for forest fire spread prediction compared 
to EnKF. In summary, the forest fire spread prediction 
method based on DA has achieved widespread develop-
ment and research results.

In the computation of data assimilation techniques, the 
weighted importance of predicted values and observed 
values is determined by their respective error covari-
ances, corresponding to the background error covariance 
matrix (Q matrix) and the observation error covari-
ance matrix (R matrix). Moreover, the weighted results 

directly influence the outcome of the final analysis values. 
However, in practical engineering, the unavailability of 
true values makes it impossible to directly calculate the 
magnitude and distribution of errors, posing a challenge 
in the estimation of error covariances. In the research on 
dynamic correction of forest fire spread prediction, error 
covariance is often simplified. Specifically, regarding the 
estimation of the Q matrix, using the Ensemble Kalman 
Filter (EnKF) algorithm as an example, the sample covari-
ance matrix is commonly employed to represent the Q 
matrix. This step avoids the direct calculation of errors 
by implicitly advancing the ensemble forecast. However, 
unlike the Q matrix, the R matrix cannot be empirically 
estimated from the ensemble of simulated trajectories. 
Therefore, the treatment of the R matrix is typically more 
straightforward, often defined empirically as a scalar 
matrix, lacking theoretical rigor and potentially adversely 
affecting the accuracy of analytical values. Furthermore, 
research has indicated that observation errors are cor-
related and exhibit dependence on both time and state. 
Considering these correlated observation errors in DA 
can lead to more accurate analysis results (Stewart et al. 
2008; Li et  al. 2009; Miyoshi et  al. 2013; Waller et  al. 
2014).

In recent years, significant research on error handling 
methods has been conducted in various fields applying 
DA techniques (Stewart et al. 2013; Liu et al. 2019; Cheng 
et  al. 2019). One of the most representative methods is 
the posterior diagnostic method proposed by Desroziers 
et al. (known as DI01, D05) (Desroziers and Ivanov 2001; 
Desroziers et  al. 2005). Among them, D05 estimates 
observation error covariance using deviations (innova-
tions statistics) between observation values and back-
ground and analysis values. In subsequent studies, some 
scholars have used this method to improve filtering accu-
racy, thereby obtaining more accurate state estimation 
values (Miyoshi et al. 2013; El Gharamti 2018). In a recent 
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comprehensive review by Pierre Tandeo, existing meth-
ods are categorized into two main classes: (1) innovation-
based methods, such as the method of moments, which 
assumes equality between theoretical and observed 
moments of innovations, and (2) likelihood-based meth-
ods, which utilize the likelihood of the observations con-
tained in the innovations. The mentioned methods fall 
under traditional posterior tuning methods, and more 
details can be found in (Tandeo et al. 2020). Additionally, 
some covariance estimation techniques based on neural 
network algorithms have been proposed and achieved 
good results (Cheng et al. 2023). Cheng et al. introduced 
an observation error covariance specification based on 
Long Short-Term Memory (LSTM) and demonstrated 
its good performance in the Lorenz twin experiment and 
shallow water equations, commonly used for testing DA 
algorithms (Cheng and Qiu 2022). However, for the esti-
mation of the R matrix in predicting forest fire spread, 
there is still a lack of targeted research and validation.

In this study, we propose a technique for estimat-
ing the R matrix based on the Fire Line Convolutional 
Gated Recurrent Unit (FLC-GRU). This aims to enhance 
the accuracy and efficiency of R matrix estimation while 
improving the correction accuracy of forest fire spread 
predictions. In contrast to traditional posterior tun-
ing methods, this new approach does not require prior 
knowledge of either the background or the observation 
matrix. In the network design, we chose to use the more 
efficient GRU over LSTM to learn the error distribution. 
Additionally, before training, we utilized a convolutional 
network to not only retain the temporal information 
of the observed fire line data but also extract its spatial 

information, enhancing the network’s performance. To 
validate the accuracy of the proposed method in correct-
ing forest fire spread predictions, we utilize actual terrain 
and fuel data from the Idaho Panhandle National Forests 
and conduct Observing System Simulation Experiment 
(OSSE).

