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Abstract

Background: The need for basic information on spatial distribution and abundance of plant species for research
and management in semiarid ecosystems is frequently unmet. This need is particularly acute in the large areas
impacted by megafires in sagebrush steppe ecosystems, which require frequently updated information about
increases in exotic annual invaders or recovery of desirable perennials. Remote sensing provides one avenue for
obtaining this information. We considered how a vegetation model based on Landsat satellite imagery (30 m pixel
resolution; annual images from 1985 to 2018) known as the National Land Cover Database (NLCD) “Back-in-Time”
fractional component time-series, compared with field-based vegetation measurements. The comparisons focused
on detection thresholds of post-fire emergence of fire-intolerant Artemisia L. species, primarily A. tridentata Nutt.
(big sagebrush). Sagebrushes are scarce after fire and their paucity over vast burn areas creates challenges for
detection by remote sensing. Measurements were made extensively across the Great Basin, USA, on eight burn
scars encompassing ~500 000 ha with 80 plots sampled, and intensively on a single 113 000 ha burned area where
we sampled 1454 plots.

Results: Estimates of sagebrush cover from the NLCD were, as a mean, 6.5% greater than field-based estimates, and
variance around this mean was high. The contrast between sagebrush cover measurements in field data and NLCD
data in burned landscapes was considerable given that maximum cover values of sagebrush were ~35% in the
field. It took approximately four to six years after the fire for NLCD to detect consistent, reliable signs of sagebrush
recovery, and sagebrush cover estimated by NLCD ranged from 3 to 13% (equating to 0 to 7% in field estimates) at
these times. The stabilization of cover and presence four to six years after fire contrasted with previous field-based
studies that observed fluctuations over longer time periods.

Conclusions: While results of this study indicated that further improvement of remote sensing applications would
be necessary to assess initial sagebrush recovery patterns, they also showed that Landsat satellite imagery detects
the influence of burns and that the NLCD data tend to show faster rates of recovery relative to field observations.
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Resumen

Antecedentes: La necesidad de información básica sobre la distribución espacial y la abundancia de especies
vegetales para la investigación y el manejo de ecosistemas semiáridos no está frecuentemente cubierta. Esta
necesidad es particularmente aguda en grandes áreas impactadas por mega-incendios en ecosistemas esteparios
de artemisia (i.e., sagebrush), los cuales requieren de información actualizada y frecuente sobre los incrementos de
invasoras exóticas anuales o sobre la recuperación de perennes deseables. Los sensores remotos proveen una gran
avenida para obtener esta información. Consideramos cómo un modelo de vegetación basado en imágenes
Landsat (píxeles de 30 m de resolución e imágenes desde 1985 a 2018) conocido como la Base Nacional de Datos
de Cobertura de Tierras (NLCD, National Land Cover Database), componente fraccional de serie de tiempos “Back-
in-Time”, comparaba con datos de mediciones de vegetación a campo. Las comparaciones se enfocaron en los
límites de detección de la emergencia post fuego de la especie intolerante al fuego Artemisia L., primariamente A.
tridentata Nutt. (artemisia grande). Las especies de artemisia son escasas en el post fuego y su escasez en vastas
áreas quemadas crean un desafío para su detección mediante sensores remotos. Las mediciones fueron hechas
extensivamente a lo largo de la Gran Cuenca (Great Basin) en los EEUU, sobre cicatrices de fuego que abarcaban
unas 500 000 ha con 80 parcelas muestreadas, e intensivamente en 113 000 ha quemadas donde muestreamos la
vegetación en 1454 parcelas.

Resultados: Las estimaciones de cobertura de artemisia mediante el NLCD fueron, en promedio, un 6,5 % mayores
que las estimaciones basadas en datos de campo, y la varianza alrededor de esta media fue alta. El contraste entre
las mediciones de cobertura de artemisia en datos de campo y datos de NLCD en paisajes quemados fue
considerable dado que los máximos valores de cobertura de artemisia en el campo fueron de aproximadamente el
35%. Tomó aproximadamente de cuatro a seis años después del fuego para que el NLCD detectara signos
consistentes y confiables de recuperación de artemisia, y la cobertura estimada por NLCD varió entre 3 a 13%
(equivalente de 0 a 7 % en estimaciones a campo) en ese mismo tiempo. La estabilización de la cobertura y la
presencia de cuatro a seis años después de fuego contrastó con previos estudios de campo que observaron
fluctuaciones en períodos de tiempo más largos.

Conclusiones: Aunque los resultados de este estudio indicaron que un mejoramiento a futuro en la aplicación de
sensores remotos va a ser necesario para determinar los patrones de recuperación inicial de artemisia, también
mostraron que las imágenes Landsat detectan la influencia de las quemas y que los datos de NLCD tienden a
mostrar tasas de recuperación más rápidas en relación a las observaciones de campo.

