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Abstract

Background: Understanding the temporal patterns of fire occurrence and their relationships with fuel dryness is
key to sound fire management, especially under increasing global warming. At present, no system for prediction of
fire occurrence risk based on fuel dryness conditions is available in Mexico. As part of an ongoing national-scale
project, we developed an operational fire risk mapping tool based on satellite and weather information.

Results: We demonstrated how differing monthly temporal trends in a fuel greenness index, dead ratio (DR), and
fire density (FDI) can be clearly differentiated by vegetation type and region for the whole country, using MODIS
satellite observations for the period 2003 to 2014. We tested linear and non-linear models, including temporal
autocorrelation terms, for prediction of FDI from DR for a total of 28 combinations of vegetation types and regions.
In addition, we developed seasonal autoregressive integrated moving average (ARIMA) models for forecasting DR
values based on the last observed values. Most ARIMA models showed values of the adjusted coefficient of
determination (R2 adj) above 0.7 to 0.8, suggesting potential to forecast fuel dryness and fire occurrence risk
conditions. The best fitted models explained more than 70% of the observed FDI variation in the relation between
monthly DR and fire density.

Conclusion: These results suggest that there is potential for the DR index to be incorporated in future fire risk
operational tools. However, some vegetation types and regions show lower correlations between DR and observed
fire density, suggesting that other variables, such as distance and timing of agricultural burn, deserve attention in
future studies.
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Resumen

Antecedentes: Una adecuada planificación del manejo del fuego requiere de la comprensión de los patrones
temporales de humedad del combustible y su influencia en el riesgo de incendio, particularmente bajo un
escenario de calentamiento global. En la actualidad en México no existe ningún sistema operacional para la
predicción del riesgo de incendio en base al grado de estrés hídrico de los combustibles. Un proyecto de
investigación nacional actualmente en funcionamiento, tiene como objetivo el desarrollo de un sistema operacional
de riesgo y peligro de incendio en base a información meteorológica y de satélite para México. Este estudio
pertenece al citado proyecto

Resultados: Se observaron en el país distintas tendencias temporales en un índice de estrés hídrico de los combustibles
basado en imágenes MODIS, el índice “dead ratio” (DR), y en las tendencias temporales de un ìndice de densidad de
incendios (FDI), en distintos tipos de vegetación y regiones del país. Se evaluaron varios modelos lineales y potenciales,
incluyendo términos para la consideración de la autocorrelación temporal, para la predicción de la densidad de
incendios a partir del índice DR para un total de 28 tipos de vegetación y regiones. Se desarrollaron además
modelos estacionales autoregresivos de media móvil (ARIMA en inglés) para el pronóstico del índice DR a partir
de los últimos valores observados. La mayoría de los modelos ARIMA desarrollados mostraron valores del
coeficiente de determinación ajustado (R2 adj) por encima de 0.7 to 0.8, sugiriendo potencial para ser empleados
para un pronóstico del estrés hídrico de los combustibles y las condiciones de riesgo de ocurrencia de incendio.
Con respecto a los modelos que relacionan los valores mensuales de DR con FDI, la mayoría de ellos explicaron
más del 70% de la variabilidad observada en FDI.

Conclusiones: Los resultados sugirieron potencial del índice DR para ser incluido en futuras herramientas
operacionales para determinar el riesgo de incendio. En algunos tipos de vegetación y regiones se obtuvieron
correlaciones más reducidas entre el índice DR y los valores observados de densidad de incendios, sugiriendo
que el papel de otras variables tales como la distancia y el patrón temporal de quemas agrícolas debería ser
explorado en futuros estudios.

Background
Understanding the temporal patterns of fire occurrence
risk—the chance that a fire might start and spread
(Deeming et al. 1972; Hardy 2005)—and their relation-
ships with fuel dryness is key to sound fire management,
especially under increased global warming, which may
result in increasing drought conditions and potentially
increasing fire severity and frequency in some regions
(e.g., Wotton et al. 2003; Gillett et al. 2004; Flannigan et
al. 2006; Flannigan et al. 2009; Woolford et al. 2013).
Satellite sensors have been utilized in recent years to

monitor fuel greenness and associated fire occurrence
risk (Chuvieco et al. 2004; Lozano et al. 2007, 2008;
Chuvieco et al. 2010; López et al. 2002; Yebra et al.
2008; Yebra et al. 2013). Some systems such as the Fire
Potential Index (FPI; Burgan et al. 1998) have integrated
satellite information by means of fuel greenness indices
based on relative values of the Normalized Difference
Vegetation Index (NDVI) for each vegetation type
(Burgan and Hartford 1993, 1997; Burgan et al. 1996;
Burgan et al. 1998), combined with daily 10 h fuel mois-
ture content calculated from observations of weather
stations (Fosberg and Deeming 1971) to map fuel green-
ness and associated fire risk. Such fire risk systems offer
useful information for a sound decision-making in

strategic fire management planning (e.g., Preisler et al.
2011; Mavsar et al. 2013; Rodríguez y Silva et al. 2014).
These operational fire risk systems have largely been uti-
lized in the United States of America (Burgan et al.
1998; Preisler and Westerling 2007; Preisler et al. 2009;
Preisler et al. 2015) or on the European continent
(Sebastian-Lopez et al. 2002), including Spain (Huesca et
al. 2007; Huesca et al. 2009; Huesca et al. 2014).
In Mexico, Sepúlveda et al. (2001) tested the FPI sys-

tem (Burgan et al. 1998) in the Baja California region,
and Manzo-Delgado et al. (2004) and Manzo-Delgado et
al. (2009) demonstrated the potential of the temporal
evolution of NDVI-based indices as indicators of fuel
drought and associated fire risk in central Mexico.
In addition to these pioneering studies, previous work

