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Abstract

Background: Many forests within the southern Appalachian region, USA, have experienced decades of fire exclusion,
contributing to regeneration challenges for species such as oaks (Quercus spp. L.) and pines (Pinus spp. L.), and
threatening the maintenance of oak-dominated forests in the future. While the use of prescribed fire as a forest
management tool is increasing within this region, there remains a lack of information on the potential role of wildfire.
A wildfire within the Daniel Boone National Forest, Kentucky, USA, provided an opportunity to investigate how wildfire
affected forest vegetation response.

Results: We examined the effects of fire severity, quantified using composite burn index (CBI), on basal area, stem
density, and sapling recruitment for several key species. We also examined the effects of fire severity on understory
species richness and illuminated the consequence of non-native species invasions following fire. Our results
demonstrated a negative relationship between fire severity and basal area (stems ≥2 cm diameter at breast height;
P≤ 0.001), and a positive relationship with the recruitment of oak and pine saplings (both P≤ 0.001), oak sapling
density (P = 0.012), and non-woody understory species richness (P≤ 0.001). We also found that increasing fire severity
heightened likelihood of invasion by non-native species, specifically princess tree (Paulownia tomentosa [Thunb.]
Siebold & Zucc. ex. Steud; P = 0.009) and Chinese silvergrass (Miscanthus sinensis Andersson; P = 0.028).

Conclusions: Where it is feasible, public land managers may be able to generate a range of fire severity during future
prescribed fires that approximate some characters of wildfire. These fires, when implemented in southern Appalachian
upland forests, may help recruit oaks and pines and boost their potential as future canopy dominants. However, the
increased occurrence of non-native invasive species invasion following fire conveys the importance of targeted and
timely eradication treatments before new populations of non-native species may become established or reproduce,
contradicting the ecological benefits of fire.

Keywords: Chinese silvergrass (Miscanthus sinensis), fire severity, invasion potential, management, oaks (Quercus spp.),
pines (Pinus spp.), princess tree (Paulownia tomentosa), species richness, wildfire

Abbreviations
CBI: Composite Burn Index
DBH: Diameter at Breast Height (1.4 m)
DBNF: Daniel Boone National Forest
NDVI: Normalized Difference Vegetation Index
RRGGA: Red River Gorge Geologic Area

TWI: Topographic Wetness Index
USDA: United States Department of Agriculture

Background
In the eastern United States, fires ignited from natural and
anthropogenic origins have been an important disturbance
agent in the development of plant communities within the
Appalachian region for millennia (Abrams 1992, Delcourt
and Delcourt 1997, Delcourt et al. 1998), particularly in
oak (Quercus spp. L.)-dominated systems (Nowacki and
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Abrams 2015). Prior to European settlement, fires were
likely low to intermediate on a scale of disturbance sever-
ity, with some stand-replacing fires in years of drought,
although the exact frequency of fire is unknown
(Wade et al. 2000). The frequency of historic fires and
their fire return intervals were spatially and temporally
variable and dependent on several factors, including an-
thropogenic ignition, surface fuel production, fuel frag-
mentation, and cultural behavior (Guyette et al. 2002,
Guyette et al. 2006). Following Euro-American settlement
(mid 1700s to early 1800s) and widespread logging prac-
tices (late 1800s to early 1900s) that occurred in response
to a burgeoning timber industry, fire severity, size, and fre-
quency increased throughout the Appalachian region,
eventually prompting a policy shift toward widespread fire
suppression in the early 1900s (Brose et al. 2001). Analysis
of fire scar data suggests that most fires in the Appalach-
ian region occurred prior to the 1930s and averaged
6-year fire return intervals before fire suppression was
prevalent in these forests (Guyette et al. 2010). Today,
wildfire suppression is still widely enforced, resulting in
the absence of fire from these forests for many decades. In
contemporary southern Appalachian forests, overall fire
frequency remains lower than historic levels with fire re-
turn intervals of 97 to 1196 years, while the area burned is
increasing (Lafon et al. 2005, Lafon et al. 2017). Although
wildfires remain infrequent, land managers are increas-
ingly using prescribed fire in an effort to meet multiple
management objectives in the Appalachian region (Brose
et al. 2001).
Unlike prescribed fires, which normally burn with low

to moderate severity during pre-determined environ-
mental conditions (Brose et al. 2001), wildfires typically
create patches of assorted fire severities across the land-
scape (Hutchinson et al. 2008). Wildfires occur periodic-
ally in the eastern United States today, but it is predicted
that the likelihood of larger and more severe fires may
increase in the future in response to a changing climate
(Flannigan et al. 2000). In the face of this possibility,
there is a need to clearly elucidate the effects of wildfire
on tree recruitment and overall forest structure within
this region. Specifically, land managers need a greater
understanding of how tree recruitment of oak and pine
(Pinus spp. L.) species varies with wildfire severity, as
well as a clearer understanding of tree recruitment
patterns of competitor species, such as red maple (Acer
rubrum L.), blackgum (Nyssa sylvatica Marshall), and
sourwood (Oxydendrum arboreum [L.] D.C.) in response
to wildfire. Given the contemporary decline in recruit-
ment success of fire-adapted species such as oaks and
pines, and the increase in fire-intolerant species
throughout the eastern United States (Nowacki and
Abrams 2008), information garnered from wildfire stud-
ies can also help hone parameters for using prescribed

fire to better meet management objectives and develop a
greater understanding of vegetative recovery following
fires that include higher fire severities than are custom-
ary in most prescribed fires.
In addition to the effects of fire on individual tree spe-

cies, the alteration of forest structure may result in in-
creased light availability and decreased vegetative
competition in the understory, leading to greater re-
source availability at ground level (Reilly et al. 2006,
Zouhar et al. 2008). Thus, fires that burn across a range
of fire severity may promote increased species richness
(Reilly et al. 2006, Hagan et al. 2015). For instance,
Kuddes-Fisher and Arthur (2002) found increased native
herbaceous species richness following a single
moderate-severity, late-winter prescribed fire on ridge-
tops within an oak−pine forest. In another oak−pine-do-
minated forest within the Appalachian region, total
species richness increased following a single wildfire, in
which upper slopes and ridges burned with high severity,
and also increased in areas twice-burned by wildfire;
however, the greatest increases in species richness oc-
curred in areas burned twice (Hagan et al. 2015).
Fire may also increase the invasion potential of

