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ABSTRACT

Since 2007, the USDA Forest Ser-
vice’s Remote Sensing Applications 
Center (RSAC) has been producing 
fire severity data within the first 30 to 
45 days after wildfire containment 
(i.e., initial assessments [IA]), for 
wildfires that occur on USDA Forest 
Service managed lands, to support 
post-fire management actions.  Satel-
lite image-derived map products are 
produced using calibrations of the 
relativized differenced normalized 
burn ratio (RdNBR) to the Compos-
ite Burn Index (CBI), percent change 
in tree basal area (BA), and percent 
change in canopy cover (CC).  Cali-
brations for extended assessments 
(EA) based upon one-year post-fire 
images have previously been pub-
lished.  Given that RdNBR is sensi-
tive to ash cover, which declines with 
time since fire, RdNBR values that 
represent total mortality can be dif-
ferent immediately post fire com-
pared with one year post fire.  There-
fore, new calibrations are required 
for IAs.  In this manuscript, we de-
scribe how we modified the EA cali-
brations to be used for IAs using an 
adjustment factor to account for 

RESUMEN

Desde 2007, el Centro de Sensores Remotos 
Aplicados (RSAC) del Servicio Forestal de los 
Estados Unidos de América, ha estado produ-
ciendo datos de severidad del fuego a los 30 a 
45 días de haber sido controlado el incendio 
(i.e., determinaciones iniciales [IA]), para apo-
yar acciones de manejo post-fuego en áreas ges-
tionadas por el Servicio Forestal.  Los mapas 
producidos mediante imágenes de satélite se 
confeccionan utilizando calibraciones de la dife-
rencia relativa de la tasa normalizada de quema 
(RdNBR; relativized differenced normalized 
burn ratio) para el índice de quema compuesta 
(CBI; composite burn index), porcentaje de 
cambio en el área basal de los árboles (BA; ba-
sal area) y porcentaje de cambio en la cobertura 
del dosel arbóreo (CC; canopy cover).  Las cali-
braciones para las determinaciones extendidas 
(EA; extended assessments), basadas en imáge-
nes de un año posterior al fuego, han sido publi-
cadas previamente.  Dado que la RdNBR es sen-
sible a la cobertura de ceniza, la cual disminuye 
a medida que transcurre el tiempo tras el incen-
dio, los valores de RdNBR que representan la 
mortalidad total, pueden ser diferentes inmedia-
tamente después del fuego que los obtenidos un 
año después.  Por ese motivo, se requieren nue-
vas calibraciones para las IA.  En este trabajo, 
describimos como hemos modificado las cali-
braciones de las EA para ser utilizadas por las 
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changes in ash cover computed 
through regression of IA and EA Rd-
NBR values.  We evaluate whether 
the accuracy of IA and EA maps are 
significantly different using ground 
measurements of live and dead trees, 
and CBI taken one year post fire in 
11 fires in the Sierra Nevada and 
northwestern California.  We com-
pare differences between error matri-
ces using Z-tests of Kappa statistics 
and differences between mean plot 
values in mapped categories using 
Generalized Linear Models (GLM).  
We also investigate whether map ac-
curacy is dependent upon plot dis-
tance from boundaries delineating 
mapped categories.  The IAs and 
EAs produced similarly accurate 
broad-scale estimates of tree mortali-
ty.  Between IAs and EAs of each se-
verity metric, the Kappa statistics of 
error matrices were not significantly 
different (P > 0.674) nor were mean 
plot values within mapped categories 
(P > 0.077).  Plots <30 m (one Land-
sat pixel) distance from mapped 
polygon boundaries were less accu-
rate than plots ≥30 m inside mapped 
polygons (P < 0.001).  As land man-
agers concentrate most post-fire 
management actions where tree mor-
tality is high, it is desirable for map 
accuracy of severely burned areas to 
be high.  Plots that were ≥30 m in-
side polygons depicting ≥75 % or 
≥90 % BA mortality were correctly 
classified (producer’s accuracy) 
>92.3 % of the time, regardless of IA 
or EA.

IA, usando un factor de ajuste que tiene en cuen-
ta cambios en la cobertura de las cenizas, calcu-
lado a través de una regresión de valores de IA y 
EA RdNBR.  Evaluamos si la exactitud de los 
mapas de la IA y la EA son significativamente 
diferentes utilizando mediciones en terreno de 
árboles vivos y muertos, y el CBI tomado un año 
después del fuego en 11 incendios en Sierra Ne-
vada y en el noroeste de California.  Compara-
mos las diferencias entre los errores matriciales 
con los Z-tests de las estadísticas de Kappa y las 
diferencias entre los valores medios de las par-
celas en categorías mapeadas utilizando el Mo-
delo Lineal Generalizado (GLM; generalizad li-
near model).  También investigamos si la exacti-
tud de los mapas es dependiente de la distancia 
de la parcela hasta los límites marcados en las 
categorías mapeadas.  Los IA y EA produjeron 
estimadores de mortalidad de árboles de exacti-
tud similar y en una escala amplia.  Entre los IA 
y EA de cada medida de severidad, las matrices 
de error según las estadísticas de Kappa no re-
sultaron diferentes de forma significativa (P > 
0.674), como tampoco los valores medios de las 
parcelas en las categorías mapeadas (P > 0.077).  
Las parcelas a <30 m (un píxel de Landsat) de 
distancia, desde los límites del polígono mapea-
do fueron menos exactas que las parcelas a ≥30 
m dentro de los polígonos mapeados (P < 0.001).  
Como los gestores del manejo de tierras concen-
tran la mayor parte de las acciones de manejo 
post-fuego, en donde la mortalidad de los árbo-
les es grande, es deseable que la exactitud de los 
mapas sea alta, especialmente en áreas severa-
mente quemadas.  Las parcelas que estaban a 
≥30 m dentro de los polígonos representando 
una mortalidad del área basal (BA) de ≥75 % o 
≥90 % fueron correctamente clasificadas (exacti-
tud del productor) más del 92.3 % de las veces, 
independientemente del IA o EA. 