on fire risk in Mexico has focused on the influence of
climate and fuels at regional and local scales. Several
studies analyzed climatic effects on fire regimes (e.g.,
Heyerdahl and Alvarado 2003; Fulé et al. 2005; Drury
and Veblen 2008; Skinner et al. 2008; Návar-Cháidez
and Lizárraga-Mendiola 2013). Others evaluated the role
of weather variables such as precipitation or temperature
(e.g., Avila-Flores et al. 2010a; Avila-Flores et al. 2010b;
Carrillo García et al. 2012; Antonio and Ellis 2015), or
weather-based indices (e.g., Villers-Ruiz et al. 2012) on
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fire occurrence risk, mainly at local or regional scales.
Some local or regional studies also considered the influ-
ence of fuels on fire occurrence risk (e.g., Flores Garnica
et al. 1990; Muñoz Robles et al. 2005; Wong González
and Villers Ruiz 2007; Castañeda Rojas et al. 2015).
Whereas previous research offers useful information
specific to the scale of their regions of study, there is a
need for studies analyzing fire risk and its relationships
with fuel dryness spatial and temporal patterns at a
national scale that cover the ample diversity of climatic
and environmental conditions of Mexico (González-
Cabán and Sandberg 1989; Cerano Paredes et al. 2010).
Studies analyzing the relationships of fire occurrence

and fuel dryness at a national scale in Mexico are scarce
(e.g., Zúñiga-Vásquez et al. 2017a; Pompa-García et al.
2018; Vega-Nieva et al. 2018), limiting our understand-
ing of the effects of changing climatic conditions on fire
risk, and preventing development of operational fire risk
decision systems. This is in contrast with countries such
as USA, Canada, or Brazil that have developed oper-
ational fire risk systems based on temporal and spatial
quantification of fuel greenness and associated fire risk
(e.g., Deeming et al. 1977; Van Wagner 1987; Burgan et
al. 1997; Burgan et al. 1998; Preisler et al. 2004; Preisler
et al. 2008; Preisler et al. 2011; Preisler et al. 2015; Setzer
and Sismanoglu 2012; Riley et al. 2013). This lack of an
operational fire risk system led the Forest National
Commission (CONAFOR, in Spanish) and the National
Research Agency (CONACYT, in Spanish) to fund the
national scale project “Development of a Fire Danger
System for Mexico.” The main objective of the project is
the development of an operational fire-risk mapping sys-
tem based on satellite and weather information for
Mexico (Vega-Nieva et al. 2019a; Vega-Nieva et al.
2019b). Vega-Nieva et al. (2018) focused on analyzing
relationships between a satellite-based fuel greenness
index, FPI (Burgan et al. 1998), and MODIS active fire
registers in the period 2011 to 2015. The models devel-
oped in that study were limited to observed fuel green-
ness values, but further work is required for fire risk
forecasting. The present study focused on understanding
temporal patterns of active fire density by vegetation
type and region in Mexico for the period 2003–2014, ex-
plored its relationships with a MODIS-based fuel green-
ness index, and developed forecast models for the
prediction of the fuel greenness index for the following
month based on previously observed values. The specific
objectives of the study were:

1) To quantify monthly temporal trends of a MODIS
satellite-based fuel greenness index, dead ratio (DR),
and the temporal trends of active fire density (FD)
by vegetation type and region in Mexico.

2) To test regression models, including temporal
autocorrelation of residuals, for prediction of
monthly FD by vegetation type and region from
monthly DR values in Mexico.

3) To develop autoregressive integrated moving
average (ARIMA) models that can be utilized for
forecasting DR based on the last observed values of
this index.

Methods
Study area
Because of the national scope of the work, the area of
study was the Mexican Republic. Figure 1 shows the
vegetation types present in the country according to
the National Institute of Geography and Statistics
(INEGI, in Spanish) land use map (INEGI Land Use
Map Series V, 1:25000 http://www.inegi.org.mx/geo/
contenidos/recnat/usosuelo/).
Based on previous analysis of active fire temporal trends

in the country (Vega-Nieva et al. 2018), we reclassified
vegetation types into the following seven categories: Agri-
culture (AG), Arborous Secondary Vegetation (ARBSV),
Deciduous Tropical Forest (DTROPF), Pastureland (PAS),
Perennial Tropical Forest (PTROPF), Shrubby Secondary
Vegetation (SHSV), and Temperate Forest (TFOR).
Given the well-documented variations in fire regimes

seasonality in the country (e.g., Rodríguez-Trejo et al.
2008; Yocom et al. 2010; Yocom and Fulé 2012; Yocom
et al. 2014; Jardel et al. 2014), four geographical re-
gions—Northwest (NW), Northeast (NE), Center (C),
and South (S)—were established (Fig. 1). The region def-
initions were based on the potential fire regimes zoning
for Mexico (Jardel et al. 2014), as well as vegetation
types and climatic zones (Holdridge 1996), together with
a visual observation of the temporal and spatial patterns
of clustering in fire hotspots for the period of study. The
seven vegetation types defined above were present in all
four regions, resulting in a total of 28 combinations of
vegetation types and regions to be modeled.

MODIS monthly active fire and NDVI data
Considering the availability of MODIS active fire infor-
mation for Mexico, we selected the period of 2003 to
2014 for our study. We compiled monthly composites of
MODIS active fire detections for the 12 years of the
study period from CONABIO (http://incendios1.cona-
bio.gob.mx/ ). Active fires were obtained based on the
Contextual Fire Detection Algorithm for MODIS (Giglio
et al. 2003). Active fires data were filtered by CONABIO
following the protocol described by Cruz-López (2007).
This data filtering included the consideration of specific
thresholds for brightness temperature (Cruz-López 2007),
and the use of additional masks such as NDVI, vegetation,
or stable light masks to minimize false detections, as
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described by Cruz-López (2007) and Vega-Nieva et al.
(2018). Monthly NDVI composite images with a spatial
resolution of 1 km × 1 km (MODIS product MOD13A3)
from the study period were downloaded from http://modis.
gsfc.nasa.gov/data/dataprod/mod13.php

Dead ratio calculation
Following Burgan et al. (1998), the following DR index
was calculated:

DR ¼ 100 − LR; ð1Þ

where DR = dead ratio and LR = live ratio.
Dead ratio is an empirical index representing the frac-

tion of fuel that is not alive, reaching 100 in a fuel that is
completely cured with no live biomass, and with lower
values representing fuels with a higher fraction of live
biomass. Its calculation is based on relative greenness
values and maximum live ratios following Burgan et al.
(1998) equations 2 to 4:

LR ¼ RG � LRmax

100
; ð2Þ

where RG is relative greenness, and calculated as:

RG ¼ NDVI0 −NDVImin

NDVImax −NDVImin
� 100; ð3Þ

where NDVI0 is the observed NDVI for each pixel at
every month, and NDVImin and NDVImax are the mini-
mum and maximum NDVI values for each pixel,
respectively.
LRmax is the maximum live ratio, calculated following

equation 4 based on Burgan et al. (1998):

LRmax ¼ 35þ 40 NDVImax − 125ð Þ
255 − 125

: ð4Þ

The values 125 and 255 are the absolute minimum
and maximum NDVI values observed for Mexico.
Maximum and minimum NDVI values for each pixel
and absolute minimum and maximum NDVI values
were calculated by considering all of the NDVI
monthly images for the period 2003 to 2014. DR
values were calculated for each monthly NDVI image
in the period of study, and mean DR value for each
monthly image was calculated using Cell Statistics in
ArcGIS 10.3 (ESRI 2011).

Fire Density Index
For each of the 28 vegetation types and regions
considered, monthly Fire Density (FD) was calculated

Fig. 1 Map of vegetation types and regions in Mexico that were considered in the analysis, for the period 2003 to 2014
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by dividing the number of fires in the area by the
surface (km2) of the vegetation and region consid-
ered. Monthly FD values for each vegetation type
and region were scaled to a Fire Density Index (FDI)
as follows:

FDI ¼ Number of active f ires

Surface ðkm2Þ � 5000
: ð5Þ

The FDI index is defined so that an FD of 0.01 active
fires km−2 (e.g., 1 fire per 100 km2) is equivalent to an
FDI value of 50. Accordingly, an FD of 2 active fires
per 100 km2 is equivalent to an FDI value of 100,
which might be considered an indicator of a high
active fire density.

Modeling monthly FDI from DR
Except for Agriculture, fire season concentrated on the
period December to June for all vegetation types consid-
ered. Agriculture showed an earlier start of fire season,
caused by agricultural burnings, which usually take place
very early in the dry season (Martínez-Torres et al.
2016). Consequently, all land uses, except for agriculture,
were modeled for the period December to June, and
Agriculture was modeled for the whole year.

Model formulation and selection
We fitted linear and non-linear (power) models for
prediction of FDI from DR for each vegetation type and
region, following:

FDI ¼ a − bDR; ð6Þ
and

FDI ¼ aDRb; ð7Þ
where a and b are model coefficients, FDI is Fire
Density Index (Equation 5), and DR is dead ratio
(Equation 1).
To further assess whether the models were different

among different months or groups of months, the non-
linear extra sum of squares method was used (Bates and
Watts 1988: 103–104). This method requires the fitting
of full and reduced models and has frequently been ap-
plied to assess whether separate models are necessary
for different species or different geographic regions (e.g.,
Huang et al. 2000; Zhang et al. 2002; Corral-Rivas et al.
2004; Castedo et al. 2005; Corral-Rivas et al. 2007). In
this paper, the reduced model corresponds to the same
set of global parameters for all months, as shown in
Equations 6 and 7. The full models correspond to differ-
ent sets of global parameters for different months or
group of months, which are obtained by expanding each
global parameter by including an associated parameter
and a dummy variable to differentiate the months or

groups of months. For example, the expansion of a
global parameter b of a linear model (Equation 6 for the
reduced model) for every month can be written as:

b1d1 þ b2d2 þ…þ b12d12; ð8Þ

where b1 through b12 are the associated parameters of
the full model, and d1 through d12 are the dummy
categorical variables for considering the months, which
are defined as follows: d1 = 1 if month = January,
otherwise d1 = 0; …; d12= 1 if month = December,
otherwise d12 = 0.
We considered all possible combinations of months

for analysis, using either linear or non-linear (power)
formulations. For example, the expansion of a global
parameter b of a linear model with a separated co-
efficient for the group of months 1 to 5 (January to
May) and 6 to 12 (June to December) can be written as:

b1−5d1−5 þ b6−12d6−12; ð9Þ
where b1–5 and b6–12 are the associated parameters of
the full model for the corresponding group of months 1
to 5 and 6 to 12, respectively, and d1–5 and d6–12 are the
dummy categorical variables for identifying each corre-
sponding group of months, defined as follows: d1–5 = 1
if month = January to May, otherwise d1–5 = 0; d6–12 =
1 if month = June to December, otherwise d6–12 = 0.
The appropriate test statistic for comparing full and

reduced models used the following expression:

F ¼
SSER − SSEF

dfR − dfF
SSEF

dfF

ð10Þ

where SSER is the error sum of squares of the reduced
model, SSEF is the error sum of squares of the full
model, and dfR and dfF are the degrees of freedom of the
full and reduced models, respectively. The non-linear
extra sum of squares follows an F-distribution.
If the above F-test results revealed that there was no

difference among the models for different months, a
composite model fitted on the combined data was all
that was needed. If the F-test results showed that there
were differences among models (P < 0.05), further tests
were needed to evaluate whether the differences were
caused by as few as two months, or as many as all of
the months. For instance, full models for all combina-
tions of grouped months (1 to 12 grouped months for
Agriculture and 1 to 6 grouped months for the
remaining vegetation types) were compared with their
corresponding reduced model using the F-test. Only
when an insignificant F-value (P > 0.05) was obtained
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could the models for these two group of months be
considered similar and combined.
We selected candidate models for which the grouped

coefficients were significantly different as detected by
the F-test. These candidate models were further evalu-
ated by the following goodness of fit statistics: adjusted
coefficient of determination (R2), root mean squared
error (RMSE), and Akaike’s Information Criterion (AIC),
calculated as follows:

R2
adj ¼ 1−

n − 1ð ÞΣ yi − byið Þ2
n − pð ÞΣ yi − �yð Þ2 ; ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σ yi − byið Þ2
n − p

s

; ð12Þ

and

AIC ¼ n� Inσ2 þ 2� l − n� Inσ2 þ 2� l ð13Þ
where: yi and ŷi are the observed and estimated values
of the dependent variable, respectively; ȳ is the average
value of the dependent variable; n is the total number
of observations used to fit the model; p is the number
of model parameters; l = p + 1, and σ̂2 is the estimator
of the error variance of the model, obtained as
follows:

σ2 ¼
Pn

i¼1 yi − byið Þ2
n

: ð14Þ

Autocorrelation
Because the structure of the data includes consecutive
observations of FDI, autocorrelation within the re-
siduals of each vegetation type and region might be
expected, which would violate the assumption of in-
dependent error terms. In order to account for this
temporal autocorrelation, the adjustment was per-
formed in two stages. First we adjusted models without
accounting for the correlation between consecutive
observations. We then examined presence of auto-
correlation based on the visual inspection of plots of
residuals against residuals from previous observations
for each combination of vegetation type and region.
Based on the observed autocorrelation at time lags of
order k, we included a modified k-order autoregressive
error structure, which accounted for the time lag
between consecutive observations in the models for

each combination of vegetation type and region. Error
terms were consequently expanded as follows:

ei ¼
Xx

k¼1
Ikρ

hi − hi−k
k ei−k þ εi; ð15Þ

where Ik = 1 for i > k and Ik = 0 for i = k, ρk is the k-
order continuous autoregressive parameter to be
estimated, and hi − hi-k is the time lag length (months)
separating the ith from the ith–k observations, ei–k is the
ordinary residual at previous month i–k (i.e., the differ-
ence between the observed and the estimated FDI at
month i) for each combination of vegetation type and
region.
The order k of the modified error structure was

selected based on the plots of residuals against lag resi-
duals. Models were fitted by use of the Model Procedure
of SAS/ETS (SAS Institute Inc. 2009).
The error terms were included linearly into the

models. For example, for Equation 6, the model with
autocorrelated error can be written as:

FDI ¼ aþ b� DRþ ei; ð16Þ
where a and b are model coefficients; FDI is Fire Density
Index (Equation 5); DR is dead ratio (Equation 1);
and ei is the error term for the month i, expanded
following Equation 15.

Autoregressive integrated moving average (ARIMA)
modeling of DR
We tested the fitting of seasonal AutoRegressive (AR)
Integrated (I) Moving Average (MA) models (ARIMA)
for forecasting the DR time series of each vegetation
type and region. Seasonal ARIMAs are commonly
utilized in the remote sensing domain due to the highly
significant seasonal component usually associated with
remote sensing time series (e.g., Fernández-Manso et al.
2011; Huesca et al. 2014).
The seasonal ARIMA model incorporates both non-

seasonal and seasonal factors in a multiplicative model.
One shorthand notation for the model is:

ARIMA ar; dif ;mað Þ � sar; sdif ; smað ÞS; ð17Þ
where ar = non-seasonal AR lag order, dif = non-
seasonal differencing, ma = non-seasonal MA lag order,
sar = seasonal AR lag order, sdif = seasonal differencing,
sma = seasonal MA lag order, and S = time span of
repeating seasonal pattern.
Seasonal ARIMA models were fitted using the

auto.arima command within the library forecast-
ing in R (Hyndman 2016; R Core Team 2016). The
Standard AIC selection criterion (Hamilton 1994) was
applied to select the most suitable model. The individual
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and joint significance of the model parameters was
assessed by means of the Student’s t and F tests.
We examined autocorrelation by plotting regular and

partial autocorrelation functions (ACF and PACF,
respectively) for both the variable DR to be adjusted
and the residuals obtained by the ARIMA models.
PACF and ACF plots of both DR and model residuals
were obtained using the library forecasting in R
(Hyndman 2016; R Core Team 2016). We selected models
of the lowest AIC for which no autocorrelation in the
residuals was present as observed in Partial Auto-
correlation Function (PACF) and Autocorrelation Function
(ACF) plots.

Results
Observed temporal trends of monthly DR and FDI
Figure 2 (captures at high resolution included as an-
nexes) shows the observed temporal trends of the
monthly mean DR values together with monthly FDI
values observed for each one of the 28 combinations
of vegetation types and regions for the 12-year period
considered in the study.

Observed DR temporal trends by vegetation types and
regions
For vegetation types, the highest DR values were ob-
served in Agriculture and Pasture, and the lower DR
values were found for all Tropical Forests, whereas
Temperate Forests showed intermediate DR values. For
most vegetation types, a regional gradient was observed,
with the highest DR values found in the NW region and

lowest values in the S, with C and NE regions showing
intermediate values. During the first months of the year,
all vegetation types and regions showed increasing DR
values. The patterns of DR increase in these earlier
months varied largely between vegetation types and
regions. In general, the increase of DR occurred earlier
for the NW region compared to the C and S regions.
The rates of DR decrease, likely caused by the occur-
rence of precipitation, also varied largely by vegetation
type and region. The decrease of DR occurred earliest at
the C and S regions for most of the vegetation types,
often peaking in the months of April and May, and
decreasing in the following months. In the NW region,
the decrease of DR tended to occur later than the other
regions, with NE showing intermediate values.

Observed FDI trends by vegetation types and regions
FDI values varied largely between vegetation types and
regions. The highest FDI values were observed for
Agriculture, Pasture, and Shrubby Secondary Vegetation
in the S region, with values >500 (equivalent to a fire
density of >10 fire hotspots per 100 km2).
The C region also showed high FDI values for most of

the vegetation types, with maximum FDI values >250
(>5 fire hotspots per 100 km2) for most land uses.
In the NW region, the highest FDI values were found

for Temperate Forest, with FDI values >300 (equivalent
to >6 fires per 100 km2). In the NE region, observed FDI
for Temperate Forest was lower than in the NW region,
with observed FDI values <50 (<1 fire hotspot per
100 km2) for most of the years.

Fig. 2 Observed monthly Dead Ratio (DR; upper lines, right axis) and Fire Density Index values (FDI; lower lines, left axis) by vegetation type and
region in Mexico for (a) Agriculture and (b) Temperate Forest, in the period 2003 to 2014. NW: Northwest region, NE: Northeast region, C: Center
region, and S: South region. High resolution figures for all vegetation types are included as Additional files 1, 2, and 3
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Arborous and Shrubby Secondary Vegetation showed
high FDI values for all of the regions, with C and S re-
gions reaching values above 100 in all years, and with
values above 50 for NW and NE regions.
Regarding Tropical Forests, high FDI values, >100 and

even >200, were found in the driest years for Deciduous
Tropical Forests (DTROPF) in the four regions. Ob-
served FDI values were generally two or three times
higher than corresponding values for Perennial Tropical
Forests (PTROPF) in the NW, NE, and S regions
(Fig. 2). In the C region, in spite of lower DR condi-
tions in PTROPF compared to DTROPF as expected
in a wetter ecosystem, observed FDI values were high
in both ecosystem types.