Background
As remote sensing products become more readily
available for science and land management applica-
tions (i.e., Thackway et al. 2013; Willis 2015), there is
a corresponding need to determine how well vegeta-
tion maps derived from them match field observa-
tions. One compelling application of remote sensing
is mapping of plant community recovery patterns
after wildfire. Wildfires are increasing in size across
the sagebrush steppe in the semiarid western United
States (Keane et al. 2009), and the cumulative amount
of burned areas increasingly exceeds the field-based
monitoring capabilities of landowners and agencies.
Initial plant recovery patterns after fire affect the
long-term trajectory of ecosystem health and thus are
critical to measure for both scientific understanding
and enabling timely management interventions.
Whether the information required to manage the
rapid vegetation changes occurring over these large
areas can be gathered with remote-sensing products
is an important research question.

Satellite imagery has been used to assess coarse
ecosystem recovery of burned areas, such as changes
to normalized difference vegetation index (NDVI) or
band reflectance over time (White et al. 1996; Hope
et al. 2007; Van Leeuwen 2008; Johnston et al. 2018).
However, the primary information needs of land man-
agers are often about species composition of recover-
ing plant communities. Semiarid rangelands pose a
unique set of challenges for remote sensing because
major functional differences exist between key species
that are often not accompanied by strong spectral dif-
ferences (Mansour et al. 2012). In the vast sagebrush
steppe ecosystems of western North America, which
have experienced ~50% contraction in recent decades
due to the fire–invasive-annual-grass cycle (Miller
et al. 2011), extensive and intensive restoration inter-
ventions are executed to assist recovery of desirable
perennials such as sagebrush (Artemisia tridentata
Nutt.), and to decrease exotic invasive species (Pilliod
et al. 2017). The planning, application, and assess-
ment of these land treatments and natural recoveries
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require frequent measurement of plant communities
over large areas.
New remote sensing platforms such as the National

Land Cover Database (NLCD) “Back-in-Time” fractional
component cover time-series (Rigge et al. 2019; Homer
et al. 2020) provide yearly updates on plant community
composition derived from Landsat satellite imagery (an-
nual images from 1985 to 2018, at 30 m pixel reso-
lution). The NLCD estimates sagebrush cover and other
dominant functional groups that can potentially meet
managers’ information needs. However, a tradeoff in
performance between spatial extent and local accuracy is
unavoidable for NLCD and similar digital products, such
as the Rangeland Analysis Platform (Jones et al. 2018).
While field surveys with high sampling power can detect
sagebrush re-emergence after wildfire and form the
benchmark for local accuracy (as in Germino et al.
2018), less detection ability is expected from estimates
made from aerial imagery (Applestein et al. 2018). The
scale tradeoffs occur along a spectrum of reduced extent
and greater local accuracy beginning with aircraft-based
photography (Moffet et al. 2015), followed by high-
resolution satellite imagery like Worldview (Xian et al.
2019), and lastly vegetation models based on moderate-
resolution satellite imagery like Landsat (30 m reso-
lution) or coarse-resolution MODIS (250 m resolution;
Van Leeuwen 2008).
Few studies offer insight as to how well cover of vege-

tative species or functional types in large managed land-
scapes, such as megafire scars, can be assessed from
platforms such as NLCD. This is a critical information
gap for species such as sagebrush, which is central to
one of the largest restoration programs globally. Despite
the importance of post-fire sagebrush recovery, efforts to
monitor it in the field are not yet spatially or temporally
adequate, nor are they likely to be with the currently
available ground-based sampling approaches (see
Germino et al. 2018 for an exception).
Field monitoring of sagebrush is usually done either in

a few locations and years after wildfires for restoration
or research projects (among the most intensive are three
to five plots per burn area in Knutson et al. 2014 and
Shriver et al. 2018), or routinely throughout its range
with sampling that is even sparser in space and time
(e.g., US Bureau of Land Management AIM monitoring
program, https://landscape.blm.gov/geoportal/catalog/
AIM/AIM.page). Species such as sagebrush confer some
advantages for detection by remote sensing; most
notably, the green-gray sagebrush foliage is contrasted
by the high albedo of surrounding vegetation, which is
senesced for at least six months of each year (Clark et al.
2001). However, there are also major challenges to quan-
tifying spatial patterns of post-fire sagebrush cover, most
notably that burned sagebrush steppe ecosystems have