Keywords:  basal area, California, extended assessment, fire effects, initial assessment, Klamath, 
Landsat, RdNBR, Sierra Nevada
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INTRODUCTION

Multispectral satellite data have become an 
important data source used by the US federal 
land management agencies for mapping wild-
land fire effects, commonly called “severity” 
maps (Eidenshink et al. 2007, USDA 2007, 
Parsons et al. 2010).  These data not only as-
sist land managers in making post-fire man-
agement decisions, but they can provide in-
sights into basic fire ecology, serve as a broad-
scale monitoring tool, and provide information 
on modern fire regimes (e.g., van Wagtendonk 
and Lutz 2007, Miller et al. 2009b, Dillon et 
al. 2011, Miller et al. 2012a, Miller et al. 
2012b). 

There are two closely linked issues that 
complicate interpreting fire severity maps.  
First, the degree of severity is based upon an 
interpretation of how much a site has been al-
tered, which can vary depending upon vegeta-
tion type and the expected amount of time it 
will take a site to recover to the pre-fire state 
(Lentile et al. 2006, NWCG 2014).  For exam-
ple, a fire that kills all aboveground compo-
nents of a shrub system may not be considered 
high severity if the shrub system typically re-
covers within a few years, as opposed to a co-
nifer forest that could take many decades to 
recover.  Second, severity assessments are of-
ten reported in broad categories (i.e., low, 
moderate, and high) and are generally ambigu-
ous with respect to what the categories mean 
in terms of quantitative fire effects (e.g., the 
amount of tree mortality or change in canopy 
cover [CC]) (Lentile et al. 2006).  Therefore, 
there is a clear need to develop a linkage be-
tween satellite-derived severity maps and actu-
al fire effects on the ground.  Hence, Miller et 
al. (2009a) described calibrations of one-year 
post-fire satellite data to tree mortality and 
change in CC for conifer forests. 

In the 1990s, US land management agen-
cies began using the normalized burn ratio 
(NBR) spectral index to derive severity maps 
because of the sensitivity of the Landsat bands 

used in the index were most sensitive to 
changes in pre-fire to post-fire vegetation 
(White et al. 1996, Miller and Yool 2002, Key 
and Benson 2006b).  The NBR is formulated 
like the normalized difference vegetation in-
dex (NDVI) except the Landsat Thematic 
Mapper (TM) 2.08 µm to 2.35 µm mid-infra-
red (MIR) band is used in place of the red 
band, as follows:  

(1)

where NIR is the Landsat TM 0.76  µm to 0.90 
µm near-infrared band (wavelengths for Land-
sat 8 are slightly different, but the similar 
bands can be integrated accordingly).  The 
NIR wavelengths are primarily sensitive to 
chlorophyll, while the MIR wavelengths used 
in the NBR are primarily sensitive to water 
content, ash cover, and soil mineral content 
(Kokaly et al. 2007).  The NBR ranges be-
tween −1 and 1 just like NDVI but, in com-
mon practice, NBR is scaled by 1000 to trans-
form to integer format (Key and Benson 
2006b).  

Although first appearing in the formal lit-
erature in Miller and Yool (2002), Key and 
Benson  were the first to subtract a post-fire 
NBR from a pre-fire NBR for mapping fires in 
an absolute change detection methodology (a 
differenced NBR [dNBR]) so that barren areas 
unchanged by fire would not appear as high 
severity (Key and Benson 2006b).  However, 
dNBR must be individually calibrated for each 
assessment of fire severity because of dispari-
ties in vegetation types and density (Spanner 
et al. 1990, Miller and Yool 2002, Kokaly et 
al. 2007).  Miller and Thode (2007) described 
a new spectral index, a relativized version of 
the differenced normalized burn ratio (RdN-
BR) that they claimed allowed for calibrations 
to field-measured variables to be applied to fu-
ture fires without further field validation.  
Miller and Thode (2007) modified dNBR by 
dividing by a function of the pre-fire NBR:
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(2)

Miller and Thode (2007) published a cali-
bration of RdNBR derived from one-year post-
fire Landsat data (i.e., extended assessments 
[EA]) to the Composite Burn Index (CBI), a 
field based severity measure with values rang-
ing from 0 to 3 (unchanged to high severity) 
that accounts for combined fire effects to sur-
face fuels, understory, and upper canopy (Key 
and Benson 2006a).  Consequently, it can be 
difficult to relate CBI values to a specific fire 
effect.  Subsequently, Miller et al. (2009a) 
published calibrations of RdNBR EAs to two 
quantitative metrics: field-measured percent 
change in tree CC and basal area (BA).  Esti-
mates of all three metrics using RdNBR data 
are calculated as follows:

(3)

Percent BA change =

(4)

Percent CC change =

(5)

Miller et al. (2009a) also demonstrated 
that the calibrations produced fire severity 
classifications of similar accuracy in fires 
across a broad region of California that were 
not used in the original calibration process.