Models relating monthly FDI with DR by vegetation type
and region
Based on the F-tests and the evaluation of their goodness
of fit statistics, we selected the models shown in Table 1 as
the best candidate models for each vegetation type and re-
gion. Fitted model coefficients for the selected best models
are shown in Table 2. Nonlinear (power) models described
the data better than linear models for all vegetation types
and regions. Both linear and power-reduced models—those
with common parameters for all months—(i.e., Equations
7 and 8) resulted in R2 values lower than 0.5 for all land
uses, with the exception of Pasture from the NW region
and Deciduous Tropical Forests of the S region that could

be modeled with a reduced non-linear model with all
months grouped (Equation 7; Table 2). For the remaining
vegetation types, the probability of finding a critical value
greater than the calculated F statistic was lower than 0.01
with full models. There were, therefore, differences among
the models for month or group of months.
Equations 7 and 18 through 26, with grouped coefficients

for the earlier months (December to February, March, or
April) best fitted the data for non-agricultural vegetation
types. Most models showed separated coefficients for the
peak months April and May, varying by vegetation type
and region. In the case of Agriculture (modeled for the 12
months), months of September to March or April could be
grouped, suggesting a constant relationship of DR to FDI
at the start of the fire season, with latter months (May,
June, and, in some regions, also April) having higher fire
occurrence as noted by higher coefficient values for those
latter months (Table 2: Equations 27 to 29).
Predicted and observed FDI values for each vegetation

type and region are shown in Fig. 3. Goodness of fit
statistics for the best fit models are shown in Table 2.
The selected equations showed good fits for several
vegetation types and regions, with 13 of 28 models
showing adjusted R2 values higher than 0.8, 11 models
in the range of 0.7 to 0.8, and four models (those for
Temperate Forests and Tropical Forests of the NE re-
gion and Pasture of the NW) with adjusted R2 values
ranging from 0.65 to 0.7.

Table 1 Selected models for prediction of monthly Fire Density Index from Dead Ratio values for Mexico, for the period 2003 to 2014.
Veg: vegetation type; AG: Agriculture; All but AG: all vegetation types except Agriculture; Eq. n: equation number. FDI: monthly Fire
Density Index; DR: monthly Dead Ratio; a and b are model coefficients; di: dummy variable for identifying month or group of months i,
with value = 1 for the identified month or group of months i and value = 0 for the remaining months. Numbers in coefficients and in
model description correspond to months or groups of months, with 12: December, 1: January, 2: February, 3: March, 4: April, 5: May, 6:
June, 7: July, 8: August, 9: September, 10: October, 11: November. Consecutive month groups are indicated with an en dash (–) and non-
consecutive month groups indicated with a low line ( _ ). For example, in Eq. 20, termed 12–3, 4_6, 5, there are three groups of months
with distinct coefficients: months 12 to 3 together, months 4 and 6 together, and month 5 separately

Veg Eq. n Month groups Equation

All but AG 7 All months grouped FDI = aDRb

18 12−4_6, 5 FDI = (d12–4_6a12–4_6DR + d5a5DR)
b

19 12−3, 4−6 FDI = (d12–3a12–3DR + d4–6a4–6DR)
b

20 12−3, 4_6, 5 FDI = (d12–3a12–3DR + d4_6a4_6DR + d5a5DR)
b

21 12−3, 4−5, 6 FDI = (d12–3a12–3DR + d4–5a4–5DR + d6a6DR)
b

22 12−3_6, 4−5 FDI = (d12–3_6a12–3_6DR + d4–5a4–5DR)
b

23 12−3_6, 4, 5 FDI = (d12–3_6a12–3_6DR + d4a4DR + d5a5DR)
b

24 12−2, 3, 4_6, 5 FDI = (d12–2a12–2DR + d3a3DR + d4_6a4_6DR + d5a5DR)
b

25 12−2, 3_6, 4, 5 FDI = (d12–2a12–2DR + d3_6a3_6DR + d4a4DR + d5a5DR)
b

26 12−2_6, 3, 4−5 FDI = (d12–2_6a12–2_6DR + d3a3DR + d4–5a4–5DR)
b

AG 27 9−4, 5−8 FDI = (d9–4a9–4DR + d5–8a5–8DR)
b

28 9−3, 4−6, 7−8 FDI = (d9–3a9–3DR + d4–6a4–6DR + d7–8a7–8DR)
b

29 9−3_7−8, 4, 5−6 FDI = (d9–3_7–8a9–3_7–8DR + d4a4DR + d5–6a5–6DR)
b

Vega-Nieva et al. Fire Ecology           (2019) 15:28 Page 8 of 19
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Autocorrelation in FDI models
A visual examination of the residuals at time i against
the corresponding residuals at previous months i–k,
showed that residuals were correlated at time lag k = 1
(i.e., with the previous month). No correlation was ob-
served for the residuals for time lags k greater than 1
month for any vegetation type. Table 2 shows the rho
parameter included in the models to account for resid-
uals temporal autocorrelation.

Autoregressive integrated moving average (ARIMA)
modeling of DR
The best fit ARIMA models and goodness of fit coeffi-
cients are shown in Table 3. The best fit seasonal
ARIMA models showed good adjusted R2 values, with
14 models showing R2 values higher than 0.8, nine
models with adjusted R2 values of 0.7 to 0.8, and five
models (SHSV_S, PAS_S, ARBSV_S, PAS_NE, PTROPF_
NE, and PTROPF_S) with adjusted R2 values of 0.6 to
0.7. RMSE values ranged from <15 for 13 models, <25
for a total of 24 models, and the remaining four models
ranging between 25 and 35 (DTROPF_NE, AG_S, PAS_
S, and DTROPF_NW).

