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AbStrACt

Due to a unique combination of environmental conditions, the chaparral shrublands of 
southern California are prone to large, intense wildland fires.  There is ongoing work in 
the fire research community to establish whether fuel accumulation or weather conditions 
are the determining factor in the prevalence of large chaparral fires.  This study introduces 
a framework for contributing a modeling perspective to understanding these alternative 
hypotheses.  As models formalize our understanding of the physical process of fire spread, 
the sensitivity of the models to the meteorological and fuel inputs should be indicators of 
their relative importance.  A global sensitivity analysis (GSA) was conducted on HFire, a 
spatially explicit raster model developed for modeling fire spread in chaparral fuels, based 
on the Rothermel spread equations.  The GSA provided a quantitative measure of the 
importance of each of the model inputs on the predicted fire size.  The results indicate 
that, under extreme weather conditions, wind speed was over three times more influential 
on predicted fire sizes than any other single model input.  This finding supports the idea 
that fires burning under Santa Ana conditions are primarily driven by high wind speeds.  
Future research will involve extending the GSA methodology to quantify the relative 
importance of these inputs in terms of the long-term fire regime in chaparral ecosystems.
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introduCtion

Southern California is considered among 
the most fire-hazardous landscapes in North 
America due to a unique combination of 
environmental conditions that are favorable to 
the development of large fires.  These 
conditions include volatile fuels, dense fuel 
growth, steep terrain, and recurrent droughts.  
The influence of the Santa Ana foehn winds 
further increases the risk of large fires.  In a 
Santa Ana event, the normal onshore marine 
airflow is replaced by offshore, downslope 
winds.  The combination of high wind speeds, 
dry continental air, clear skies, and increased 
temperatures can rapidly dry fuels.  The 
prevailing conditions during a Santa Ana 
event, including low relative humidity, high 
wind speed, and warming, can result in 
“explosive” burning conditions (Schroeder et 
al. 1964).  

The chaparral shrublands of southern 
California are dominated by periodic, large, 
high-intensity fires (Keeley and Fotheringham 
1994, Moritz 1997).  The fire research 
community has not reached a consensus as to 
the impact that fire suppression policies have 
had on the modern chaparral fire regime (the 
size, intensity, and frequency of chaparral 
fires).  Studies have compared the historic fire 
regimes of southern California and Baja 
California (Minnich 1983, Minnich and Bahre 
1995, Minnich and Chou 1997, Minnich 2001) 
and have concluded that fire suppression 
efforts in southern California result in larger 
and more contiguous stands of older fuels, and 
that this fuel accumulation leads to larger and 
more intense fire events.  These studies 
hypothesize that the chaparral landscape, in 
the absence of fire suppression policies, would 
be a mosaic of stands of younger and older 
vegetation.  Patches of younger vegetation 
would then serve as natural breaks, preventing 
smaller fires from developing into larger fires, 
even during Santa Ana events.  Younger stands 
can also can also result in reduced rates of 

spread when reburned (Philpot 1977).  Tests of 
the age-dependent hypothesis have analyzed 
similar historical data but have concluded that 
there is not a direct relationship between large 
fires and fuel accumulation, and that large fires 
are a natural feature of the chaparral fire 
regime (Keeley et al. 1999, Keeley and 
Fotheringham 2001a, Keeley and Fotheringham 
2001b, Moritz 2003, Moritz et al. 2004).  In all 
of these studies, one point of agreement has 
been that Santa Ana winds can be the driving 
force behind large fire events.

Fire behavior models are a conceptual 
representation of the physical process 
controlling fire spread.  In fire-prone 
ecosystems, fire behavior models are used for 
a number of applications that involve assessing 
the various risks associated with wildland fire, 
including training support personnel, planning 
prescribed burns, predicting the behavior of 
active fires, and comparing the effects of 
various suppression strategies (Andrews 1989).  
Fire modeling is also important for 
understanding how this natural ecological 
process operates on the landscape (e.g., 
Hargrove et al. 2000).  Fire behavior models 
can provide significant insight for research on 
ecological processes where conducting field 
studies can be destructive, and where there is a 
limited amount of data available from historical 
events.  