In 2006, the USDA Forest Service, Pacific 
Southwest Region, began developing methods 
to map severity to vegetation immediately post 
fire (i.e., initial assessments [IA] conducted 
within approximately 30 to 45 days of wildfire 
containment) to inform post-fire reforestation 

planning for the national forests in California.  
Their methods were later adopted by the 
USDA Forest Service’s Remote Sensing Ap-
plications Center (RSAC) under the Rapid As-
sessment of VeGetation (RAVG) Condition 
program to extend coverage to all USDA For-
est Service lands nationwide (USDA 2007).  
The RAVG program produces severity map 
products using the EA calibrations published 
in Miller et al. (2009a); however, there is one 
basic difference.  Although NBR is primarily 
sensitive to changes in chlorophyll, the MIR 
wavelengths employed in the NBR are also 
sensitive to ash cover, which decreases over 
time due to wind and rain (Kokaly et al. 2007, 
Woods and Balfour 2008).  As a result, RdN-
BR values representing areas of complete mor-
tality can differ between IAs and EAs.  There-
fore, new calibrations for IA post-fire images 
were necessary.  However, there were not any 
immediate post-fire plot data available to de-
rive new calibrations.  The Pacific Southwest 
Region therefore modified the EA calibrations 
for CBI, and percent change in tree BA and 
CC to account for higher levels of ash cover 
that exist immediately post fire.  In this paper, 
we first present the IA calibrations that were 
developed for California and were later adopt-
ed by RSAC for the national RAVG program.  
Second, we use EA post-fire ground-based 
measurements used in Miller et al. (2009a) to 
assess the accuracy of IAs and compare them 
with EAs.  Finally, considering that fires in 
forested landscapes can transition from surface 
to crown fire within 30 m, equal to the width 
of a Landsat pixel (Safford et al. 2012), we 
also compare the accuracy of BA ground mea-
surements ˂30 m and ≥30 m distant from the 
inside boundary of mapped severity category 
polygons to determine how plot location and 
scale of the satellite data impacts classification 
accuracy.
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METHODS

Study Area

The fires used in this study were located 
within the region formed by the Sierra Nevada 
Forest Plan Amendment (SNFPA) planning 
area (USDA 2004) plus two national forests in 
northwestern California (Figure 1, Table 1).  

The SNFPA planning area, which guides 
land and resource management on 50 000 km2 
of national forest land on 11 US national for-
ests, not only includes the Sierra Nevada and 
its foothills but also the Warner Mountains, 
Modoc Plateau, White Mountains, Inyo Moun-
tains, and portions of the southern Cascades.  
Climate is mediterranean type, with warm, dry 
summers and cool, wet winters; nearly all pre-
cipitation falls between October and April 
(Minnich 2007).  Forest vegetation was di-
verse, with different dominant species and 
high variation in density and vertical structure.  
The fires in this study were all located in mon-
tane landscapes dominated by coniferous for-

est, with ponderosa pine (Pinus ponderosa 
Lawson & C. Lawson), Douglas-fir (Pseudot-
suga menziesii [Mirb.] Franco), and hard-
woods (mostly Quercus spp.) dominant at low-
er elevations; white fir (Abies concolor [Gord. 
& Glend.] Lindl. ex Hildebr.), incense cedar 
(Calocedrus decurrens [Torr.] Florin), sugar 
pine (Pinus lambertiana Douglas), ponderosa 
pine, and Douglas-fir at intermediate eleva-
tions; and Jeffrey pine (Pinus jeffreyi Balf.), 
lodgepole pine (Pinus contorta Loudon), and 
red fir (A. magnifica A. Murray bis) at the 
higher elevations.  The amount of understory 
vegetation was largely dependent on stand 
density, with open stands having more under-
story vegetation.

Climate in northwestern California was 
also mediterranean, but somewhat moister on 
average than the SNFPA area, with higher spa-
tial variability due to proximity to the Pacific 
Ocean and steep, complex topography (Skin-
ner et al. 2006).  While most of the dominant 
conifer species were shared with the Sierra 
Nevada and Cascade ranges, overall conifer 
diversity was higher with correspondingly 
greater vegetation diversity and complexity 
(Barbour et al. 2007).  Midstory evergreen and 
deciduous hardwood trees were more abun-
dant than in the Sierra Nevada (Sawyer and 
Thornburgh 1977).  

Although total area burned per year on av-
erage increased at the end of the twentieth cen-
tury, much of the study area had not burned 
since before the beginning of the twentieth 
century (Miller et al. 2009b, Miller et al. 
2012b, Mallek et al. 2013, Safford and Van de 
Water 2014). 

Severity Data

The severity data for fires used in this 
study came from a database maintained by the 
USDA Forest Service’s Pacific Southwest Re-
gion.  The database contains fire severity data 
for most large wildfires since 1984 that have 
occurred at least partially on Forest Service 
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Figure 1.  Fires used in this study.  
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lands in California.  A majority of the RdNBR 
data used to produce the database was ac-
quired from the Monitoring Trends in Burn 
Severity (MTBS; USDA-DOI 2005) and 
RAVG programs, but the database also con-
tains many fires that were mapped by the Pa-
cific Southwest Region.  The MTBS protocols 
typically call for mapping fires in conifer for-
ests using dNBR derived from a Landsat post-
fire image acquired during the summer of the 
calendar year after fire containment (Key and 
Benson 2006b, Eidenshink et al. 2007).  Al-
though categorical severity maps produced by 
MTBS are produced from dNBR, MTBS also 
provides the non-calibrated RdNBR index data 
for each fire.  The RAVG program produces 
severity maps (CBI, BA loss, and CC loss) 
within the first 30 to 45 days after wildfire 
containment.  Conforming to best practices for 
a change detection methodology RAVG, 
MTBS and the Pacific Southwest Region 
chose pre- and post-fire images with the best 
possible matching anniversary dates to mini-

mize differences in sun angle, phenology, etc. 
(Singh 1989, Key and Benson 2006b).  Before 
applying the calibrations to create categorical 
severity data, we applied a focal mean in a 3 × 
3 pixel moving window to the RdNBR index 
data, which matched the 90-meter diameter of 
the field plots used to derive the calibrations, 
to reduce the number of single-pixel polygons 
in our database (Miller and Thode 2007).  All 
severity data used in this study were derived 
from RdNBR, calculated from 30 m Landsat 
images, and calibrated to field measured CBI, 
percent change in BA, and percent change in 
CC. 