The order of the non-seasonal autoregressive coeffi-
cients (ar) ranged from 1 to 6 months, often correspond-
ing to the correlation lags suggested by the Partial
Autocorrelation Function (PACF) and Autocorrelation
Function (ACF) plots of DR. No integrated coefficients
(dif and sdif) were obtained for any model, as expected
due to the absence of differencing in the variable to be
modeled. Some of the best fit models included moving
average (ma) coefficients with a lag of one to two months,
and seasonal autoregressive (sar) and moving average
(sma) coefficients with lags of one to three previous
months. For all models, we plotted ACF and PACF of the
variable DR to be adjusted, and also of the residuals after
adjustment, to inspect the presence of partial or absolute
correlation at any time lag after adjustment. Figure 4
shows an example of ACF and PACF plots of DR and of
the best fit ARMA model residual. ACF and PACF plots
for all vegetation types are included as annexes. For all
vegetation types, correlations at time lags ranging from 1
to 6 months were visible in the PACF and ACF plots of
the DR variable to be modeled. This correlation was re-
moved in the residuals of the best fit models, with PACF
and ACF values below the level for significant correlation
at all time lags (Fig. 4 and annexes).

Fig. 3 Predicted (PRED) and observed (OBS) Fire Density Index for each vegetation type and region in Mexico, for the period 2003 to 2014. AG:
Agriculture, TFOR: Temperate Forest, PAS: Pastureland, PTROPF: Perennial Tropical Forest, ARBSV: Arborous Secondary Vegetation, SHSV: Shrubby
Secondary Vegetation, DTROPF: Deciduous Tropical Forest, NW: Northwest region, NE: Northeast region, C: Center region, and S: South region.
Dots represent monthly FDI values. Lines represent the observed against predicted linear regression equations (R2 and equation coefficients of
the observed against predicted linear regressions are shown below the name of each vegetation type and region)
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Mapping predicted fire occurrence risk
We produced maps of predicted active fire ignition
density from DR based on the best fit models for each
vegetation type. Figure 5 shows an example of predicted
active fire ignition density maps for the fire season
months of March to June for two contrasting years:
2011, an extremely dry year with a large fire occurrence,
and 2010, a more moderate fire year, representative of
average fire occurrence conditions. The year of 2011
represents an extreme of fire occurrence records in
Mexico, with an affected total area of 956 405 ha
(Zúñiga-Vásquez et al. 2017a), and the largest recorded
fire event in the history of the country (Pompa-García
et al. 2018).

It can be seen that the different fuel drought condi-
tions resulted in very contrasting FDI predictions
between the two years. In the year 2011, predicted FDI
was high to extreme for the months of April and May
for the NW and NE regions, corresponding to a very
high hotspot density observed in those two regions and
contrasting with lower predicted FDI and observed
hotspot density for the same months in the year 2010.
Fire risk in the C region was also higher in 2011, with
higher predicted and observed fire density in the months
of March to May. In the S region, drought and associ-
ated FDI were also higher in the year 2011, particularly
in the months of May and June, corresponding with a
higher observed hotspot density.

Fig. 4 (a, b) Example of plots of regular and partial autocorrelation functions (ACF and PACF) of the Dead Ratio (DR) data of Arborous Secondary
Vegetation of the NW region (ARBSV_NW), and (c, d) of the residuals of the modeled DR with the best fit ARIMA model, and (e) of observed and
predicted DR for ARBSV_NW utilizing the best fit seasonal ARMA model for Mexico, for the period 2003 to 2014. Lines in blue (a to d) mark the
limits for significant autocorrelation. Observed data in (e) are shown in black, predicted data in red
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Discussion
Observed DR temporal trends by vegetation types and
regions
The variations in DR trends between vegetation types
suggest a sensitivity of this index to variations in fuel
dryness of different ecosystem types. The highest DR
values were observed for Pasture and Agriculture, while
the lowest DR values were measured in more humid
ecosystems such as perennial tropical forests. The rela-
tive greenness component of the index was designed to
normalize the index value between land types. However,
by multiplying relative greenness by a maximum live
ratio, which depends on the maximum NDVI (Burgan et
al. 1998), the DR index takes into account variability due
to type of vegetation. Different types of vegetation have
different seasonal trends of drying and wetting, which is
reflected in their NDVI temporal trends (e.g., Yebra et al.
2008). For example, Manzo-Delgado et al. (2009) re-
corded distinct NDVI trends for grasslands, temperate
forests, tropical forests, and xerophytic scrublands in
central Mexico and included vegetation type in their lo-
gistic model for predicting fire occurrence probability in
their region of study.

DR values also showed sensitivity to the dryness
between regions, with a consistent gradient from the
more arid NW to the more humid S, present for most
vegetation types. The NW region has a marked rain sea-
son starting in June to July, whereas in the tropical S,
precipitation is more constant throughout the year.
Different timing of precipitation between regions might
explain the different dates observed for the DR decrease.
This decrease was observed generally one month later in
the NW region compared to the C and S regions, prob-
ably caused by a later start of the rain season in the NW
region, in the months of June and July.
Interestingly, the relationships between DR and FDI

trends varied by vegetation type and region. For ex-
ample, for many land uses such as Agriculture, Pasture
or Temperate Forests, the increase of DR (Fig. 2: upper
lines) occurred earlier in the NW region compared to a
later occurrence of this DR increase in the C or S re-
gions. Looking at the FDI patterns for those land uses
(Fig. 2: lower lines), the start of the fire season, as noted
by an FDI increase, occurred earlier in C and S regions
than in the NW region, suggesting that either a longer
accumulated drought is required in the NW region for

Fig. 5 Maps of predicted Fire Density Index (FDI) for Mexico for the months of March, April, May, and June of 2010 (upper figures) and 2011
(lower figures). Within each year, upper figures show predicted FDI maps and lower figures (FDI + hotspot) show maps of predicted FDI (from
red to brown) together with observed MODIS hotspots (in purple) for the corresponding month and year. FDI was scaled as follows: Low: FDI <
25; Medium: FDI = 25 to 50; High: FDI = 50 to 75; Very high: FDI = 75 to 100; and Extreme: FDI > 100
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fires to start, or human patterns of ignition might differ
between these regions. Earlier start of fire season might
be related to human calendar of agricultural activities in
these regions, where the occurrence of forest fires has
been documented to be largely related to escaped agri-
cultural burns (e.g., Román-Cuesta et al. 2004; Román-
Cuesta and Martínez 2006; Rodríguez-Trejo et al. 2008;
Rodríguez-Trejo et al. 2011; Carrillo García et al. 2012).
These differences suggest that the relationships be-

tween DR trends and fire occurrence might be specific
for each type of vegetation and region.