Methodology
The R matrix estimation technique based on Fire Line 
Convolutional Gated Recurrent Unit (FLC‑GRU)
Convolutional Neural Networks (CNN) are commonly 
employed for image processing (Krizhevsky et  al. 2017; 
Lin et al. 2019; Huo et al. 2022), effectively reducing large 
volumes of image data to smaller datasets while retaining 
essential features, aligning with principles in image pro-
cessing. In 2014, Cho et al. introduced the Gated Recur-
rent Unit (GRU), a simplified version of Long Short-Term 
Memory (LSTM) (Cho et  al. 2014). GRU maintains 
robust memory capabilities for sequential data while 
enhancing computational efficiency. Leveraging the high 
sensitivity of convolutional Networks and GRU networks 
to spatial and temporal features, respectively, we aim to 
better provide a better solution to the estimation prob-
lem of the observation error covariance matrix in the 
context of forest fire spread. To achieve this, we propose 
the Fire Line Convolutional Gated Recurrent Unit (FLC-
GRU) network, encompassing dataset generation, data 
preprocessing, convolutional processes, and GRU pro-
cesses. The FLC-GRU network structure is illustrated in 
Fig. 1.

We initiate the process by employing FARSITE, a 
commonly used forest fire spread tool based on the 

Fig. 1 Schematic diagram of the FLC-GRU network
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Rothermel model and Huygens theory. This tool gener-
ates a set of fire line position state values Xt = [Xt

0, Xt
1, …, 

Xt
i,…, Xt

T].

where M is the nonlinear forecast operator, i.e., the FAR-
SITE fire growth model; θ denotes the related param-
eters, which include the topography, fuel, weather, and 
wind parameters.

Concurrently, we pre-generate a Symmetric Positive 
Definite (SPD) matrix R, representing the specific prop-
erties of the R matrix. Subsequently, we augment Xt by 
introducing observation errors ϵ that follow a Gauss-
ian distribution, resulting in the generation of observed 
data yt = [yt0, yt1, …, yti,…, ytT]. It should be noted that, as 
with DI01 and D05, we assume that the R matrix is time-
invariant, at least for a sufficiently long time.

where H can be simply viewed as a selection operator 
that pairs each marker in the simulated fire fronts with 
its closest neighbor along the observed fire fronts, and 
ϵ ~ N(0, R).

This process is iterated N times to produce N sets of 
“Observation  yt” and “R matrix” with exact correspond-
ing relationships.

In this study, T is set to 20 h, and the fireline state Xt
i 

at each time step is composed of a set of k = 100 fire 
points, i.e., Xt

i = [ei,1, ni,1, ei,2, ni,2, …, ei,j, ni,j, …, ei,100, 
ni,100]T, where (ei,j, ni,j) represents the coordinates of the 
jth observed fire point at time i. In accordance with the 
requirements of the DA analysis steps, it is stipulated that 
the generated R matrix is a SPD matrix of size 2  k*2  k, 
i.e., 200*200. The values of the diagonal elements follow a 
random distribution in the range of (0, 200).

The above N sets of “Observation  yt” and “R matrix” 
with exact correspondence constitute the training set of 
the FLC-GRU network in this study. A total of 14,000 
data sets were generated, with 11,200 sets allocated for 
training and 2800 for validation. The network’s input 
is yt = [yt0, yt1, …, yti,…, ytT], and the output is the R 
matrix. As mentioned earlier, GRU possesses the capa-
bility to handle time-series data and often significantly 
improves training efficiency compared to LSTM while 
maintaining similar training effectiveness. Therefore, 
we aim to utilize the GRU network to learn the distri-
bution of observation errors. Before that, our goal is to 
retain the temporal information of the observed fire line 
data while fully leveraging the spatial information con-
tained in the data. To achieve this, before initiating the 
training of the GRU network, we applied convolutional 
processing to the observed fire line data to extract its 
spatial features. Building upon this, given the suitability 

(1)Xt = M(Xt−1, θt−1),

(2)yt = H(Xt)+ ǫ,

of convolutional networks for extracting image features, 
prior to the convolution operation, we remapped the 
observed data, represented as yt, to multiple layers of fire 
images by transforming the coordinate matrix at time 
T. In this study, Stochastic Gradient Descent (SGD) is 
employed as the weight update algorithm, with a learn-
ing rate of 1e − 5, exponential learning rate decay strat-
egy, the application of weight decay, beta set to 0.8, and 
the mean squared error (MSE) as the loss function. Ulti-
mately, given a set of observation data with an unknown 
error distribution, the network can output the predicted 
R matrix.

The core idea of the method
In summary, the core of this method is to address the 
challenge of accurately estimating the R matrix when 
observing the fire line in forest fire incidents, given the 
inherent uncertainty in determining the true fire line 
positions. To tackle this issue, the method adopts a 
reverse-thinking approach to identify the exact corre-
spondence between observation data and the R matrix. 
By pre-generating a specific R matrix and generating 
observation data following the distribution specified by 
this matrix, a training set is established. Subsequently, 
the FLC-GRU network can learn such error distributions, 
improving the efficiency and accuracy of estimating the 
R matrix in dynamic correction for predicting forest fire 
spread. This approach involves a proactive generation of 
observation error covariance matrices, creating a train-
ing set that facilitates the learning of error distributions 
through convolutional and GRU networks.