Initial Assessment Calibrations

It is desirable to use ground reference data 
acquired near the same time as post-fire satel-
lite data to train and assess the accuracy of de-
rived classifications (Congalton and Green 
1999, Jensen 2000).  However, adequate post-
fire plot data were not available when we start-

Fire 
name

Ignition 
date

National
forest

Plots
(n)

Plot 
diameter 

(m)
Field 

protocola

Initial assessment 
image dates

Extended assessment 
image dates

Pre fire Post fire Pre fire Post fire
Blue 8 Aug 2001 Modoc 92 90 Tree mortality 24 Aug 1999 30 Sep 2001 28 Jul 2001 15 Jul 2002

Cone 26 Sep 2002 Lassen 56 90 Tree mortality, 
CBI 25 Sep 2002 19 Oct 2002 25 Sep 2002 12 Sep 2003

Hancock 23 Jul 2006 Klamath 20 30 Tree mortality, 
CBI 14 Oct 2004 20 Oct 2006 23 Aug 2005 13 Aug 2007

Martis 17 Jun 2001 Tahoe 0b N/A N/A 19 Aug 2000 6 Aug 2001 19 Aug 2000 8 Jul 2002

McNally 21 Jul 2002 Sequoia 192 90 Tree mortality, 
CBI 23 Jul 2001 27 Aug 2002 16 Jun 2002 19 Jun 2003

Rush 24 Jul 2006 Klamath 19 30 Tree mortality, 
CBI 24 Sep 2005 11 Sep 2006 23 Aug 2005 13 Aug 2007

Somes 24 Jul 2006 Six Rivers 21 30 Tree mortality, 
CBI 24 Sep 2005 11 Sep 2006 23 Aug 2005 13 Aug 2007

Star 24 Aug 2001 Eldorado, Tahoe 94 90 Tree mortality 6 Aug 2001 15 Sep 2001 6 Aug 2001 8 Jul 2002

Straylor 22 Jul 2004 Lassen 81 60 Tree mortality, 
CBI 11 Aug 2003 13 Aug 2004 12 Sep 2003 1 Sep 2005

Stream 25 Jul 2001 Plumas 41 90 Tree mortality 12 Jul 2001 21 Aug 2001 12 Jul 2001 29 Jun 2002

Titus 25 Jul 2006 Klamath 12 30 Tree mortality, 
CBI 24 Sep 2005 27 Sep 2006 23 Aug 2005 13 Aug 2007

Uncles 23 Jul 2006 Klamath 6 30 Tree mortality, 
CBI 24 Sep 2005 11 Sep 2006 23 Aug 2005 13 Aug 2007

Table 1.  Fires in this study and number of plots sampled one year post fire.

a CBI = Composite Burn Index; Tree mortality = species, live or dead, diameter at breast height, scorch height, crown base height, 
and percent of crown volume scorched

b Martis Fire was only used in regression analysis to determine change in ash cover.
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ed to develop an IA methodology (circa 2006 
to 2007).  The only field data available in suf-
ficient quantity were CBI and tree mortality 
data that had been collected one year post fire 
(Miller and Thode 2007, Miller et al. 2009a).  
Calibration of EA post-fire Landsat-derived 
RdNBR values to CBI had already been pub-
lished, and a calibration to percent change in 
BA had been reported in a draft report (J. Mill-
er and J. Fites, USDA Forest Service, Nevada 
City, California, USA, unpublished report; 
Miller and Thode 2007).  

As discussed earlier, in the pre- and post-
fire change detection methodology we employ, 
wavelengths used in the RdNBR are primarily 
sensitive to changes in chlorophyll and ash 
cover (Key and Benson 2006b, Kokaly et al.
2007).  However, additional tree mortality can 
occur for several years after a fire (Hood et al. 
2010, van Mantgem et al. 2011).  In addition, 
vegetation response (e.g., sprouting shrubs) in 
the first year post fire can result in higher chlo-
rophyll levels in areas that experienced com-
plete vegetation mortality (Crotteau et al. 
2013).  As we could not account for changes in 
chlorophyll due to delayed tree mortality or 
post-fire vegetative response using EA post-
fire tree mortality data, we felt that the best ap-
proach to developing calibrations for IAs was 
to adjust the EA calibrations to account only 
for differences in ash cover.  To determine the 
average change in RdNBR due to changes in 
ash cover, we randomly selected areas with the 
following constraints: 1) they contain at least 
1000 pixels representing unchanged condi-
tions outside the fire perimeter and areas of 
complete tree mortality inside the perimeter, 
and 2) they were unaffected by post-fire man-
agement actions, delayed tree mortality, or 
vegetative response (e.g., sprouting shrubs).  
The IA and EA RdNBR values were then re-
gressed using ordinary least squares (OLS) re-
gression.  The IA RdNBR values in severely 
burned areas are primarily a function of ash 
cover and soil mineral content (Kokaly et al. 
2007).  We used EA RdNBR values as the in-

dependent variable as a proxy for soil mineral 
content in the regression model.  Differences 
between pre- and post-fire images are always 
removed before computing RdNBR by sub-
tracting the mean of unchanged areas from 
dNBR before computing RdNBR.  The RdN-
BR values for areas unaffected by fire or man-
agement actions are therefore typically nor-
mally distributed with a mean of zero as long 
as calendar dates of the pre- and post-fire im-
ages are similar (Key and Benson 2006b, Mill-
er and Thode 2007).  Consequently, we did not 
include the intercept term in the OLS regres-
sion model.  The slopes of the regressions for 
a small representative set of fires were aver-
aged and then incorporated as a linear scale 
factor into the EA post-fire calibrations.  At the 
time (circa 2006 to 2007), Landsat images cost 
around $600 per scene and our funding for ac-
quiring images was limited.  In addition, 
through our experience in working with post-
fire satellite imagery, we knew that there can 
be a high degree of variability between fires, 
and sometimes within fires, in the amount of 
decline in ash cover during the first year post 
fire.  Therefore it would require only a small set 
of fires to obtain a rough estimate (within one 
SD) for the mean of ash cover decline, and a 
larger set of fires would not result in a more ro-
bust estimate.