The purpose of this study was to introduce 
a framework for incorporating information 
from fire behavior model predictions into fire 
ecology and fire regime research.  As models 
formalize our understanding of the physical 
process of fire spread, the sensitivity of the 
models to the meteorological and fuel inputs 
should be indicators of their relative 
importance.  Sensitivity analysis (SA) is the 
study of how the variation in the output of the 
model can be attributed (qualitatively or 
quantitatively) to the variation in the model 
inputs (Saltelli 2000).  SA is recommended for 
quantifying the influence each input, sub-
model, and parameter has on the output of the 
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model, and for assessing uncertainty in the 
output that is associated with uncertainty in the 
inputs (Cruz et al. 2003).  

This study was also a conceptual validation 
of HFire, a spatially explicit model developed 
for predicting fire spread in chaparral fuels.  
The objective was to use SA techniques to 
quantitatively establish the way in which the 
output of HFire is dependent on the inputs of 
fuel and weather conditions.  This analysis was 
framed in terms of predicting the size of fires 
during potential Santa Ana events, and the 
research hypothesis being tested was that wind 
speed accounts for more variability in 
simulated fire size than fuel-related variables 
such as fine dead fuel moisture and fuel model.  
The modeling framework introduced in this 
study could be extended by repeating the 
analysis under a wider range of conditions 
representative of the climatology of southern 
California, which would allow for a more 
complete characterization of the role that 
weather and fuels play in terms of the modern 
chaparral fire regime.  

There are few examples of sensitivity 
analysis studies in fire research literature, 
nearly all of which involve what is referred to 
as a “local approach” (e.g., Bevins and Martin 
1978, Trevitt 1991, Bessie and Johnson 1995, 
Hargrove et al. 2000, Miller and Yool 2002, 
Cruz et al. 2003).  Local approaches estimate 
the effect of the variation of a single input or 
parameter by keeping all the others fixed at 
their nominal values.  Local methods are well 
established and are familiar to most modelers 
(Campolongo et al. 2000).  Local SA serves as 
an ad-hoc stability analysis, providing a 
measure of how stable the model is around the 
best estimates for the inputs (Turanyi and 
Rabitz 2000).  The local approach is not 
recommended for investigating the sensitivity 
of non-linear models in which the uncertainty 
in the output associated with the uncertainty in 
each input may be of different orders of 
magnitude (Cukier et al. 1973).  

An alternative approach to evaluating 
model sensitivity is global sensitivity analysis 
(GSA), where the input factors, which can be 
model inputs, sub-models, and model 
parameters, are defined by their probability 
density functions, and all the factors in the 
analysis vary simultaneously (Saltelli 2000).  
Representing factors as probability density 
functions allows for the exploration of the full 
range of potential values for each input.  
Samples from these distributions are used as 
inputs for model simulations, producing a 
distribution of model output.  By decomposing 
the variance of the model output, the 
contribution of each input can be assessed.  
The sensitivity estimate for each factor, known 
as an “importance” measure, can be written, in, in 
terms of conditional variance, as: 

Si = V[E(Y|Xi )]/V(Y)

where Y is the output variable, Xi is an input 
factor, V(Y) is the unconditional variance, 
E(Y|Xi = x*

i) is the expectation of Y conditional
on Xi having a given value x*

i.  Importance
measures can be compared across factors, and 
the more influential factors will have higher 
scores.  