non-native species into the burned area (Belote et al.
2008, Brewer and Bailey 2014), as long as sufficient
propagule pressure of the invader is present (Eschtruth
and Battles 2009). It has been suggested that areas
burned with high fire severity may have the greatest like-
lihood of invasion by non-native species (Hunter et al.
2006, Fornwalt et al. 2010), due in part to increased bare
mineral soil (Burke and Grime 1996) or greater availabil-
ity of resources following fire (Hunter et al. 2006). Two
of the many non-native species in the eastern US cap-
able of invading newly burned areas are princess tree
(Paulownia tomentosa [Thunb.] Siebold & Zucc. ex.
Steud) and Chinese silvergrass (Miscanthus sinensis
Andersson), which were both imported as ornamental
plants from China (Miller et al. 2010). Princess tree can
quickly invade a range of disturbed sites, as long as ad-
equate light and moisture are available, through exces-
sive propagule pressure of wind-dispersed seeds (as
many as 2000 per capsule) and through the formation of
a deep taproot (Kuppinger et al. 2010). Once established,
princess tree rapidly matures to reproductive age within
5 to 7 years (Kuppinger et al. 2010). Chinese silvergrass,
a plume grass that grows up to three meters in height,
can form dense infestations following disturbance and
may increase the flammability of a site (Miller et al.
2010). Ultimately, the establishment of non-native spe-
cies such as the aforementioned princess tree and
Chinese silvergrass may threaten native plant communi-
ties (Hutchinson and Vankat 1997) and have the poten-
tial to alter fire frequency and affect fire behavior in the
future (Brooks et al. 2004, Huebner 2006).
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Few studies conducted in the Appalachian region have
documented the effects of wildfire severity on forest
structure and tree recruitment, or have investigated
vegetative recovery after wildfire. A wildfire ignited
within the USDA Forest Service Daniel Boone National
Forest (DBNF), Kentucky, USA, in 2010 presented an
opportunity to study changes in stand structure and tree
recruitment across a gradient of variable fire severity.
We hypothesized that fire severity would be (H1) nega-
tively related to post-fire stem density and basal area;
(H2) positively related to the recruitment of species that
depend on high light availability to regenerate (oaks and
pines); and (H3) negatively related to the recruitment of
competitors with less fire tolerance including red maple,
sourwood, and blackgum. The relationships among wild-
fire severity, non-woody understory species richness,
and the probability of non-native species invasion have
also not been extensively studied in the Appalachian re-
gion. Thus, we further hypothesized (H4) that fire sever-
ity would positively impact species richness within our
study sites, in part through an increase in the presence
of non-native species.

Methods
Fish Trap Fire
The Fish Trap Fire was unintentionally ignited by
campers in the Red River Gorge Geological Area
(RRGGA) within the Daniel Boone National Forest
(DBNF), Kentucky, USA (37°49' N, 83°40' W), during a
designated fire ban on 24 October 2010. The Fish Trap
Fire was fully contained over two weeks later, on 9 No-
vember 2010. The containment perimeter covered
674 ha, 645 ha of which was within USDA Forest Service
ownership (E.J. Bunzendahl, DBNF Fire Management
Officer, Winchester, Kentucky, USA, personal communi-
cation). We used composite burn index (CBI; Key and
Benson 2006) to quantify the severity of the Fish Trap
Fire, which is a metric used to describe the impacts of a
fire on site characteristics including ground fuels and
substrates, herbs, shrubs, and trees. CBI values (on a
scale of 0 to 3) were calculated using a scoring rubric
given in the FIREMON Landscape Assessment publica-
tion (Key and Benson 2006) in combination with
plot-based measurements described below. The Fish
Trap Fire resulted in varied fire severity across the land-
scape, with the gradient of fire severity represented ra-
ther evenly among our study plots, with 35% low to
unburned (CBI 0 to 1), 35% moderate (CBI 1 to 2), and
30% high (CBI 2 to 3) severity plots. Some areas of the
Fish Trap Fire burned with high-severity stand-replacing
fire, consuming vegetation and the litter layer to exposed
mineral soil. These severely burned areas, estimated to
cover <10% of the area burned, experienced woody vege-
tation loss nearing 100% in the first year after burning,

with minimal recruitment of woody vegetation the fol-
lowing year.

Study area
The region in eastern Kentucky where the RRGGA is lo-
cated is characterized by highly dissected uplands in the
Cliff Section of the Cumberland Plateau (Braun 1950).
Elevations in the study area range from 177 m to 479 m
(Upadhaya 2015). The ridgetops are covered by Alticrest
and Ramsey soil series, both derived from coarse-loamy
residuum of sandstone. Alticrest is a well-drained sandy
loam that is slightly deeper than Ramsey, a fine sandy
loam that is somewhat excessively drained due to the
high sand content. Ridgetop soil depths range from
25 cm to 101 cm (NRCS Soil Survey Staff 2017). Steep
side slopes and lower slopes are dominated by the Hele-
chawa soil series. The parent material of Helechawa is
coarse loamy colluvium derived from sandstone. This
loamy sand is somewhat excessively drained and can
reach depths of 203 cm (NRCS Soil Survey Staff 2017).
Rock outcrops are common in the study area. The under-
lying geology is composed of Pennsylvanian sandstones
and conglomerates and shales of the lower Breathitt for-
mation (McGrain 1983, Hayes 1993). This region receives
average annual precipitation of 113 cm and has a mean an-
nual temperature of 12 °C, with mean daily temperatures
ranging from 5 °C in January to 30 °C in July (Hill 1976).
The woody vegetation assemblages found on xeric rid-

getops and upper side slopes within the DBNF-RRGGA
begin with canopy layers with stems >20 cm diameter at
breast height (DBH) that are predominantly composed of
oaks (chiefly Quercus coccinea Münchh and Q. montana
Willd., but may also include Q. alba L. and Q. velutina
Lam.) and pines (Pinus rigida Mill., P. echinata Mill., and
P. virginiana Mill.; Blankenship and Arthur 2006). More
specifically, a nearby study site for a long-term prescribed
fire study on similar topography had between 67% to 81%
of the total basal area (for stems ≥10 cm DBH) composed
of oaks, and between 0% to 11% of total basal area of pine
in 2003 on fire-excluded sites (Blankenship and Arthur
2006). The woody vegetation in the midstory (stems 2 to
10 cm DBH) was mainly comprised of red maple (Acer
rubrum L.), eastern white pine (Pinus strobus L.), and
sourwood (Oxydendrum arboreum [L.] D.C.), where the
combined species contributed between 80.5% to 90.4% of
the midstory stem density in 2003, depending on site
(Blankenship and Arthur 2006). Common understory
shrub species in this area include mountain-laurel
(Kalmia latifolia L.) and Vaccinium spp. L. (Jones 2005).