Accuracy Assessment

Plot data.  For assessing the accuracy of 
the IA calibrations, we leveraged plot data 
gathered one year post fire that was used in 
Miller and Thode (2007) and Miller et al.
(2009a) for which we had both initial and ex-
tended RdNBR-based severity assessments al-
ready entered in our severity database (Table 
1).  The plot data were collected by different 
teams and methods for ground-based assess-
ment methods of CBI severity, and forest met-
rics were slightly different.  As a result, plot 
size varied between years.  Plots were circular 
with 90 m diameter for fires that occurred from 
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2001 to 2002, 60 m for 2004 fires, and 30 m 
for 2006 fires.  Plots sampled in the SNFPA 
planning area were located at least 300 m apart 
on randomly placed transects.  A stratified ran-
dom procedure was used to generate potential 
plot locations for the 2006 fires in northwest 
California using a preliminary severity map.  
The CBI was not collected in fires that oc-
curred during 2001, but was evaluated over the 
entire plot in subsequent years.  Data collected 
to characterize fire effects on trees included 
status (live or dead), species, diameter at 
breast height (dbh), scorch height, crown base 
height (CBH), and percent of crown volume 
scorched.  Tree data were collected for each 
tree in the 30 m diameter plots.  The numbers 
of trees less than 10 cm in diameter were 
counted by species.  In plots that were 60 m 
and 90 m in diameter, tree data were measured 
in four 10 m diameter subplots and tallied into 
10-centimenter size classes.  We estimated 
whether dead trees were killed by the fire or 
were already dead prior to the fire by presence 
or absence of dead needles as well as bark and 
wood consumption patterns.  Live pre-fire 
trees are rarely consumed by fire (Pyne et al.
1996).  But survival of pre-fire snags is depen-
dent upon snag condition and fire intensity 
(Laudenslayer 1997, Skinner 2002).  Pre- and 
post-fire BA was calculated from the diame-
ters of trees thought to have been alive prior to 
the fire and alive after the fire, respectively.  
Pre- and post-fire CC was estimated using the 
Forest Vegetation Simulator (FVS; Dixon 
2002).  The FVS-derived estimates of individ-
ual tree crown cover assume that trees are 
healthy and unaffected by fire or disease.  We 
therefore adjusted FVS-computed CC using 
equations for modeling crown shape for north-
ern California conifer species (Biging and 
Wensel 1990).  (See Miller et al. [2009a] for 
more complete details on the CC calculations.)  
As USDA Forest Service vegetation classifica-
tion standards require 10 % tree CC for an area 
to be classified as forested, we only used plots 
in this study for which FVS indicated ≥10% 
pre-fire tree CC (Brohman and Bryant 2005).

Analyses.  We evaluated classification ac-
curacy using error matrices detailing produc-
er’s, user’s, and overall accuracies and esti-
mates of the Kappa statistic.  Producer’s accu-
racy (1 – omission error) is an evaluation of 
when a plot is not mapped in the correct cate-
gory (i.e., a Type II error).  User’s accuracy (1 
– commission error) is an evaluation of when a 
plot is mapped in the wrong category (i.e., a 
Type I error).  Kappa is a measure of the dif-
ference between the actual agreement between 
reference data and classified data, and the 
chance agreement between the reference data 
and randomly classified data.  Classifications 
can be statistically compared with Z-tests to 
determine whether classifications are signifi-
cantly different (Congalton and Green 1999).  
We compared Kappa statistics of IAs and EAs, 
as well as Kappa statistics of plots that were 
˂30 m and ≥30 m from mapped category 
boundaries of percent change in BA (Table 2). 

We used a Generalized Linear Model 
(GLM) to determine whether plot measured 
values (CBI, and percent change in CC and 
BA) differed between assessment types.  We 
also checked to see whether mapped severity 
categories differed within each assessment 
type.  In the GLM, effects were therefore as-
sessment type crossed with mapped severity 
category.  The GLM was run twice, partition-
ing the interaction effects by assessment type 
and mapped severity category in separate runs.  
One advantage to GLMs is that they allow for 
response variables that are not normally dis-
tributed.  However, there is still a requirement 
that model residuals be normally distributed 
(Nelder and Wedderburn 1972).  The percent 
change data (BA and CC) did not effectively 
fit any of the standard distributions provided in 
GLM algorithms due to the high number of 
0% and 100 % values.  Instead, we found that 
normality assumptions were best met by first 
transforming them using arcsine-square root.  
Therefore, a Gaussian distribution with an 
identity link function was used in the GLMs 
for all severity metrics.  P-values were adjust-
ed using the Tukey-Kramer method to account 
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for multiple comparisons (Kramer 1956).  Fi-
nally, we produced histograms of live tree BA 
in the highest BA mortality severity categories 
(≥75 % and ≥90 %) to illustrate how distance 
from the edge of mapped polygons (˂30 m, 
≥30 m, and all plots) affects accuracy.