Forest fire spread prediction dynamic correction system 
based on FLC‑GRU 
Typically, traditional forest fire spread models/tools 
are used to predict the forest fire spread position. For 
research on traditional forest fire spread models, refer to 
(Sullivan 2009a, b, c). In this study, we use FARSITE as 
the forest fire spread prediction tool(Finney 1998). This 
requires us to input the landscape file of the forest fire 
area, the input fire lines position, and other input param-
eters. Other input parameters include (I) the data that 
can reflect the situation of the forest fire scene, including 
wind conditions, weather data, and so on. (II) The input 
data required for computer simulators, including start 
time, end time, time step and so on. Through FARSITE 
simulations, we can obtain the simulated values of the 
forest fire spread position.

Based on the concept of DA, we aim to use the 
observed values of the fire perimeters position to cor-
rect the simulated values. Regarding the choice of DA 
method, as mentioned earlier, EnKF has become one 
of the mainstream correction methods in the field of 
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forest fire spread prediction. Compared to the KF, the 
EnKF effectively address the limitation of KF not being 
applicable to nonlinear systems. The EnKF estimates 
the covariance between the state variables and observa-
tion variables based on the ensemble forecast results, 
and then uses the observation data and covariance to 
update the analysis, obtaining an analysis ensemble for 
further forecasting. Unfortunately, the standard EnKF 
requires artificial perturbation of the observation data, 
which introduces additional errors, making it a subopti-
mal filter. To address this, Sakov P and Oke PR proposed 
DEnKF, a deterministic data assimilation method with-
out observation perturbation (Sakov and Oke 2008). In 
previous studies by our team, we found that DEnKF has 
superior correction capabilities in forest fire spread pre-
diction. Therefore, this paper uses the DEnKF as the DA 
method.

As for observational data, we can obtain real-time 
observations of the fire scene through satellite remote 
sensing, drones, or human observation. Subsequently, 
the FLC-GRU network proposed in this paper is 
employed to estimate the observation error covariance 
matrix for assimilation calculations, yielding improved 
estimates of the fire line’s position. The output of the cur-
rent time’s fire line position serves as the input for the 
next moment’s prediction of forest fire spread, enhanc-
ing the results for the next time step. This process forms a 
rational and comprehensive dynamic correction method 
for predicting forest fire spread, as shown in Fig. 2. It is 
noteworthy that in this study, FARSITE is utilized as the 
tool for predicting forest fire spread, and the DA method 
employs the DEnKF algorithm, serving as an example. 
The applicability of this method remains unaffected by 

the choice of other forest fire spread prediction models 
or tools, as well as alternative DA algorithms.

In this study, we utilized FARSITE’s LINUX 1.0 version, 
running FARSITE in command-line mode. The DEnKF 
algorithms were implemented using MATLAB 2020b for 
Linux. The FLC-GRU network was run on an i5-8600 K 
processor with a GeForce RTX 2080Ti GPU. The code 
compilation environment included Python 3.9, PyTorch 
1.11.0, and CUDA 11.3. Through multiple tests, we found 
that the average computation time for the DA algorithm 
was approximately 0.2 s, while the computation time for 
the FLC-GRU to estimate the R matrix was about 30  s. 
It is important to note that the time required to run DA 
computations is much less than the time needed for for-
est fire spread predictions using FARSITE. The aver-
age computation time for a single FARSITE run is about 
120 s. This means that traditional simulation accounts for 
a significant portion of the total computation time.

Experimental designs
Study area
Taking into consideration the variations in terrain, we 
selected the Idaho Panhandle National Forests located in 
the state of Idaho, United States (latitude 47.5° N to 48° 
N, longitude 115.7° W to 116.7° W) as our research focus. 
This region experiences a warm climate and substantial 
fuel accumulation, posing a higher risk of forest fire inci-
dents. We obtained the landscape file (.LCP) for the study 
area from LANDFIRE (http:// landfi re. gov/), encompass-
ing topographical and fuel data essential for conducting 
forest fire spread predictions based on FARSITE. The 
study area is depicted in Fig. 3.