Observed FDI trends by vegetation types and regions
The high FDI values observed in the S or C region for
Agriculture and Pasture were not surprising, because
these territories are characterized by frequent slash-and-
burn agricultural activities and clearing of forest for
expansion of agriculture, which result in frequent fires
(e.g., Rodríguez-Trejo and Fulé 2003; Román-Cuesta
et al. 2004; Román-Cuesta and Martínez 2006;
Rodríguez-Trejo et al. 2008; Rodríguez-Trejo et al. 2011;
Carrillo García et al. 2012; Ibarra-Montoya and Huerta-
Martínez 2016). These high ignition densities in the C
region are consistent with those observed in previous
studies of active fire density for the period 2011 to 2015
(Vega-Nieva et al. 2018), as well as with the fire suppres-
sion registers spatial analysis from Pompa-García et al.
(2018) and Zúñiga-Vásquez et al. (2017b) in Mexico.
In the NW region, the highest FDI values were

observed for Temperate Forests, agreeing with previous
studies in the region (e.g., Avila-Flores et al. 2010a;
Avila-Flores et al. 2010b; Pérez-Verdin et al. 2013a;
2013b; Pérez-Verdin et al. 2014; Pompa-García and
Hernández González 2012), that found that most of
the fires in Durango State occurred on conifer and
hardwood temperate forest.
Lower FDI values were observed in the Temperate

Forests of the NE region, which, as discussed above, was
probably caused by higher precipitation in this region
and an earlier DR decrease caused by an earlier start of
the rain season compared to the NW region. However,
in years of extreme conditions such as 2011 under La
Niña ENSO (El Niño-Southern Oscillation) event, high
fire occurrence was found in the forests of the NE
region, as noted by an FDI value of >250 (>5 fires per
100 km2) (Fig. 2). This extreme-conditions year corre-
sponds to unprecedented area burned, with the largest
fire in Mexico’s history—317 000 ha—occurring in
northern Coahuila (CONAFOR 2011).
There is no agreement in the literature about the role

of El Niño and La Niña ENSO events in the NE region
of Mexico (e.g., Yocom et al. 2010; Yocom and Fulé
2012; Yocom et al. 2014), located at the transition
between the areas affected by drought under the

influence of El Niño (S) and those affected by La Niña
(NW) (e.g., Román-Cuesta et al. 2003; Seager et al. 2007;
Seager et al. 2009; Yocom et al. 2010). Meanwhile, the
DR trends observed in 2011 for the NE region Tem-
perate Forests, peaking at a value of 80 in April 2011,
as opposed to DR values of less than 70 in most of
the other years and corresponding with low FDI
values of <50 (Fig. 2), seem to suggest that extreme
drought conditions were present in the NE forests
under 2011 La Niña events. The extreme fire occur-
rence observed for that region for this period of time
seems to suggest that DR might be a potentially
useful indicator for detecting extreme drought and
associated fire risk conditions in this region caused by
ENSO events, although a longer time frame will be
required for assessing its performance under future El
Niño and La Niña events.
Arborous Secondary Vegetation showed high FDI

values in the four regions, suggesting that this might be
a fire-prone vegetation type. The likely cause being the
high available fuel load that may be expected in this type
of ecosystem, constituted by young trees with low crown
height combined with high loads of surface fuels. These
fuel characteristics result in a potentially high risk of
torching and potentially extreme fire behavior, as
opposed to a lower risk of torching and lower severity
fire regime expected in more mature forest types such as
old-growth temperate forests (e.g., Morf ín Ríos et al.
2007; Cortés Montaño et al. 2012; Jardel et al. 2014).
Perennial Tropical Forests (PTROPF) showed lower

FDI values compared to Deciduous Tropical Forests
(DTROPF) in the NW, NE, and S regions. This is
expected in this evergreen ecosystem with high moisture
conditions for most of the year, compared to drier
conditions found in the DTROPF, as noted by lower DR
values in these latter ecosystems (Fig. 2). In the C region,
both Perennial Tropical Forest and Tropical Forest
showed high FDI values, in spite of lower DR values in
PTROPF, as expected in this more humid ecosystem.
The high FDI values observed in this type of ecosystem
with high moisture content are very likely caused by
adjacent agricultural burns escaping into forest lands.
The majority of the Perennial Tropical Forest area in
this region can be found in the state of Chiapas, located
in the vicinity of agricultural land (Fig. 1). In this state,
reports of agricultural burns and escaped fires from
agriculture to both Temperate Forest and Perennial
Forest are frequent (e.g., Román-Cuesta et al. 2004;
Román-Cuesta and Martínez 2006). Both Deciduous
Tropical Forest and Perennial Tropical Forest in Mexico
have historically been ecosystems with a low fre-
quency of fires (e.g., Rodríguez-Trejo et al. 2008;
Jardel et al. 2014). However, several studies have
noted that this historical fire regime has been recently
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altered because of human activities that have resulted
in the introduction of fire on ecosystems historically
not adapted to it, with potentially adverse effects on
post-fire regeneration of these fire-sensitive ecosys-
tems (e.g., Rodríguez-Trejo 2008, 2015).