RESULTS

Initial Assessment Calibrations

The OLS regression slopes of initial to EA 
RdNBR values ranged between 1.069 and 
1.193 (Table 3), resulting in a mean of 1.144 
(SD = 0.053).  The equations used to estimate 
CBI, percent change in BA, and percent 
change in CC from EA RdNBR values were 
modified as follows for IAs (Table 3: Miller et 
al. 2009a):

(6)

Percent BA change =

(7)

Percent CC change =

(8)

Accuracy Assessment

Initial vs. extended assessments.  There 
were no significant differences between IA and 
EA Kappa statistics (Figure 2, all P ≥ 0.674).  
Comparing classifications of all plots, IA us-
er’s and producer’s accuracies for the highest 
severity categories were greater than EAs, ex-
cept for CBI (Table 4).  However, there were 
no significant differences between mean plot 
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po
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n

<3
0 

m

0 % 0 % 51 39 56 42
>0 % and <10 % 54 64

>0 % and <25 % ≥10 % and <25 % 106 115 63 65
≥25 % and <50 % 75 80

≥25 % and <75 % ≥50 % and <75 % 115 119 67 66
≥75 % and <90 % 23 21

≥75 % ≥90 % 72 82 81 88

≥3
0 

m

0 % 0 % 15 27 10 24
>0 % and <10 % 22 12

>0 % and <25 % ≥10 % and <25 % 40 31 7 5
≥25 % and <50 % 10 5

≥25 % and <75 % ≥50 % and <75 % 42 38 5 6
≥75 % and <90 % 3 5

≥75 % ≥90 % 193 183 158 151

A
ll-

pl
ot

s d
is

ta
nc

e ≥0 and <0 .1 0 % 0 % 0 % 9 72 66 66 66 66
>0 % and <10 % 76 76

≥0.1 and <1.25 >0 % and <25 % >0 % and <25 % ≥10 % and <25 % 98 137 146 146 70 70
≥25 % and <50 % 85 85

≥1.25 and <2.25 ≥25 % and <50 % ≥25 % and <75 % ≥50 % and <75 % 152 98 157 157 72 72
≥50 % and <75 % ≥75 % and <90 % 67 26 26

≥2.25 ≥75 % ≥75 % ≥90 % 141 260 265 265 239 239

Total     400a 634 634 634 634 634

Table 2.  Number of plots by distance from edge of severity category polygon, severity category and as-
sessment type.  Lower case “a” and “b” denote initial and extended assessments.

a CBI data were not collected on 7 plots
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values of IA and EA classification categories 
(Figure 3, P = 0.077 for BA ≥10 % and <25 %, 
all other P ≥ 0.143).  

User’s and producer’s accuracies were best 
for the highest severity categories, regardless 

of severity metric (Table 4).  Accuracies for 
lower severity categories of the percent change 
in BA and CC indicated that classification of 
individual plots was not much better than ran-
dom.  Accuracies of the low and middle CBI 
categories were a little better than the percent 
change in BA and CC.

Regardless of assessment, differences be-
tween categories were significant for the 
four-category CBI and BA classifications 
(BA4; Figures 3A and 3C).  When the number 
of categories increased, so did standard errors, 
resulting in differences between some adjacent 
categories not being significant (Figures 3B 
and 3D).  Means of field-measured values in 
the lowest severity categories, regardless of 
assessment, were greater than what was ex-
pected in the mapped categories (Figure 3).  
Means of field values for all other categories 
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Figure 2.  Kappa statistic (blue bars) and overall classification accuracy (hollow bars with black outlines) 
for initial and extended assessment error matrices of Composite Burn Index (CBI), percent change in can-
opy cover (CC), and basal area (BA) classifications.  BA4 and BA7 refer to the four-category and sev-
en-category basal area classifications.  None of the comparisons of initial and extended assessment Kappa 
statistics are significantly different (all P > 0.674; Z ≥ 5.11). 

Fire name Regression slope
Blue 1.069
Stream 1.156
Martis 1.193
Cone 1.157

Table 3.  Fires used to estimate an average change 
in high severity RdNBR values between initial and 
extended assessments due to a decrease in ash cov-
er.  Regression slopes from ordinary least squares 
regression without an intercept in the model (all re-
gressions R2

adj ≥ 0.98, P < 0.001).
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generally fell within the category ranges ex-
cept for the seven-category BA classification 
(BA7).

Distance from polygon boundary.  Overall 
accuracy and Kappa values of plots ≥30 m 
from the mapped percent change in BA cate-
gory boundary were higher when than when 
they were <30 m from the boundary (P < 

0.001; Figure 4).  User’s and producer’s accu-
racies were highest, ranging from 89.9 % to 
100% for the highest (≥75 % or ≥90 %) severi-
ty categories when plots were ≥30 m from the 
polygon boundary (Table 4).  In contrast, us-
er’s and producer’s accuracies ranged from 
38.6% to 67.9 % when plots were <30 m from 
the polygon boundary.  There were not any 
live trees in 81 % to 88 % of plots ≥30 m inside 

  Initial assessment Extended assessment
<30 m ≥30 m All plots <30 m ≥30 m All plots

Category
User’s 

(%)
Producer’s 

(%)
User’s 

(%)
Producer’s 

(%)
User’s 

(%)
Producer’s 

(%)
User’s 

(%)
Producer’s 

(%)
User’s 

(%)
Producer’s 

(%)
User’s 

(%)
Producer’s 

(%)

C
la

ss
ifi
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tio

n
C

om
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si
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 b
ur

n 
in

de
x 

(C
B

I)

≥0  
<0.1 36.4 44.4 27.3 66.7

≥0.1  
<1.25 51.6 66.3 55.6 56.1

≥1.25  
<2.25 58.9 50.0 58.3 55.3

≥2.25 78.4 74.5 79.3 75.9

C
an

op
y 

co
ve

r 
(C

C
) 0 % 28.9 38.9 40.2 48.6

>0 % 
<25 % 33.7 40.9 39.0 43.8

≥25 % 
<50 % 22.0 13.3 23.9 16.3

≥50 % 
<75 % 22.2 17.9 18.8 19.4

≥75 % 83.3 82.7 77.0 76.2

B
as

al
 a

re
a 

(B
A

4)