Fig. 2 Flowchart of the forest fire spread prediction dynamic correction system based on FLC-GRU 

http://landfire.gov/
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Experiment set up
To validate the applicability of the proposed method, 
we designed an Observing System Simulation Experi-
ment (OSSE), which is one of the most commonly used 
methods to assess the performance of DA algorithms. 
The OSSE for this study comprised four groups: (1) 
Real group: Simulating without input errors to gener-
ate a simulation result that serves as the true fire lines. 
(2) Simulation group: Introducing input errors to simu-
late real-world scenarios where, due to errors in input 
data and the model, only uncorrected predictions can 
be obtained. (3) DA group (Data Assimilation group): 
Applying DA algorithms to correct the results of the 
simulation group. However, common rough handling 
methods were used for the R matrix. (4) FLC-GRU group 
(Data Assimilation with Fire Line Convolutional Gated 
Recurrent Unit group): Employing DA for correction 
while utilizing the R matrix estimation method proposed 
in this paper. See Table 1 for details.

In this study, we adopted the Deterministic Ensemble 
Kalman Filter (DEnKF) as the DA method, with a set 

ensemble size of 20. The duration of the forest fire spread 
simulation experiment based on FARSITE was set at 
20 h, with assimilation performed every 1 h. We assumed 
a spatially uniform distribution of wind, with a globally 
set southeastern wind speed of 3.5 m/s. It is important to 
note that the primary focus of this paper is to validate the 
applicability and accuracy of the proposed new method 
in dynamic correction of forest fire spread predictions by 
comparing it with traditional methods. Therefore, some 
simplifications were made in the experimental settings 
for certain parameters, which is a reasonable approach.

In this experiment, observational data is derived from 
the Real group, where we added errors following an 
unknown R matrix to generate observational data based 
on the real fire line. In the DA group, we assume obser-
vation errors to be random noise with a standard devia-
tion of 200  m. The R matrix is empirically defined as a 
scalar matrix, which is a common practice in DA for cor-
recting forest fire spread predictions. This setup is also 
designed to address the fact that in previous approaches, 
people typically assigned values to the R matrix based 

Fig. 3 Study area

Table 1 Experimental designs

Input fire source DA method R matrix

Real group No error No No

Simulation group With error No No

DA group With error DEnKF Defining a scalar matrix

FLC-GRU group With error DEnKF Estimating based on FLC-GRU 
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on empirical considerations, lacking a certain degree of 
theoretical basis. In the DA with the FLC-GRU group, we 
employed the FLC-GRU network proposed in this study 
to compute the R matrix.

Evaluation criteria
In this study, we will utilize the Otsuka-Ochiai Similar-
ity Index (OOSI) to assess the improvement in forest fire 
spread prediction accuracy achieved by the proposed 
method. OOSI is primarily employed for comparing the 
similarity between two sets, commonly used in the field 
of image analysis. Zhou et  al. (Zhou et  al. 2020, 2021)
applied this metric to the domain of forest fire research. 
Assuming Sf and St represent the burned surfaces 
enclosed by the simulated fire perimeter and true fire 
perimeter, respectively. OOSI is defined as the intersec-
tion area of Sf and St divided by the geometric mean of 
the two, with values ranging between 0 and 1. A value 
closer to 1 indicates a higher degree of similarity between 
the two sets. The calculation formula is as follows.

Result and discussion
Results
To assess the performance of the proposed method, 
in this section, we compare the fire spread prediction 
results of the four control groups from both qualitative 
and quantitative perspectives.

The results of the four control groups at T = 1, 7, 13, 
and 20 h are illustrated in Fig. 4. A comparison between 
the real group and the simulation group reveals signifi-
cant deviations in the predicted results, with simulation 
errors gradually increasing over simulation time. This 
discrepancy is attributed to errors in the input igni-
tion source. Furthermore, as time progresses, the errors 
accumulate, making predictions challenging for guid-
ing on-site emergency management of forest fires. This 
underscores the inherent limitations of traditional meth-
ods or tools for predicting forest fire spread. In compari-
son to the simulation group, both the DA group and the 
FLC-GRU group exhibit predictions that are closer to the 
real fire line position. This suggests that DA techniques, 
through the incorporation of observational data, correct 
the simulated predictions and yield positive feedback.

Building upon this, the FLC-GRU group demonstrates 
superior correction effects compared to the DA group. 
This is particularly evident in regions of the fire line 
where significant discrepancies exist between the simu-
lation and real groups (highlighted by black dashed rec-
tangles in Fig. 4). Analysis attributes this difference to the 

(3)OOSI =
Sf ∩ St

Sf × St
,

Fig. 4 Comparison of the fire perimeter predictions at 1, 7, 13, 
and 20 h of the real group, simulation group, DA group, and FLC-GRU 
group
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nature of DA technology, which fundamentally involves 
the fusion of prior and posterior knowledge. In this study, 
the DA group achieves ideal predictions by weighting 
simulated and observed values. However, due to the ina-
bility of the R matrix involved in the calculations to accu-
rately reflect the weighted importance of observational 
contributions, the DA group struggles to effectively 
merge prior and posterior knowledge when computing 
analysis values. In contrast, the FLC-GRU group, utilizing 
the FLC-GRU network proposed in this study, success-
fully predicts the R matrix corresponding to observa-
tional data, enhancing the value of the observational data 
and directly improving the correction results.