Models relating monthly FDI with DR by vegetation type
and region
For all of the vegetation types and regions studied, the
relationship of FDI with monthly DR was better
described with nonlinear than with linear models,
suggesting that the relationship of DR with fire occur-
rence is not linearly proportional (e.g., fire occurrence
risk increased very rapidly with increasing DR). Different
patterns of FDI and DR relationships were observed for
different vegetation types and regions, agreeing with
observations that point to a variety of fire regimes
resulting from combinations of climatology and fuel
types in the country (e.g., Rodríguez-Trejo 2008, 2015;
Morf ín Ríos et al. 2007; Morfin Rios et al. 2012; Jardel et
al. 2014; Vega-Nieva et al. 2018).
The results suggested that significantly different

models are required for prediction of FDI from DR
for most vegetation types for different groups of
months. Thus, derived model coefficients for months
and groups of months may offer information about
the patterns of timing of fire season and their rela-
tionships with DR patterns in different vegetation
types and regions.
Models with grouped coefficients for December to Feb-

ruary (Tables 1 and 2: Equations 24 through 26) suggest
an earlier start of the fire season, with March having a
higher coefficient value compared to the three previous
months. This was observed for Pasture in all regions but
NW, Shrubby Secondary Vegetation in the S and C
regions, Arborous Secondary Vegetation in the C and NE
regions, and Temperate Forest in the NE region. The
timing of agricultural burning in the C, S, and NE regions
might be behind this phenomenon, with observed fires in
Shrubby Secondary Vegetation and Arborous Secondary
Vegetation starting as early as March being possibly
related to escaped agricultural burns in these regions.
In the C region, grouped coefficients from December

to March were observed for Temperate Forest and
seasonally dry Deciduous Tropical Forest (Table 1:
Equation 20), suggesting a latter start of fire in the month
of April. For Perennial Tropical Forests in the C region,
grouped coefficients were obtained from December to
April (Table 1: Equation 18), suggesting that, in this re-
gion, at least one more month of prolonged dry conditions
might be required for fire to start in these more humid
tropical forest ecosystems.
For the NW region, grouped coefficients from December

to March were obtained for Shrubby Secondary Vegetation

(Table 1: Equation 23)—one month later than for the S and
C regions—with all remaining vegetation types having
grouped coefficients from December to April and separated
coefficients for the month of May (Equations 18 and 27),
also suggesting a later fire start for these vegetation types
compared to other regions, particularly S and C. These re-
sults seem to suggest that, in the NW region, most vegeta-
tion types might be achieving the required conditions of
accumulated drought for fire to occur one or two months
later compared to other regions such as C or S, which
might be linked to the different timing of precipitation be-
tween these regions, or to different patterns in the timing
of human-caused ignitions such as agricultural activities.
Most models had good fit, except Tropical Forests

models that had a more limited performance. This is likely
caused by a lower sensitivity of FDI to DR in this more
humid ecosystem, where fires might spread from agricul-
tural lands that are already dry and burned under non-
optimum conditions as discussed above. Several studies
have pointed to agricultural extension and the proximity
to agricultural areas as significant factors explaining fire
occurrence in Tropical Forests (e.g., Rodríguez-Trejo and
Fulé 2003; Román-Cuesta and Martínez 2006; Román-
Cuesta and Martínez 2006; Rodríguez-Trejo et al. 2008;
Rodríguez-Trejo et al. 2011). This highlights the need to
further understand the role of anthropogenic factors of
fire occurrence in these ecosystems where fire is progres-
sively introduced as a consequence of human activities.
Although the model coefficients obtained may account

indirectly for some of the variations in ignitions pattern
caused by human activity patterns, future spatial analysis
should focus on the explicit consideration of anthro-
pogenic variables such as the interface of forests and
agriculture or the accessibility due to proximity to roads
and populations as potentially relevant variables in
explaining fire occurrence in Mexico.
Another additional limitation of this first approach of

our study is the 12-year dataset utilized as defined by
hotspot activity. This could be particularly limiting in a
region such as the NE, where more data under extreme
DR conditions (e.g., El Niño and La Niña events) might
be required for a deeper understanding of drought and
fire occurrence relationships.

Autoregressive integrated moving average (ARIMA)
modeling of DR
DR could be successfully modeled with acceptable accu-
racies for most vegetation types by means of ARIMA,
similar to works that have utilized these techniques for
forecasting fire risk indices in other countries (e.g.,
Huesca et al. 2014).
It can be seen that Tropical Forests were among the

models with a lower performance, perhaps due to the
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lower degree of variation observed in those more humid
ecosystems.
DR underestimation occurred on some extreme

drought years for some vegetation types. This could
be caused by the limitations inherent to the time
length of the dataset, limited by the 12 years of avail-
able satellite information, for which only some years
of extreme drought conditions are present. Continued
monitoring of fire risk under varying drought condi-
tions might improve the ability of these initial models
to account for extreme events. In addition, a joint
consideration of ENSO indices might help improve
forecast of extreme drought events and associated fire
risk. The ARIMA models for forecasting NDVI-based
relative greenness developed in this manuscript could
be coupled with gridded weather forecasts for fire risk
forecasting (e.g., Roads et al. 2003; Roads et al. 2005)
in future works.

Conclusions
This study represents substantial progress toward deve-
loping a system for prediction of fire occurrence risk
based on temporal trends in fire density and drought.
Temporal trends were measured by a satellite fuel dry-
ness index, dead ratio (DR), in different types of vegeta-
tion and regions in Mexico, at a national scale, with a
monthly temporal resolution, for the period 2003 to
2014. DR trends varied by vegetation type and region,
with drier fuel conditions measured in the most arid
type of fuels and regions. Furthermore, significant rela-
tionships were found relating monthly fire density and
DR for the analyzed vegetation types and regions in the
period of study. In addition, we obtained preliminary
seasonal autoregressive integrated moving average
models for prediction of monthly DR values that might
be incorporated into future fire risk forecast operational
tools. While these initial results suggest that there is
potential for the indices utilized to capture the variations
in temporal trends of fuel dryness and their impact on
fire occurrence in the country, a longer time period of
monitoring will be required for improving our under-
standing of long-term climatic effects, such as El Niño
and La Niña impact, on drought and associated fire risk
in the country.
Future work, in the frame of the CONAFOR-CONACYT

project for the development of an operational fire risk
system in Mexico, will explore temporal trends of fire
occurrence with satellite- and weather-based indices of fuel
greenness at finer temporal resolutions. Our future studies
within this project will also focus on the consideration of
spatial patterns of fire density as related to weather, fuels,
and human factors (e.g., distance to roads, population, agri-
culture) for further understanding of the spatial-temporal
patterns of fire in Mexico.
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