0 % 28.0 27.5 22.2 40.0 26.0 30.3 23.7 23.1 73.3 81.5 45.6 47.0
>0 % 
<25 % 41.3 49.1 37.2 40.0 40.2 46.6 45.0 43.5 54.3 61.3 47.3 47.3

≥25 % 
<75 % 46.0 40.0 50.0 21.4 46.6 35.0 36.4 36.1 34.6 23.7 36.1 33.1

≥75 % 60.3 56.9 92.1 96.4 84.1 85.7 50.0 53.7 89.9 92.3 77.2 80.4

B
as

al
 a

re
a 

(B
A

7)
 

0 % 28.0 25.0 22.2 60.0 26.0 30.3 23.7 21.4 73.3 91.7 45.6 47.0
>0 % 
<10 % 16.3 24.1 45.5 22.7 19.8 23.7 33.3 34.4 46.2 50.0 35.4 36.8

≥10 % 
<25 % 24.7 30.2 0.0 0.0 24.4 27.1 17.9 18.5 N/Aa 0.0 17.9 17.1

≥25 % 
<50 % 21.3 17.3 25.0 10.0 21.5 16.5 20.8 20.0 N/Aa 0.0 20.8 18.8

≥50 % 
<75 % 26.9 20.9 100.0 20.0 28.3 20.8 19.0 18.2 0.0 0.0 17.9 16.7

≥75 % 
<90 % 8.7 17.4 N/Aa 0.0 8.7 15.4 11.1 23.8 N/Aa 0.0 11.1 19.2

≥90 % 67.9 44.4 92.4 100.0 86.6 81.2 48.6 38.6 90.7 96.7 77.9 75.3

Table 4.  User’s and producer’s accuracies for initial assessments and extended assessments for all plots 
and for plots that were <30 m and ≥30 m from the edge of the severity category polygon in basal area 
(BA) classifications.

a Not calculated due to zero plots within the category.
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the highest severity polygons (EA ≥75 % BA 
change and IA ≥90 % BA change, respectively; 
Figure 5).  In contrast, there were not any live 
trees in only 35 % to 62 % (EA ≥75 % BA 
change and IA ≥90 % BA change, respective-
ly) of plots <30 m inside the highest severity 
polygons. 

DISCUSSION

The modified EA calibrations that we used 
for IAs were based upon OLS regression of IA 

and EA RdNBR values from four fires.  We 
only used four fires in part because of the 
available data, but we also assumed that a 
small sample would produce a mean value that 
would be within one SD of the mean of a larg-
er sample because of the high variation in ash 
cover decline between fires.  In order to con-
firm our assumption that a four-fire sample 
was adequate, we computed the mean of IA to 
EA regression slopes of all 12 fires (mean = 
1.126, SD = 0.110, results not shown).  The 
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Figure 3.  Generalized Linear Model results comparing plot values in mapped categories between and 
within initial and extended assessments: A) Composite Burn Index (CBI), B) percent change in canopy 
cover (CC), C) four categories of percent change in basal area (BA4), and D) seven categories of percent 
change in basal area (BA7).  Bars represent plot measured means within each severity category.  Blue bars 
are initial assessments and gray bars are extended assessments.  Bars labeled with different letters (small 
letters for initial assessments, capital letters for extended assessments) indicate P-values of comparisons 
between categories within each assessment are significantly different at P < 0.05.  P-values were adjusted 
using the Tukey-Kramer method.  There were not any significant differences in mean plot values between 
initial and extended assessments.
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difference between the means from the four 
and twelve fire samples (0.018) was less than 
one SD of the four-fire sample (0.053), and a 
t-test of the difference between means was not 
significant (P = 0.38).

The IA calibrations derived using the four-
fire sample adjustment factor produced classi-
fications of similar accuracy to EA calibra-
tions.  Overall classification accuracies were 
similar and Kappa statistics were not signifi-
cantly different between assessment types 
(Figure 2).  Comparing category by category, 
there were not any significant differences in 
mean plot values between IAs and EAs (Fig-
ure 3).  Additionally, in a separate analysis, 
Safford et al. (2015) found no significant dif-
ference in the percentage of high severity 
mapped by IAs and EAs within fires that oc-
curred primarily in conifer forests on Forest 
Service managed lands in the Sierra Nevada 
(24.16 % vs. 23.99 %, IAs and EAs respective-
ly; paired t-test P = 0.346, N = 53).  

User’s and producer’s accuracies for low 
and middle severity categories were low for at 
least two reasons (Table 4).  First, in most of 
the low and middle categories, there were 
more than twice as many plots <30 m from 
mapped category boundaries compared to the 
number of plots ≥30 m distant from boundar-
ies (Table 2).  It is therefore important to con-
sider the registration accuracy of the satellite 
images and scale of the severity maps when 
using them for post-fire project planning.  Plot 
location in relation to the boundary of the 
mapped severity polygons is important.  Plots 
do not perfectly align with the 30 m satellite 
pixel, and as fire can transition from surface to 
crown within 30 m (Safford et al. 2012), fire 
effects can vary considerably within a pixel, 
resulting in lower accuracy for plots in the pix-
el adjacent to the edge of the polygon.  The 
middle severity categories often occur in nar-
row bands around high severity patches.  
When the number of severity categories in-
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Figure 4.  Kappa statistic (blue bars) and overall classification accuracy (hollow bars with black outlines) 
for error matrices using plots that were either <30 m or ≥30 m distant from the edge of mapped category 
boundaries.  Kappa statistics for <30 m and ≥30 m error matrices are all significantly different at P < 
0.001 (Z ≤ 0.42).
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Figure 5.  Frequency of live tree basal area in field plots mapped at the highest severity in the percent bas-
al area (BA) change classifications.  Frequencies are for plots that were <30 m and ≥30 m inside the high-
est severity polygon and all plots.  Figures display field plots classified either ≥90 % or ≥75 % BA change 
by initial and extended assessments: A) initial assessment ≥90 % BA change, B) extended assessment 
≥90 % BA change, C) initial assessment ≥75 % BA change, and D) extended assessment ≥75 % BA change.