Data collection
Twenty-six plots were installed within the Fish Trap Fire
containment boundary in August 2011, near the end of
the first growing season post fire (Fig. 1). Plot locations
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were selected at random across the entire containment
area to capture the ecological effects across fire severities
throughout the burned area. Plot centers were perman-
ently marked with rebar and referenced with GPS coor-
dinates. Initial data collection occurred in summer 2011
(year one post fire), with follow up measurements in
2013 and 2016 (year three and year six post fire, respect-
ively). One plot was excluded from analysis of tree sap-
ling density and recruitment due to a 2011 omission in
sampling of the sapling layer data. Thus, 25 plots were
used for tree data analysis and 26 plots were used for
non-woody understory data analysis.
In all years of data collection, we measured all stand-

ing trees (stems ≥2 cm DBH) within a 500 m2 circular
plot (0.05 ha). We recorded tree species, measured char
height, and assessed tree canopy vigor on a scale of 0 to
3, where 0 denoted a dead canopy, 1 denoted >50% can-
opy dieback, 2 denoted between 25 and 50% canopy die-
back, and 3 denoted <25% canopy dieback. It should be
noted that canopy dieback could be attributed to any
tree stressor, including damage sustained during burn-
ing. We characterized ground cover, noted as bare

mineral soil, rock, moss, litter, or vegetation, in 10 cm
increments along two 25.2 m transects, oriented north
to south and east to west. Within a 25 m2 circular plot
(microplot), co-located at the center of each 500 m2 plot,
tree stems <2 cm DBH were counted, identified to spe-
cies, and recorded as either small (<50 cm height) or
large (≥50 cm height) seedlings. Also within the micro-
plot, understory shrubs, forbs, and grasses were identi-
fied to genus or species, and were recorded using an
estimate of ground cover (%). Data for the cover of
understory shrubs, forbs, and grasses were not collected
in 2011; thus, only 2013 and 2016 data for species rich-
ness are given in the results.
Lacking on-site pre-burn vegetative data, we used nor-

malized differenced vegetation index (NDVI) values de-
rived from Landsat imagery in October 2010 to gain a
value for each plot (Upadhaya 2015). Although NDVI
values from October may not be the ideal images to cap-
ture all vegetative nuances, in the absence of pre-burn
data we chose to compare an image from just before the
fire to an image exactly one year after the fire. We com-
pared CBI values in 2011 to pre-burn NDVI values,

Fig. 1 Map of 26 study plots arrayed across the Fish Trap Fire site, which is characterized by fire severity, in the Daniel Boone National Forest,
Kentucky, USA. dNBR, based on NDVI values, was used to create this map in Arc GIS (Upadhaya 2015). Categories correspond to CBI as follows:
unburned: 0, low: 0.1 to 1, moderate: 1 to 2, high: 2 to 3.
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using linear regression, to test whether pre-burn vegeta-
tion was associated with fire severity, as it was post burn
(R2 = 0.523, F1,24 = 26.7, P ≤ 0.001). We also tested for ef-
fects of topographic wetness index (TWI), a measure of
topographic effects on the hydrologic processes of a site
(Beven and Kirkby 1979), to check for any pre-existing
variation in moisture across our study plots. We found
no significant effect for TWI (P = 0.61) on our study site,
indicating that these upland plots were similar in mois-
ture as measured by topographic position. We found no
relationship between estimated CBI and pre-burn NDVI
(P = 0.34) or between TWI and CBI (P = 0.32), confirming
that variation in CBI values across plots were a reflection
of the effects of fire on the landscape rather than pre-fire
landscape variability.

Statistical analysis
The effects of fire severity on forest vegetation responses
were examined using linear regression. We assessed
model assumptions (linearity, homoscedasticity, independ-
ence, and normally distributed residuals) using the gvlma
(Global Validation of Linear Models Assumption) package
(Pena and Slate 2014, R Core Team 2018) and corrected
for any violations using square root transformations. We
examined the relationship between fire severity (CBI,
given as a continuous variable) and total basal area (all
stems ≥2 cm DBH), first using a Pearson’s correlation test.
We found fire severity and basal area to be correlated
(Pearson’s correlation = −0.77, t1,23 = −5.8, P ≤ 0.001), so to
avoid any issues with multicollinearity, we refrained from
including both variables as co-variates in the same model.
Additionally, we used simple linear regression to test the
effect of fire severity on total basal area and stem density
(stems ≥2 cm DBH) in each sampling year to visualize the
response of each at those time points.
We calculated sapling (2 to 10 cm DBH) recruitment

from year one to year six post fire for oaks (Quercus spp.),
pines (Pinus spp.), and a few key competitor species on
these sites—red maple, sourwood, and blackgum—and
tested each species’ response to fire severity. The sapling size
class was chosen to test based on prevalence of use in prior
fire ecology research involving the response of small mids-
tory trees (2 to 10 cm DBH) to prescribed fire (Arthur et
al. 1998, Blankenship and Arthur 2006), and due to the
likelihood that these stems will directly influence future
stand composition at this locality. Furthermore, some
plots contained zero stems larger than 10 cm DBH.
We used generalized linear mixed-effects models to

assess the responses of understory species richness
(number of species recorded per unit area; native,
non-native, and combined; Poisson distribution) and
stem density of princess tree seedlings (Poisson-lognor-
mal distribution) to fire severity across time. We also
ran generalized linear mixed-effects models to test the

effects of fire severity, basal area, and percent mineral
soil on the presence (binomial distribution) of princess
tree in years one and three post fire. We included plot
as a random effect to account for multiple surveys over
time. We also used a generalized linear model to predict
the presence of Chinese silvergrass in year six post fire.
All data analyses were conducted using R version 3.4.4
(R Core Team 2018) and mixed-effects models were run
using the lme4 package in R (Bates et al. 2014). Signifi-
cance for all tests was determined at α = 0.05.