A review of GSA procedures can be found 
in Saltelli et al. (2004).  Salvador et al. (2001) 
present an application of GSA techniques in 
fire modeling research.  GSA has been applied 
to a number of diverse fields, including 
environmental policy, population dynamics, 
chemical reaction, and economic modeling, 
and a review of these applications is given in 
Saltelli et al. (2000).  The implementation of 
global methods in other environmental 
modeling applications suggests that they can 
provide useful insight for fire modeling and 
fire ecology research.

HFire is a spatially explicit fire spread 
model that was developed for modeling fires 
in chaparral environments (Morais 2001).  
HFire is a raster model that uses the cell 
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contact-based approach to fire spread (Kourtz 
and O’Regan 1971).  This approach is very 
computationally efficient, allowing non-
uniform time steps based on the amount of 
time required for fire to spread from cell to 
cell.  Similar to FARSITE (Finney 1998), the 
semi-empirical Rothermel fire spread equation 
(Rothermel 1972, with modifications by Albini 
1976) is used in HFire to determine the 
direction and the magnitude of the maximum 
rate of fire spread.  The Anderson (1983) 
empirical relationship, relating wind speed to 
the length-to-width ratio of fire spread, is used 
to calculate fire spread rates in two dimensions.  
In HFire, a fire spreading through a lattice of 
cells has eight degrees of freedom.  In any 
three-by-three neighborhood of cells, a fire 
located at the center of the neighborhood has 
the potential of spreading to all eight adjacent 
neighbors.  HFire keeps track of the fractional 
spread distance from cell center to cell center, 
allowing the modeled fire to simultaneously 
spread to all of its neighboring cells during a 
time step.  

HFire has been demonstrated to be, on 
average, 92 times faster than FARSITE for 
modeling the same fire (Morais 2001).  The 
faster run times allow for its use for research 
applications in which large numbers of 
simulations are required.  The model can be 
used to simulate single fire events or multiple 
events occurring over a period of hundreds of 
years.  Morais (2001) found that HFire was as 
accurate as FARSITE for modeling two 
historical chaparral fires under both extreme 
and moderate wind conditions.  To date, the 
sensitivity of Rothermel-based fire spread 
models over full ranges of input variables has 
not been examined.  A GSA of the HFire model 
is critical for understanding how input 
variables used for simulating wildfires 
contribute to the modeled fire size, and over 
longer time periods, fire frequency.

MethodS

Sensitivity analysis was implemented by 
1) identifying a study area suited to testing the 
experimental hypotheses; 2) collecting the 
spatial information needed to run the model; 3) 
collecting the temporal input data; 4) defining 
a distribution for each input factor based on 
statistical analysis of the data; 5) sampling 
from the distributions of the input factors, and 
executing the model using these samples; 6) 
performing the sensitivity analysis in order to 
quantify the relative importance each input 
factor has on the output of the model; and 7) 
evaluating the hypotheses based on the results 
of the sensitivity analysis.

Study Domain

The domain for this study was the Santa 
Monica Mountains National Recreation Area 
(SMM), located in Los Angeles and Ventura 
Counties in southern California (Figure 1).  
SMM was the original study site for the 
development of the HFire model.  The 
recreation area is located within southern 
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Figure 1.  Study domain.
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California’s Mediterranean-type ecosystem.  
The native vegetation is a mosaic of chaparral, 
coastal sage scrub, oak woodland, riparian 
woodland, and grasslands (Radtke et al. 1982).  
Over 40 % of the fires in this region are large 
fires exceeding 400 ha in size, and most of 
these large fires occur during Santa Ana events 
in the fall (Radtke et al. 1982).  A nine by nine 
kilometer subset was selected in an area in the 
western region of the park that is undeveloped 
and is predominately chaparral.  This study 
required an area large enough that simulated 
fires would not reach the edge of the landscape.  
Using a larger subset was not viable due to the 
layout of the terrain and vegetation and the 
proximity to urban areas.  The terrain and fuels 
input data were then used to artificially expand 
the subset by creating and inverting mirror 
images of the study area (Figure 2).  This 

method alters the orientation of the fuels and 
the topography, but retains the connectivity 
between the slope of the terrain and the fuel 
characteristics.