Subsequently, using the real group as a baseline, we 
calculate the OOSI between the predicted results of the 
remaining three groups and the true fire perimeter, quan-
titatively comparing the prediction results. As shown 
in Fig. 5, with the increase in simulation time, the simi-
larity between the uncorrected simulation results and 
the spread results of the real group shows a decreasing 
trend. It is foreseeable that as time progresses, the simi-
larity will decrease, rendering it less valuable as a refer-
ence. The first correction of the DA group and FLC-GRU 
group yielded good results and consistently maintained 
high similarity. Specifically, the OOSI of the DA group 
remained around 90%, while the OOSI of the FLC-GRU 
group remained above 95%. This further illustrates that 
based on the proposed method in this paper, the advan-
tages of DA in the dynamic correction of forest fire 
spread predictions can be better utilized, enhancing 

prediction accuracy and assisting in the organizational 
scheduling of forest fire extinguishment.

Discussion
In summary, utilizing the FLC-GRU network for R matrix 
estimation has enhanced both the theoretical foundation 
and the accuracy of the estimates. In the testing con-
ducted through OSSE, the involvement of the estimated 
R matrix in DA calculations demonstrated an improve-
ment in the corrective impact of DA compared to defin-
ing the R matrix empirically as a scalar matrix. This 
enhancement is advantageous for the dynamic correction 
of forest fire spread predictions, providing valuable guid-
ance for emergency management in the context of forest 
fires.

This study indicates that the proposed method is ben-
eficial for the estimation of the R matrix and improves 
the predictions of forest fire spread. However, the limi-
tation of this work is that we assume the R matrix is 
time-invariant, at least over a sufficiently long period. 
Therefore, the dimension of the R matrix is predefined 
to ensure that the observation data y and the R matrix 
share the same horizontal dimension, which is a require-
ment of the DA computation framework. This leads to 
converting each observed fire line into a finite number of 
point coordinates for computation, which may overlook 
critical observation information. Particularly for forest 
fires, as the fire line perimeter increases over time, more 
observation information is needed to guide the predic-
tion of forest fire spread. Therefore, the current approach 

Fig. 5 The Otsuka-Ochiai Similarity Index (OOSI) between the predicted results of the simulation group, DA group, and FLC-GRU group, 
and the predictions of the real group, respectively
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is limited to larger-scale forest fire spread predictions, 
highlighting the need for an improved data preprocess-
ing method that allows more observational information 
to be incorporated into the correction calculations. For 
instance, exploring ways to represent observational data 
in the form of “lines” to contribute to the network’s learn-
ing process could be beneficial.

On the other hand, the current network outputs a sin-
gle time-invariant R matrix for a set of observation data 
to preserve the spatiotemporal information of the data. 
However, in actual forest fire observation work, time-
varying observations are more meaningful. This suggests 
that it might be more advantageous to perform a sepa-
rate R matrix estimation for each observation time point. 
Therefore, this may require designing a more complex 
network that can increase the frequency of R matrix esti-
mation while retaining the temporal information of the 
observation errors.

The current research suggests that the novel method 
proposed in this paper has the potential to enhance the 
accuracy of forest fire spread prediction corrections. 
Despite areas mentioned above that could benefit from 
improvement, the method effectively advances existing 
approaches. By leveraging the characteristics of forest fire 
spread and incorporating neural network principles, it 
enhances the rationale and accuracy of R matrix estima-
tion. Furthermore, this study integrates the method into 
the DA framework, exploring its applicability within the 
DA context, which is beneficial.

Conclusion
In this study, to enhance the dynamic correction accu-
racy in predicting forest fire spread, we purposefully 
designed a novel FLC-GRU network based on neural net-
work principles. Initially, we preprocessed and extracted 
spatial features from the observed fire line data with 
temporal information. Subsequently, we utilized GRU to 
learn the distribution of observation errors for estimat-
ing R matrix. We conducted OSSE tests to assess the 
impact of this method on the correction of forest fire 
spread predictions. The results of the tests indicate that 
the R matrix predicted through the FLC-GRU network 
contributes beneficially to the improvement of forest fire 
spread prediction accuracy compared to commonly used 
simplified approaches. The experimental tests also high-
light the applicability of the proposed method within the 
DA framework.
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