creases (i.e., BA4 vs. BA7), those bands de-
crease in width to only one to two pixels wide 
in many locations, leading to confusion be-
tween severity categories (Figure 3).  Consid-
ering that pixels can be misregistered up to a 
pixel, it can also be impossible to identify the 
exact location of those moderate severity pix-
els on the ground.  Second, mean plot values 
in the lowest severity categories were greater 
than indicated by the mapped categories (Fig-
ure 3).  Kane et al. (2013) also detected tree 
mortality using LIDAR data in unchanged and 
low categories of maps calibrated to the CBI.  
All but two of the fires in our study occurred 

in areas that had not burned since at least the 
early 1900s.  Numerous stand composition 
studies throughout our study area have shown 
that areas that experienced frequent low- to 
mixed-severity pre-settlement fires have con-
temporary stand structures distinguished by 
relatively small numbers of old trees (>300 yr) 
and abundant younger trees that established 
after fire suppression began (Vankat and Major 
1978, Taylor and Skinner 2003, Leonzo and 
Keyes 2010, Scholl and Taylor 2010, Collins 
et al. 2011).  Under- and mid-story trees can 
be killed in low intensity surface fire, which 
may not be detectable by a passive satellite 
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(e.g., Landsat) under dense forest canopies 
(Stenback and Congalton 1990), leading to 
higher actual mortality measured in plots in 
the lower severity categories.  Percent change 
in CC was based upon FVS calculations of 
pre- and post-fire live trees.  The FVS esti-
mates of CC were corrected for canopy over-
lap, but FVS uses random tree placement 
(Crookston and Stage 1999, Miller et al.
2009a).  Therefore, the percent changes in CC 
may not represent actual CC as seen from 
overhead by a satellite, thereby also leading to 
higher than expected CC change in the lowest 
severity categories.  As a result, it may be 
more appropriate to combine the 0% category 
(BA or CC) with the next higher category 
(Kolden et al. 2012).  When the 0 % and >0 % 
and <25 % change categories are combined, 
user’s and producer’s accuracies increase from 
≥26.0 % to ≥62.4 % (results not shown).  

Accuracies of the low and middle CBI cat-
egories were a little better than the percent 
change in BA and CC metrics, perhaps be-
cause CBI is a composite measurement repre-
senting effects from surface fuels, understory 
vegetation, and the upper canopy (Key and 
Benson 2006a).  However, the CBI protocol 
relies entirely upon ocular estimates, which 
can lead to considerable error (Korhonen et al. 
2006).

Plot measured values we report for the 
lowest to mid-severity categories may not be 
representative of other vegetation types or of 
forests in other regions that are more or less 
productive, comprised of different species, or 
do not have a similar fire suppression history.  
However, it is likely that accuracies of the 
highest severity categories will be similar be-
cause our methodology is dependent upon rel-
ative change between pre- and post-fire imag-
es (i.e., stand replacement regardless of vege-
tation type is always 100 % change).  

There are two major factors that can con-
tribute to differences between IAs and EAs.  
First, with the time delay between IA and EA 
image dates, any additional tree mortality or 

resprouting or recovery of live vegetation can 
alter measured effects.  Second, when fires are 
contained late in the calendar year, IA post-fire 
images may be acquired when the sun eleva-
tion angle is low.  Low sun angles, especially 
after the fall equinox at latitudes in our study 
area or farther north, can affect image quality 
in two ways: 1) the sun does not fully illumi-
nate north-facing slopes in steep terrain, and 2) 
it can be difficult even on level terrain to see 
through tree canopies to the understory (Hol-
ben and Justice 1980, Dymond and Qi 1997).  
When containment dates are late in the calen-
dar year, a cloud-free post-fire image may not 
be available until the next spring due to cloud 
cover, thereby making an IA unfeasible.  With-
out immediate post-fire plot data re-measured 
one year post fire, we cannot assess whether 
delayed mortality was a factor in our classifi-
cation accuracy.  Consequently, we attempted 
to model only change in ash cover when modi-
fying the EA calibrations.  Some of our IA 
post-fire images were late in the calendar year 
(Table 1), so we therefore checked to see 
whether the IA RdNBR values for our plots 
were affected by steep north-facing slopes, 
and none appeared to be affected by topo-
graphic shadows.  Canopy shadowing may 
have been an issue as evidenced by lower IA 
accuracies of the lowest severity categories 
(Table 4), but there were not significant differ-
ences between assessment types (Figure 3).  

From a management perspective, it is de-
sirable for the highest severity categories to be 
accurate because that is where most potential 
ecosystem damage occurs and where most 
post-fire management actions occur.  User’s 
and producer’s accuracies of the high severity 
category ranged from 74.5 % to 86.6 %.  But, 
more than half (54 % to 67 %) of the plots in 
our study were <30 m from the boundary, be-
tween different mapped severity categories of 
percent change in BA (Table 2).  When consid-
ering plots ≥30 m from the boundary, user’s 
and producer’s accuracies were ≥89.9 % (Ta-
ble 4).  More than 80 % of the plots ≥30 m 
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