Input Data

HFire requires a number of temporally and 
spatially dynamic inputs.  The required 
temporal inputs to HFire are wind speed, wind 
direction, fine dead fuel moisture, live 
herbaceous fuel moisture, and live woody fuel 
moisture.  The spatial inputs to HFire are slope, 
aspect, elevation, and fuel characteristics, as 
well as the coordinates of the ignition location.  

Live herbaceous fuel moisture and live 
woody fuel moisture data were not available 
for this study domain and period.  
Consequently, the decision was made to fix 
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Figure 2.  Artificial landscape.
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live herbaceous fuel moisture at 50%, and live 
woody fuel moisture at 70 %.  These values 
were used in the HFire development to 
represent the lowest live fuel moisture values 
in the dry season for chaparral fuels (Morais 
2001).  As fixed values, live herbaceous and 
live woody fuel moistures could not be 
included in the GSA, as variance based 
approaches involve assessing the importance 
of each input by decomposing the variance of 
the output data on the variance of the input 
data.

Hourly data for wind speed, wind direction, 
and fine dead fuel moisture were obtained from 
the Western Regional Climate Center (WRCC 
2004) for the Cheeseboro Remote Automated 
Weather Station (RAWS) gauge for the study 
years 1996-2002.  The RAWS records were 
culled to the “peak fire season” months of 
September to November.  The records were 
also culled to include only days with Santa 
Ana burst conditions, defined by the National 
Weather Service as six or more consecutive 
hours with prevailing winds from the northeast 
quadrant (Burroughs 1991).  The wind 
direction for this study was defined as the 
average daily wind direction in that quadrant.  
Days with any missing hourly observations for 
any variable were removed from the dataset.  
Terrain variables (slope, aspect, and elevation) 
were based on a 10 m United States Geological 
Survey digital elevation model (DEM) of the 
Santa Monica Mountains.  The DEM was 
resampled to spatial resolutions of 30 m and 
100 m.  The fuels maps were based on a map 
of potential natural vegetation (PNV), which 
represented the ultimate vegetation community, 
and therefore fuel type, that would occur in the 
long absence of fire (J. Franklin, San Diego 
State University, unpublished report).  The 
PNV map was modified according to SMM 
maps of riparian areas and local planning 
agency maps of recent development.  
Vegetation communities capable of carrying 
wildfire during typical weather conditions 

were then assigned to one of the 13 standard 
Northern Forest Fire Laboratory (NFFL) fuel 
models (Albini 1976) or to a custom model 
(Weise 1997) based on shrubland vegetation 
characteristics.  The custom models for 
chaparral shrubs have a substantially lower 
fuel loading (the amount of available biomass, 
measured as the dry weight per unit area) than 
the standard NFFL fuel model used for 
chaparral (Model four — 2 m high chaparral).  
The HFire model does not require a fuel 
loading input separate from the fuel model 
and, in this research, the contrast between the 
standard and the custom fuel models serves as 
a surrogate variable for exploring the effects of 
different levels of fuel accumulation.  Ignitions 
were seeded using a random, uniform 
distribution across the landscape.  Ignitions 
that landed within cells containing no fuels 
were not permitted to propagate.  

Distributions for input data and their 
associated parameters (mean and standard 
deviation) were assigned on the basis of 
statistical analysis of the empirical data (Table 
1), and represent the inherent natural variation 
in the input data.  The data were tested for 
normality using the Shapiro Wilks goodness-
of-fit test (Royston 1982).  Wind speed and 
fine dead fuel moisture were not normally 
distributed, and transformations were applied 
to approximate a normal distribution for 
sampling purposes.  The mean and the standard 
deviation of the transformed data were used as 
the estimate of the mean and the standard 
deviation of the normal distribution.  Choices 
in the fuel models and spatial resolutions were 
represented for sampling purposes by discrete 
uniform distributions.