Results
Fire severity was negatively related to total basal area (all
stems ≥2 cm DBH) after one (R2 = 0.49, F1, 24 = 23.44,
P ≤ 0.001), three (R2 = 0.58, F1, 24 = 32.59, P ≤ 0.001), and
six (R2 = 0.59, F1, 23 = 33.65, P ≤ 0.001) years post fire
(Fig. 2a). Stem density (all stems ≥2 cm DBH) had a nega-
tive association with fire severity in years one (R2 = 0.22,
F1, 24 = 6.94, P = 0.015) and three (R2 = 0.28, F1, 24 = 9.09,
P = 0.006), but no relationship in year six (R2 = 0.01, F1, 24
= 0.26, P = 0.616) post fire (Fig. 2b). However, when we
analyzed stem density for only stems >10 cm DBH in year
six, there was a negative relationship with fire severity
(R2 = 0.45, F1, 23 = 19.0, P ≤ 0.001).
The reduction in basal area and stem density following

the wildfire prompted a recruitment response from several
tree species in the understory vegetative layer. From year
one to year six post fire, net recruitment (change in stem
density between year one and year six) of oak sap-
lings (2 to 10 cm DBH) was positively related to fire
severity (R2 = 0.43, F1, 23 = 17.45, P ≤ 0.001; Fig. 3a), as
was the net recruitment of pine saplings (R2 = 0.51,
F1, 23 = 23.90, P ≤ 0.001; Fig. 3b). Conversely, recruitment
of red maple (F1, 23 = 3.04, P = 0.09), sourwood (F1, 23 = 0.07,
P = 0.80), and blackgum (F1, 23 = 0.16, P = 0.69) saplings was
unaffected by fire severity (Fig. 3c).
Although we found greater net recruitment of oak and

pine saplings with increasing fire severity, relative stem
density (the percentage of the stems that an individual
species or species group composes out of all combined
stems within a given area) across the gradient of fire se-
verity was mixed for saplings of our primary target spe-
cies. In year six post fire, relative stem density of oak
saplings (R2 = 0.25, F1, 23 = 7.53, P = 0.012) was positively
related to fire severity (Fig. 4). The relative stem density
of pine and red maple was not associated with fire sever-
ity (P = 0.20 and P = 0.78, respectively). A decrease in
relative stem density with increasing fire severity was ob-
served for sourwood (R2 = 0.36, F1, 23 = 13.11, P = 0.001),
while no association was found for another competitor
species, blackgum (P = 0.07; Fig. 4).
To obtain a clearer picture of the effects of wildfire on

understory vegetation response, we examined the effects
of fire severity on understory non-woody species richness
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across time (years three and six post fire). Species richness
increased between years three and six (z = 10.39,
P ≤ 0.001) and was positively associated with increased fire
severity (z = 2.17, P = 0.03). Additionally, fire severity
positively affected species richness of both native (z = 2.33,
P = 0.02) and non-native (z = 2.19, P = 0.028) species in
year six (Fig. 5). For a predominant non-native species
present on our study sites following fire, fire severity was
positively related to the presence of princess tree (z = 2.61,
P = 0.009). Conversely, year had a negative relationship to
princess tree presence (z = −3.19, P = 0.001). The presence
of princess tree could also be predicted by basal area,
where princess tree was significantly negatively related to
total basal area (z = −3.7, P ≤ 0.001; data not shown).
Percent mineral soil was not found to be a predictor of
princess tree presence (P = 0.23). Additionally, princess
tree seedling (stems <2 cm DBH) stem density was posi-
tively influenced by fire severity (z = 3.23, P = 0.001), but

was not affected by sampling year (P = 0.22) in the model
that included CBI (Fig. 6).
We found fire severity to also be positively related

to the presence of Chinese silvergrass in year six
(z = 2.19, P = 0.028). Chinese silvergrass presence was
recorded on five plots (19% of plots surveyed); four
of these plots had high CBI values. Chinese silver-
grass had a mean percent ground cover of 2% where
it was present. Neither basal area (P = 0.073) nor
percent mineral soil were predictors of Chinese silver-
grass presence (P = 0.35).

Discussion
Fire severity impacted the recruitment of oaks and pines,
and also affected the response of several species in the
understory in the years following the Fish Trap Fire. In
support of our first two hypotheses, we found (H1) that
fire severity was negatively related to post-fire stem

Fig. 2 Relationship between CBI, as a proxy for fire severity, and (a) total basal area (all stems ≥2 cm DBH, m2 ha−1), and (b) stem density (all stems
≥2 cm DBH, stems ha−1) in years one (2011), three (2013), and six (2016), following a 2010 wildfire on the Cumberland Plateau, Kentucky, USA.
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Fig. 3 Relationship between CBI, as a proxy for fire severity, and sapling recruitment (stems 2 to 10 cm DBH) from year one to year six (2011 to
2016) for (a) oaks (all species in the genus Quercus L.), (b) pines (all species in the genus Pinus L.), and (c) red maple, sourwood, and blackgum
after a 2010 wildfire on the Cumberland Plateau, Kentucky, USA. Regression equations, P-values, and R2 values are only shown if the regression
analysis was significant (α = 0.05).
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density and basal area, and (H2) that fire severity was
positively related to the recruitment of tree species
dependent on high-light environments (oaks and pines).
In the southern Appalachians, Hagan et al. (2015)

found that wildfires that included moderate to high fire
severity resulted in the mortality of large overstory trees,
leading to increased sapling stem density, and that
twice-burned plots experienced the greatest increases in
oak stem density. The authors attributed the increase in
sapling density to the mortality of large overstory trees,
vigorous resprouting, and the establishment of new indi-
viduals (Hagan et al. 2015). Similarly, following a wild-
fire in a table mountain−pitch pine forest in the
southern Appalachians, areas that burned with high fire
severity experienced nearly complete stand mortality
(Groeschl et al. 1992). The response to wildfire included
greatly reduced basal area and density of residual trees
(averaging 98% overstory mortality) compared to areas
burned with low severity, while complete shrub layer
mortality was observed regardless of severity (Groeschl
et al. 1992). This altered stand structure in areas of
higher fire severity contributed to greater pine seedling
germination than in the less altered areas of low fire se-
verity (Groeschl et al. 1992). On our study site, the
newly opened stand structure (based on field observa-
tions from US Forest Service personnel and NDVI
values; refer to Methods: Fish Trap Fire) in areas that ex-
perienced greater fire severities allowed oak and pine
seedlings to grow into the sapling (2 to 10 cm DBH) size
class within a time spanning less than six years post fire.
Increasing fire severity enhanced the net recruitment of

oaks and pines and positively shifted the relative density
of oak saplings compared to other species.
In contrast to greater oak and pine recruitment with in-

creasing fire severity, red maple, sourwood, and blackgum
sapling recruitment was not directly affected by fire sever-
ity, contradicting our hypothesis (H3) that increasing fire
severity would lead to decreased recruitment of these
species. Red maple is a good competitor to oak and other
fire-adapted species in this region (Fei et al. 2011), with
the ability to sprout prolifically, take advantage of can-
opy disturbance, reach sexual maturity quickly, and
produce a tremendous number of propagules each year
(Burns and Honkala 1990, Blankenship and Arthur
2006). When fire was prevalent across the landscape
historically, recurring fire likely kept red maple and
other mesophytic species at low densities in oak−pine
forests, except at protected sites, by eliminating or re-
ducing the density of seedlings before they were fully
established (Lafon et al. 2017). In the current state of
prolonged fire suppression across much of the land-
scape, many formerly open-structured forests have
transitioned to closed forests composed of mesic spe-
cies through a process known as mesophication (Now-
acki and Abrams 2008).
Prior research conducted within the Cumberland

Plateau region has shown that repeated prescribed fire
can initially reduce shade-tolerant, mesic competitors
(Blankenship and Arthur 2006). On plots falling within
the lower fire severity areas within the Fish Trap Fire
site, the relative stem densities of individual species were
comparable to the results from a study conducted on a

Fig. 4 Relative density (%) of sapling layer stems (2 to 10 cm DBH) for red maple, oaks (all species in the genus Quercus L.), pines (all species in
the genus Pinus L.), sourwood, blackgum, and other species (Juglans nigra L., Liriodendron tulipifera L., Populus grandidentata Michx., Rhus copallina
L., Robinia pseudoacacia L., and Sassafras albidum [Nutt.] Nees.) across a gradient of fire severity in year six post wildfire on the Cumberland
Plateau, Kentucky, USA.

Black et al. Fire Ecology           (2018) 14:14 Page 8 of 12



similar site that implemented repeated, low-severity pre-
scribed fires. In the prescribed fire study, red maple
dominated the sapling layer, and oaks were only present
in low numbers (Poynter 2017). Although we found that
red maple sapling stem density and relative stem density
were unaffected by fire severity nearly six years following
a single wildfire, a study of prescribed fire on similar
sites found that repeated prescribed fire resulted in sig-
nificantly increased red maple sapling stem density
(Poynter 2017). However, the relative stem density of red
maple was reduced from 49% to 38% after a fire-free
period (Poynter 2017). While we did not observe an
overall reduction of shade-tolerant competitor species
(red maple, blackgum) in the sapling layer, our results
suggest that a single fire that includes high fire severity
in some areas may have more lasting effects on the

density of these competitor species in the understory
than multiple low-severity fires. However, since our re-
sults are limited to addressing vegetative recovery fol-
lowing a single fire, further research is needed to
determine if the fire-adapted species (oak and pine) will
continue to persist and compete with competitor species
in the future. It is likely that periodic prescribed burning
or other targeted management efforts may be warranted
in coming years, given that even at higher fire severity,
oak and pine compose less than 25% of relative stem
density (for stems 2 to 10 cm DBH) on the study site.
In a similar upland forest near our study site, a single

moderate-severity prescribed fire increased the seedling
density of yellow-poplar (Liriodendron tulipifera L.) and
decreased seedling density of sourwood (Kuddes-Fischer
and Arthur 2002), two shade-intolerant competitors of
oaks and pines. Other research has noted that small
diameter yellow-poplar stems are readily top-killed then
resprout following a fire, but can be killed by repeated
fires (Barnes and Van Lear 1998). In this study, we found
that areas of higher fire severity had considerably lower
relative stem density of sourwood saplings, giving fur-
ther evidence that small-diameter sourwood stems are
fire sensitive. Offering some support for this idea, a re-
lated study found frequent low-severity prescribed fire
greatly reduced stem density of sourwood saplings in the
short term; however, stem density of sourwood
rebounded after a fire-free period (Poynter 2017). Popu-
lations of yellow-poplar were low across all of our sites,
due to the acidic soil on the sandstone capped ridges
within the study area. The reduction (sourwood) or ab-
sence (yellow-poplar) of these light-loving, fast-growing
competitors may have generated an advantage that con-
tributed to the increase in oak and pine recruitment that
we observed amidst the presence of other competitors.
Prior research suggested that increased understory

species richness may follow in the wake of fires that in-
clude some areas of higher fire severity (Arthur et al.
1998, Kuddes-Fischer and Arthur 2002, Hagan et al.
2015, Knapp et al. 2015). After several repetitions of pre-
scribed fire in Virginia’s Piedmont region, herbaceous
species groundcover gained dominance following intense
spring and summer fires (Keyser et al. 2004). A study
following wildfire in the Linville Gorge of North Caro-
lina, USA, found a significant and positive relationship
between fire severity and species richness, and suggested
that the immigration of wind-dispersed seeds were a key
driver of increased species richness in areas of high fire
severity (Reilly et al. 2006). Similarly, in areas burned
with higher fire severities, we observed increases in prin-
cess tree, M. sinensis, and Solidago spp. L, which com-
monly utilize wind as a seed dispersal method. Other
species including Smilax spp. L., Rubus spp. L., Vacci-
nium spp., and Helianthus spp.L. were bird or animal

Fig. 5 Relationship between fire severity (CBI) and species richness
in 2016 (year six post fire) for (a) native species, and (b) non-native
species following a 2010 wildfire on the Cumberland Plateau,
Kentucky, USA.
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dispersed. Conversely, increasing fire severity appeared
to have a minor negative effect on Kalmia latifolia L.
and Pteridium aquilinium (L.) Kuhn populations where
they were present on our study sites.
Unfortunately, disturbances such as fire may increase

the likelihood of invasion by non-native species.
Disturbance-mediated reductions in basal area (Von
Holle and Simberloff 2005, Belote et al. 2008), including
high-severity fires, may increase the invasion potential of
sites for non-native species (Hunter et al. 2006, Fornwalt
et al. 2010). For instance, Belote et al. (2008) found
higher species richness of both native and non-native
species in areas of reduced basal area. Similarly, we
found fire severity (inversely related to basal area) to sig-
nificantly affect species richness for both native and
non-native species. We predicted here that areas with
lower residual basal area following fire could experience
an increased likelihood of invasion by the non-native
princess tree. The absence of princess tree stems on our
study plots in 2016 indicated that effective removal was
achievable through repeated (four consecutive years) dir-
ect management efforts closely following canopy dis-
turbance. Removal treatments (hand pulling, wrenching
from the soil, or stem clipping) implemented by the
USDA Forest Service targeted princess tree seedlings fol-
lowing the wildfire. In year one, princess tree stem dens-
ity was 3662 (±1144 SD) stems ha−1, but by year thre
princess tree stem density had been reduced to 631
(±293 SD) stems ha−1 after three treatments. A final
treatment in year four eliminated the remaining stems,
at least within the area of our study site.
In support of our hypothesis (H4), the plots that