In order to select the appropriate sampling 
method for the data, it was necessary to 
determine if the factors were independent 
(orthogonal), as many sampling methods are 
based on this assumption.  Wind speed, fine 
dead fuel moisture, and the average wind 
direction in the northeast quadrant were all 
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significantly correlated (Table 2).  This 
correlation is a likely feature of Santa Ana 
events, with the associated prevailing 
conditions of low humidity, high wind speed, 
and warming.  For the purposes of this study, 
the assumption of stochastic independence was 
inappropriate; therefore, this research required 
the use of a sampling method appropriate for 
correlated inputs.

Sample Generation and 
Model Evaluation

The recommended sampling method for 
correlated inputs is replicated Latin Hypercube 
Sampling (r-LHS) (Saltelli et al. 2004).  
SIMLAB, a software program for performing 
uncertainty and sensitivity analysis (Saltelli et 

al. 2004), was used to generate 2000 input 
samples using the r-LHS technique.  The Iman 
and Conover technique was used to control for 
correlation in the input data by matching the 
rank-correlation structure of the samples to the 
empirical data (Iman and Conover 1982).  This 
allows the sampled values to co-vary in a 
manner that is consistent with the co-variation 
in the empirical data.  

The samples were used as inputs for 2000 
HFire model runs, simulating a single event 
lasting 24 hr in duration, and the total area 
burned was extracted from the output files for 
each simulation.  Fires that reached the 
boundary of the synthetic landscape were re-
run on a larger synthetic landscape.  SIMLAB 
was then used to calculate the importance 
measures from the distribution of the model 

Input (units) µ, σ of the data Shapiro-Wilks W for selected 
transform

Assigned 
distribution

Wind speed (km/hr) 12.83, 6.25 W = 0.9833, p-value = 0.0016 
(inverse transform) Normal 

Fine dead fuel 
moisture ( %) 8.59, 4.64 W = 0.9809, p-value = 0.0006 

(natural log transform) Normal 

Wind direction 
(degrees) 56.60, 13.04 W = 0.9798, p-value = 0.0003  

(square root transform) Normal 

Spatial resolution --- --- Uniform
Fuel model --- --- Uniform
X coordinate of 
ignition --- --- Uniform

Y coordinate of 
ignition --- --- Uniform

Wind speed Fuel dead moisture Wind direction
Wind speed --- -0.355* -0.365*
Fine dead fuel 
moisture -0.355* --- 0.275*

Wind direction -0.365* 0.275* ---

Table 1.  Description of input distributions.

Italicized inputs are trigger factors, designed to allow for modeling choices to be represented as distributions 
for sampling purposes.

Table 2.  Non-parametric correlations, Spearman’s Rho.

* Correlation is significant at the 0.01 level (two-tailed).
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outputs.  The formulas for estimating the 
importance measures using r-LHS are 
presented in McKay (1996) and Helton and 
Davis (2001).  In order to assess the stability 
of the sensitivity estimates, the analysis was 
repeated using a larger sample size (N = 
4000).

reSultS

In the first set of model simulations (N = 
2000), 105 ignitions were not successful 
because the ignition cell was classified as 
unburnable.  In the second set of model 
simulations (N = 4000), 216 ignitions were not 
successful.  The descriptive statistics for the 
output of the model simulations are presented 
in Table 3, and the histograms of the outputs 
are presented in Figures 3a and 3b.  The 

majority of the observations are at the lower 
end of the range, with few events in the 
extreme end of the range, as would be expected 
for an extreme event.  In a visual examination 
of the shapes of the modeled fire perimeters, it 
was found that simulations with higher wind-
speeds resulted in burn perimeters that were 
generally plume shaped, while the perimeter 
shapes for simulations in which the wind speed 
was relatively low are more circular.  These 
findings are consistent with previous 
classifications of fire shapes (Albini 1976).  