burned with higher fire severity supported understory

plant communities with greater species richness of both
native and non-native species than areas of lower fire se-
verity. While the areas burned with the highest severity
had the lowest residual basal area of standing trees,
field-based observations indicated that these areas also
had a reduction in all vegetative layers. During the first 1
to 2 years following the Fish Trap Fire, these areas where
fire severity was highest also had exposed mineral soil
and had increased moisture availability, as evidenced
through the emergence of wetland plants, large bryo-
phyte mats, and seeps on these predominantly xeric up-
lands. All of these factors combined likely contributed to
the increased species richness that we documented at the
Fish Trap Fire site. Because the increase in species rich-
ness became more pronounced over time since the
wildfire, further research may be needed to determine the
duration of the effects of fire severity on species richness,
especially concerning the increased potential for
non-native species invasions in areas of high fire severity.

Conclusions
With one of the primary goals of forest management in
the southern Appalachians being the restoration of
fire-adapted ecosystems to recruit fire-adapted species
and limit mesic competitor species, it is important to de-
termine the best combination of treatments to reach this
objective. Currently, low- to moderate-severity pre-
scribed fires are often failing to promote growth of de-
sired species, or restrict growth of fire-sensitive, mesic
species (Ryan et al. 2013). However, the combination of
a shelterwood harvest followed by prescribed fire has
shown promise (Brose et al. 1999). During spring or
summer burns in areas 3 to 5 years post harvest,

Fig. 6 Density of princess tree <2 cm DBH (stems ha−1) across a gradient of fire severity in years one and three (2011 and 2013) after a 2010
wildfire on the Cumberland Plateau, Kentucky, USA.
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moderate- to high-severity patches showed greater oak
regeneration (Brose et al. 1999). Our data show that a
single wildfire (an infrequent event in this area) that in-
cluded areas of moderate to high fire severity promoted
the recruitment of oak and pine saplings within six years
post fire. However, because the response of a resilient
competitor species, red maple, was not notably sup-
pressed by wildfire, it is probable that additional fire or
other management methods may be needed in the future
for these oak−pine dominated systems to persist in the
face of vegetative competition. Implementing periodic,
controlled fire, or using practices like mechanical thin-
ning or herbicide applications to control competitor spe-
cies, may be necessary to ensure a viable advantage for
oaks and pines over the long term.
The results of this study also suggest that there are other

ecological benefits to areas burned with higher fire sever-
ity, such as increased species richness over time. However,
as we have elucidated here, increasing fire severity in this
region of the southern Appalachians has the potential to
increase princess tree in conditions wherein propagule
pressure is adequate. We also found that, at least for prin-
cess tree, concentrated and timely suppression efforts can
be successful in controlling newly invaded non-native spe-
cies following disturbance. Armed with this knowledge,
land managers may begin to enact prevention measures to
minimize the risk of severe fire and non-native species in-
troductions within ecologically sensitive areas, or more
quickly pinpoint areas to monitor or target for eradication
of non-native species following fire. It would be prudent
to allocate resources to these areas to manage non-native,
invasive species before they become established and reach
reproductive age, in support of maintaining native species
richness and supporting dynamic plant communities
across the burned landscape.

Acknowledgements
We are indebted to our USDA Forest Service collaborators from the Cumberland
District of the Daniel Boone National Forest (DBNF) for providing field support
and logistical operations, without whom this work would not have been
possible. We especially thank E.J. Bunzendahl, DBNF Fire Management Officer,
for providing background information and other pertinent details of the Fish
Trap Fire and for her support in this study. We also thank G. Carmean, J. Mullins,
A. Drayer, B. Spatola, D. Gibbs, and D. Reed for their efforts in the field.

Funding
This work was supported by the National Institute of Food and Agriculture,
US Department of Agriculture, McIntire-Stennis project KY009032. This is
publication number 18–09-023 of the Kentucky Agricultural Experiment Station
and is published with the approval of the Director. This study was partially
funded through a participating agreement with the USDA Forest Service Daniel
Boone National Forest (agreement number 15-PA-11080226-005).

Availability of data and materials
The datasets generated or analyzed during this study are not publically available
due to privacy concerns for study plot locations in close proximity to a popular
public recreation area but are available from the corresponding author on
reasonable request.

Authors’ contributions
DB was the primary writer of this manuscript and collected all field data with
ZP in 2016. MA, CC, and DT designed and implemented the study following
the Fish Trap wildfire in 2010, and were involved in data collection during
the initial study years. CC provided soils information and DT provided
botanical species identification for understory species in 2016 field data. S.
Upadhaya conducted separate research using these sites to categorize fire
severity (dNBR); SU burn severity values were used for comparison to CBI
within this study.
SU also created Fig. 1. WL conducted the statistical analyses and wrote the
statistical analysis section of the manuscript.
BB was the lead editor of the manuscript and provided figures. All authors
contributed to revisions and approved the final draft.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1USDA Forest Service, Santa Fe National Forest, 11 Forest Lane, Santa Fe,
New Mexico 87508, USA. 2Department of Forestry and Natural Resources,
University of Kentucky, 730 Rose Street, Lexington, Kentucky 40546, USA.
3USDA Forest Service, Daniel Boone National Forest, 1700 Bypass Road,
Winchester, Kentucky 40391, USA. 4Warnell School of Forestry and Natural
Resources, University of Georgia, 180 E. Green Street, Athens, Georgia 30602,
USA.

Received: 22 August 2018 Accepted: 19 September 2018

References
Abrams, M.D. 1992. Fire and the development of oak forests. Bioscience 42: 346–353

https://doi.org/10.2307/1311781.
Arthur, M.A., R.D. Paratley, and B.A. Blankenship. 1998. Single and repeated fires

affect survival and regeneration of woody and herbaceous species in an oak-
pine forest. Journal of the Torrey Botanical Society 125 (3): 225–236.

Barnes, T.A., and D.H. Van Lear. 1998. Prescribed fire effects on advanced
regeneration in mixed hardwood stands. South J Appl For 22 (3): 138–142.

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2014. Fitting linear mixed-effects
models using lme4. Journal of Statistical Software 67: 1–48.

Belote, R.T., R.H. Jones, S.M. Hood, and B.W. Wender. 2008. Diversity-invasibility
across an experimental disturbance gradient in Appalachian forests. Ecology
89 (1): 183–192.

Beven, K.J., and M.J. Kirkby. 1979. A physically based, variable contributing area
model of basin hydrology. Hydrological Sciences Bulletin 24: 43–69 https://doi.
org/10.1080/02626667909491834.

Blankenship, B.A., and M.A. Arthur. 2006. Stand structure over 9 years in burned
and fire- excluded oak stands on the Cumberland plateau, Kentucky. Forest
Ecology and Management 225: 134–145 https://doi.org/10.1016/j.foreco.2005.
12.032.

Braun, E.L. 1950. Deciduous forests of eastern North America. Philadelphia,
Pennsylvania, USA: Blakiston Co.

Brewer, J.S., and W.C. Bailey. 2014. Competitive effects of non-native plants are
lowest in native plant communities that are most vulnerable to invasion.
Plant Ecology 215 (8): 821–832 https://doi.org/10.1007/s11258-014-0334-y.

Brooks, M.L., C.M. D’Antonio, D.M. Richardson, J.B. Grace, J.E. Keeley, J.M.
DiTomaso, R.J. Hobbs, M. Pellant, and D. Pyke. 2004. Effects of invasive alien
plants on fire regimes. Bioscience 54: 677–688 https://academic.oup.com/
bioscience/article/54/7/677/223532.

Brose, P., T. Schuler, D. Van Lear, and J. Berst. 2001. Bringing fire back—The changing
regimes of the Appalachian mixed-oak forests. Journal of Forestry 99 (11): 30–35.

Black et al. Fire Ecology           (2018) 14:14 Page 11 of 12



Brose, P.H., D.H. Van Lear, and P.D. Keyser. 1999. A shelterwood-burn technique
for regenerating productive upland oak sites in the Piedmont region.
Southern Journal of Applied Forestry 16 (3): 158–163.

Burke, M.J.W., and J.P. Grime. 1996. An experimental study of plant community
invasibility. Ecology 77 (3): 776–790.

Burns RM, Honkala BH (1990) Silvics of North America, vol 2. hardwoods. USDA
Agricultural Handbook 654, Washington, D.C.

Core Devlopment Team, R. 2018. R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing.

Delcourt, H.R., and P.A. Delcourt. 1997. Pre-Columbian native American use of fire
on southern Appalachian landscapes. Conservation Biology 11 (4): 1010–1014
https://doi.org/10.1046/j.1523-1739.1997.96338.x.

Delcourt, P.A., H.R. Delcourt, C.R. Ison, W.E. Sharp, and K.J. Gremillion. 1998.
Prehistoric human use of fire, the eastern agricultural complex, and
Appalachian oak–chestnut forests: Paleoecology of cliff palace pond,
Kentucky. American Antiquity 63 (2): 263–278 https://doi.org/10.2307/2694697.

Eschtruth, A.K., and J.J. Battles. 2009. Assessing the relative importance of disturbance,
herbivory, diversity, and propagule pressure in exotic plant invasion. Ecological
Monographs 79 (2): 265–280 https://doi.org/10.1890/08-0221.1.

Fei, S., N. Kong, K.C. Steiner, W.K. Moser, and E.B. Steiner. 2011. Change in oak
abundance in the eastern United States from 1980 to 2008. Forest Ecology and
Management 262: 1370–1377 https://doi.org/10.1016/j.foreco.2011.06.030.

Flannigan, M.D., B.J. Stocks, and B.M. Wotton. 2000. Climate change and forest
fires. Science of the Total Environment 262 (3): 221–229 https://doi.org/10.
1016/S0048-9697(00)00524-6.

Fornwalt, P.J., M.R. Kaufman, and T.J. Stohlgren. 2010. Impacts of mixed severity
wildfire on exotic plants in a Colorado ponderosa pine–Douglas-fir forest.
Biological Invasions 12 (8): 2683–2695 https://doi.org/10.1007/s10530-009-9674-2.

Groeschl, D.A., J.E. Johnson, and D.W. Smith. 1992. Early vegetative response to
wildfire in a table mountain-pitch pine forest. International Journal Wildland
Fire 2: 177–184 https://doi.org/10.1071/WF9920177.

Guyette RP, Dey DC, Stambaugh MC, Muzika R (2006) Fire scars reveal variability
and dynamics of eastern fire regimes. In: Dickinson MB (ed) Conference
proceedings—Fire in eastern oak forests: Delivering science to land
managers, pp 20–39 USDA Forest Service general technical report GTR-NRS-
P-1, Northern Research Station, Newtown Square, Pennsylvania, USA.

Guyette, R.P., R. Muzika, and D.C. Dey. 2002. Dynamics of an anthropogenic fire
regime. Ecosystems 5: 472–486.

Guyette, R.P., M. Spetich, and D.C. Dey. 2010. Developing and using fire scar
histories in the southern and eastern United States. US joint fire science
project report, paper 112. <http://digitalcommons.unl.edu/jfspresearch/112>.
Accessed 3 October 2018.

Hagan, D.L., T.A. Waldrop, M. Reilly, and T.M. Shearman. 2015. Impacts of repeated
wildfire on long-unburned plant communities of the southern Appalachian
Mountains. International Journal Wildland Fire 24: 911–920 https://doi.org/10.
1071/WF14143.

Hayes, R.A. 1993. Soil survey of Powell and Wolfe counties. USDA Soil Conservation
Service, Washington, D.C., USA: Kentucky.

Hill JD (1976) Climate of Kentucky. Progress report 221. University of Kentucky
Agricultural Experiment Station, Lexington, Kentucky, USA.

Huebner, C.D. 2006. Fire and invasive exotic plant species in eastern oak
communities: An assessment of current knowledge. In Fire in eastern oak
forests: Delivering science to land managers—Proceedings of a conference, ed.
M.B. Dickinson, 218–232. Pennsylvania, USA: USDA Forest Service General
Technical Report NRS-P-1, Northern Research Station, Newtown Square.