The importance measures for wind speed, 
fine dead fuel moisture, and the choice of fuel 
models were statistically significant for both 
sets of simulations (Table 4).  Wind speed was 
identified as the most influential factor, 
accounting for more than 40 % of the variation 
in the model output, followed by fine dead fuel 

Viable 
ignitions

Statistics for the total burned area (km2), all simulations 
(viable ignitions)

Minimum Maximum Mean 
Standard 
deviation

Simulation set 1 
(N = 2000) 1895 0.0000 

(0.0009)
3094.62 

(3094.62)
95.59 

(100.89),,
190.91 

(194.77)
Simulation set 2 
(N = 4000) 3784 0.0000 

(0.0009)
4658.59 

(4658.59)
102.47 

(108.32)
238.90 

(244.33)

Table 3.  Descriptive statistics, output of model simulations.

���������������

�

���

����

����

����

����

����

� ��� ��� ��� ��� ���� ���� ���� �����

���������������

�

���

����

����

����

����

����

� ��� ��� ��� ��� ���� ���� ���� �����

Figure 3a.  Histogram of model output, simulation 
set 1 (N = 2000).

Figure 3b.  Histogram of model output, simulation 
set 2 (N = 4000).
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moisture (less than 15 %), and fuel model (less 
than 10 %).  Wind direction, spatial resolution, 
and the ignition locations had scores close to 
zero, indicating that these factors were not 
influential and did not have a significant main 
effect on the output of the model.  The ranking 
of these factors did not change with the larger 
sample size.

diSCuSSion

The estimated importance measure for 
wind speed was more than three times that of 
the closest input factor of fine dead fuel 
moisture.  This finding supports the argument 
that fires burning under Santa Ana conditions 
are wind driven events, to the extent that the 
Rothermel equations in the HFire model 
structure represent the physical process of fire 
spread.  In contrast, fine dead fuel moisture 
was responsible for less than 15 % of the 
variation in simulated fire size.  The HFire 
model is still being improved upon, and the 
identification of wind speed and fine dead fuel 
moisture as influential factors contributes to 
the conceptual validation of the model, as 
these inputs describe known and expected 
influential determinants of fire size.  This 
research established that the model behaves in 
a way that conforms to the expectations for the 
physical system, increasing the confidence that 
can be placed in the model predictions.  

This study was framed in terms of 
modeling fires in potential Santa Ana 
conditions, and the ranking of the input factors 
could change if a wider range of meteorological 

conditions were used.  Outside of peak fire 
season, the fine dead fuel moisture input may 
have a larger influence, as conditions are more 
likely to be unfavorable for burning.  The 
inputs of live herbaceous and woody fuel 
moistures were not included in this analysis 
due to the lack of available data.  Depending 
on the seasonal trends, these inputs could be 
significant drivers of the model output.  To test 
this assumption, this analysis should be 
repeated in a study area where live fuel 
moistures are regularly monitored.  Other 
options include developing surrogate measures 
to estimate these inputs from available data or 
repeating the analysis with synthetic values for 
live fuel moistures.

The results of this study reflect the 
influence of the conditions sampled from the 
RAWS time series, allowing for a 
characterization of the sensitivity of the model 
to each of the climatological inputs separately.  
Future research will examine methods for 
sampling the input data in a way that preserves 
the temporal autocorrelation in the data.  One 
such approach would be to randomly pick a 24 
hr series from the data for each replicate.  
While this method would not provide a 
separate sensitivity measure for each of the 
climatological inputs, it would provide a 
measure of the sensitivity to the diurnal pattern 
in prevailing conditions.  Identifying longer-
term patterns may also be useful for simulations 
that are longer than 24 hr in duration.

The importance measure estimated for fuel 
model, while even smaller than that of wind 
speed or fine dead fuel moisture, was 

Wind 
speed

Fine 
dead fuel 
moisture

Wind 
direction

Spatial 
resolution

Fuel 
model X Y

Simulation set 1 
(N = 2000) 0.4312 0.1448 0.0214 -0.0003 0.0985 0.0210 0.0037

Simulation set 2 
(N = 4000) 0.4686 0.1346 0.0408 0.0002 0.0625 0.0090 0.0142

Table 4.  Importance measures.
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significant.  All of the simulations that resulted 
in fires that were too large for the original 
synthetic landscape were simulations using the 
NFFL fuel maps.  The custom models for 
chaparral shrubs were developed because the 
NFFL fuel model for chaparral did not 
represent the more moderate fuel loading 
found in the chaparral shrublands of the SMM 
region.  The importance of the fuel model 
input and the questions pertaining to the role 
of fuel accumulation in the chaparral fire 
regime suggest that this input should be of 
concern when modeling fires in chaparral 
fuels.  Custom fuel models, while costly to 
develop, provide site-specific information on 
important determinants of fire spread.  Even 
under the potential Santa Ana conditions 
represented in this study, when rates of spread 
are likely to be maximized, differences in fuel 
loading resulted in significantly different spread 
predictions.  Using NFFL fuel models may 
result in over-predicting fire size in most 
chaparral landscapes.

The importance measures for spatial 
resolution in both sets of simulations were 
close to zero, indicating that changing between 
30 m and 100 m resolution has no noticeable 
influence on the variability in predicted fire 
size.  Spatial resolution was the least influential 
factor for both sets of simulations.  The 
landscape is dominated by chaparral, and the 
range of possible conditions of chaparral 
vegetation is condensed into a small number of 
fuel models.  It is perhaps not surprising that 
the model was insensitive to the way in which 
this relatively homogeneous landscape was 
divided.  Miller and Yool (2002) suggest the 
appropriate resolution for fire modeling 
purposes is the resolution that represents the 
finest scale of heterogeneity in the landscape.  
It would appear that when modeling Santa Ana 
fires in this landscape, the 100 m resolution 
would be acceptable.  Further investigation is 
needed to identify the threshold resolution that 
allows for the optimization of predictive 
efficiency and accuracy.

The importance measure for wind direction 
was not a strong driver of model behavior.  
This could be a result of the synthetic 
landscape, as the terrain has a directional 
trending in the canyons that the process of 
inverting the landscape fails to maintain.  The 
relationship of wind direction to the orientation 
of the topography could therefore be more 
influential than these results would indicate.  
Wind direction was also held constant for the 
simulations and was restricted to the northeast 
quadrant.  These restrictions were considered 
necessary for representing potential Santa Ana 
events, when the winds blow persistently from 
that direction.  Representing the full range of 
wind directions and speeds outside of Santa 
Ana events could provide insights into the 
ways in which topography and wind direction 
and speed may interact in this region.

The importance measures for the 
coordinates of the potential ignitions locations 
were very small.  The simulations were 24 hr 
in duration, and the location of a successful 
ignition was likely influential during the first 
few hours and less influential over time.  There 
were relatively few unburnable ignition 
locations in this landscape, which led to few 
simulations in which no area was burned.

The inherent limitations of fire spread 
modeling are apparent in this research.  This 
research did not test the assumptions of HFire, 
the Rothermel (1972) equations, or the 
Andersen (1983) ellipse model.  For example, 
the HFire model predicts surface fire spread, 
and does not model the spread of fire by fire 
brands or by the ignition of fire gasses.  The 
results of this analysis are specific to the 
prediction of fire size using the HFire model, 
to the chaparral landscape of the Santa Monica 
Mountains, to the time period of the study, and 
to potential Santa Ana conditions.

Global Sensitivity Analysis (GSA) is an 
objective and quantitative method for model 
evaluation that offers considerable insight for 
research into physical processes.  Given that 
fire modeling is being used in research and 
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