Hunter, M.E., P.N. Omi, E.J. Martinson, and G.W. Chong. 2006. Establishment of
non-native plant species after wildfires: Effects of fuel treatments, abiotic and
biotic factors, and post-fire grass seeding treatments. International Journal
Wildland Fire 15: 271–281 https://doi.org/10.1071/WF05074.

Hutchinson, T.F., R.P. Long, R.D. Ford, and E.K. Sutherland. 2008. Fire history and
the establishment of oaks and maples in second growth forests. Canadian
Journal of Forest Research 38 (5): 1184–1198 https://doi.org/10.1139/X07-216.

Hutchinson, T.F., and J.L. Vankat. 1997. Invasibility and effects of Amur
honeysuckle in southwestern Ohio forests. Conservation Biology 11: 1117–
1124 https://doi.org/10.1046/j.1523-1739.1997.96001.x.

Jones, R.L. 2005. Plant life of Kentucky: An illustrated guide to the vascular flora.
Lexington, Kentucky, USA: University Press of Kentucky.

Key, C.H., and N.C. Benson. 2006. Landscape assessment: Ground measure of
severity, the composite burn index, and remote sensing of severity, the
normalized burn index. In , ed. D.C. Lutes, R.E. Keane, J.F. Caratti, C.H. Key, N.
C. Benson, S. Sutherland, and L.J. Gangi, LA1–LA51. Ogden, Utah, USA:

FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service
General Technical Report RMRS-GTR-164-CD.

Keyser PD, Sausville DJ, Ford WM, .Schwab DJ, Brose PH (2004) Prescribed fire
impacts to amphibians and reptiles in shelterwood-harvested oak-dominated
forests. Virginai Journal of Science 55(4):159–168.

Knapp, B.O., K. Stephan, and J.A. Hubbart. 2015. Structure and composition of an
oak–hickory forest after over 60 years of repeated prescribed burning in
Missouri, USA. Forest Ecology and Management 344: 95–109 https://doi.org/
10.1016/j.foreco.2015.02.009.

Kuddes-Fischer, L.M., and M.A. Arthur. 2002. Response of understory vegetation
and tree regeneration to a single prescribed fire in oak–pine forests. Natural
Areas Journal 22 (1): 43–52.

Kuppinger, D.M., M.A. Jenkins, and P.S. White. 2010. Predicting the post-fire
establishment and persistence of an invasive tree species across a complex
landscape. Biological Invasions 12 (10): 3473–3484 https://doi.org/10.1007/
s10530-010-9745-4.

Lafon, C., J. Hoss, and H. Grissino-Mayer. 2005. The contemporary fire regime of
the central Appalachian Mountains and its relation to climate. Physical
Geography 26: 126–146 https://doi.org/10.2747/0272-3646.26.2.126.

Lafon, C.W., A.T. Naito, H.D. Grissino-Mayer, S.P. Horn, and T.A. Waldrop. 2017. Fire
history of the Appalachian region: A review and synthesis. General Technical
Report SRS-219, 97. SRS, Asheville: USDA Forest Service.

McGrain, P. (1983) the geologic story of Kentucky. Special publication 8, series XI.
Kentucky geological survey, University of Kentucky, Lexington, Kentucky. USA.

Miller, J.H., S.T. Manning, and S.E. Enloe. 2013. A management guide for invasive
plants in southern forests. Southern Research Station, Asheville, North
Carolina, USA: USDA Forest Service General Technical Report SRS-131.

Nowacki, G.J., and M.D. Abrams. 2008. The demise of fire and “mesophication” of
forests in the eastern United States. BioScience 58: 123–138 https://doi.org/10.
1641/B580207.

Nowacki, G.J., and M.D. Abrams. 2015. Is climate an important driver of post-
European vegetation change in the eastern United States? Global Change
Biology 21: 314–334 https://doi.org/10.1111/gcb.12663.

Pena, E.A., and E.H. Slate. 2014. Gvlma: Global validation of linear models
assumptions. R package version 1.0.0.2. <https://CRAN.R-project.org/
package=gvlma>. Accessed 23 April 2018.

Poynter, Z.W. 2017. Vegetation response to repeated prescribed burning and varied
wildfire severity in upland forests on the Cumberland Plateau, Kentucky. Theses ,
University of Kentucky, Lexington, USA: Forestry and Natural Resources paper
33 available at https://uknowledge.uky.edu/forestry_etds/33/.

Reilly, M.J., M.C. Wemberly, and C.L. Newell. 2006. Wildfire effects on plant species
richness at multiple spatial scales in forest communities of the southern
Appalachians. Journal of Ecology 94: 118–130.

Ryan, K.C., E.E. Knapp, and J.M. Varner. 2013. Prescribed fire in north American
forests and woodlands: History, current practice, and challenges. Journal of
Ecology 11: e15–e24 https://doi.org/10.1890/120329.

Soil Survey Staff. 2017 Web soil survey. USDA Natural Resources Conservation
Service. https://websoilsurvey.sc.egov.usda.gov/. Accessed 5 Feb 2018.

Upadhaya, S. 2015. Use of Landsat data to characterize fire severity, forest structure and
invasion by paulownia (Paulownia tomentosa) in an eastern deciduous forest,
Kentucky, theses. University of Kentucky, Lexington, USA: Forestry and Natural
Resources paper 23 available at http://uknowledge.uky.edu/forestry_etds/23.

Von Holle, B., and D. Simberloff. 2005. Ecological resistance to biological invasion
overwhelmed by propagule pressure. Ecology 86: 3212–3218.

Wade, D.D., B.L. Brock, P. Brose, J.B. Grace, G.A. Hoch, and W.A. Patterson. 2000. Fire
in eastern ecosystems. In Wildland fire in ecosystems: Effects of fire on flora, USDA
Forest Service General Technical Report RMRS-GTR-42-vol, ed. J.K. Brown and J.K.
Smith, vol. 2, 53–96. USA: Rocky Mountain Research Station, Ogden, Utah.

Zouhar, K., J.K. Smith, S. Sutherland, and M.L. Brooks. 2008. Wildland fire in
ecosystems: Fire and nonnative invasive plants. Rocky Mountain Research
Station, Ogden, Utah, USA: USDA Forest Service General Technical Report
RMRS-GTR-42-vol. 6.

Black et al. Fire Ecology           (2018) 14:14 Page 12 of 12


	Abstract
	Background
	Results
	Conclusions

	Abbreviations
	Background
	Methods
	Fish Trap Fire
	Study area
	Data collection
	Statistical analysis

	Results
	Discussion
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