large amounts of bare soil, scarce plant cover, and
spectrally indeterminate vegetation, which makes dis-
criminating between phenologically concurrent species
or between plant and soil cover difficult (Huang et al.
2009; Fairweather et al. 2012). The relative scarcity of
sagebrush cover is particularly acute post fire, when
plants are smaller and sparser during the initial stages of
burned-area recolonization. One previous study found
sagebrush measured in the field to be well below 10%
(R2 = 0.03) of the sagebrush cover estimated by NLCD,
at the eastern fringe of sagebrush’s range in South
Dakota, USA, although agreement was greater when
assessing the presence or absence of sagebrush (Parsons
et al. 2020). Other studies have shown greater concord-
ance, including a field accuracy assessment across the
geographic extent of the NLCD data (Rigge et al. 2020)
and a long-term field monitoring study of sagebrush in
Wyoming, USA (Shi et al. 2020). However, none of these
studies have specifically examined post-fire regeneration.
Determining the threshold abundance of sagebrush re-
quired to generate an adequate signal for it to be de-
tected by NLCD is a critical first step in evaluating the
suitability of such map products for evaluating recovery
of burned sagebrush steppe ecosystems.
To determine whether NLCD sagebrush cover layers

can be applied as an extension of field monitoring for
addressing management questions, we asked the follow-
ing: (1) over what time period does NLCD display a
post-fire sagebrush (Artemisia spp.) regeneration signal,
and does this signal match field data? Is the regeneration
signal consistent from year to year? (2) How do esti-
mates of post-fire sagebrush cover from NLCD compare
with field data, across historical burn scars in western
North America? (3) What is the minimum level of sage-
brush cover measured in the field that can be detected
by the NLCD sagebrush product? We predicted that the
NLCD would underestimate sagebrush abundances in
the first few years after fire, compared to benchmark es-
timates from the field where detection of sagebrush at
the plot level should be greater.

Methods
NLCD Back-in-Time data
Methodology used to produce the NLCD data is de-
scribed in Rigge et al. 2019. The NLCD data is given
as sagebrush cover as whole-integer percentage. Post-
processing of NLCD prior to its release for public use
includes two screening steps for potential high or low
sagebrush cover anomalies, specifically (1) flagging
pixels where sagebrush cover decreases from one year
to the next, and only allowing cover to remain con-
stant or increase over years after fire; and (2) flagging
any predicted cover values that were greater than
would be predicted from:
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Sagebrush cover ¼ − 0:0333� y2 þ 2:333� y − 0:0001;

ð1Þ

where y is the number of years since fire. Flagged data
values are reduced to the value predicted by this equa-
tion. Only 1.01% of the spatially extensive data (6% of
pixels in the second post-fire year) and none of the
spatially intensive data were affected by this correction;
the correction was thus deemed to have little impact on
the overall analysis.

Change point detection in spatially extensive analysis
We calculated the mean NLCD percent sagebrush
cover and proportion of pixels with sagebrush present
(defined as having sagebrush cover ≥1%) from one
year prior to fire through 26 years after fire (or how-
ever many years were available, if fewer than 26) in
ArcGIS (version 10.5.1; ESRI, Redlands, California,
USA) using the zonal statistics tool (for cover) and
tabulate zones tool (for presence) on all seeded and
unseeded areas within the fire boundary, separately.
We then ran the strucchange package in R (Zeileis
et al. 2002) to use Chow’s (1960) method for deter-
mining temporal change points in year-to-year fluctu-
ations of post-fire sagebrush cover and presence

(analyzed separately), to determine in which post-fire
year sagebrush stopped increasing (or decreasing).
Chow’s method identifies structural change points by
considering whether slopes of two linear regressions
significantly differ before and after each potential
change point (“points” are years after fire). In our ap-
plication, Chow’s F-test was used to determine how
significant the difference in slope (change in sage-
brush over time) was before, compared to after, each
time point.

Spatially extensive analysis
Our extensive analysis required subject sites that had
burned and had existing field data on sagebrush recovery
and, moreover, were representative of big sagebrush sites
in terms of soils and climate. Additionally, burned areas
were selected to include a range of different fire years
and sizes (Fig. 1, Table 1). A broad digital search re-
vealed eight areas in sagebrush steppe that burned be-
tween 1990 and 2007 and ranged in size from 4400 to
252 800 ha in the Central Great Basin, Northern Great
Basin, and Snake River Plain Ecoregions (Environmental
Protection Agency; level three), USA, where sagebrush
recovery had been measured in the field using standard-
ized belt-transect techniques by Knutson et al. (2014),
Shriver et al. (2018), and Barnard et al. (2019; Fig. 1,

Fig. 1 Map of the fires in sagebrush steppe of the Great Basin, USA, that had sagebrush presence and cover measured at least once between
2011 and 2018 and were included in the spatially extensive analyses that compared estimates of sagebrush from the remotely sensed NLCD
(National Land Cover Database) model against benchmark field data. Dark and light lines delineate state and fire boundaries, respectively.
Variation in elevation is also shown. See Table 1 for information on the timeframe for which each burn-area polygon was analyzed
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Table 1). Soils across the large areas evaluated were gen-
erally loams, ranging from clay loam to sandy loam, and
generally had mesic-aridic to frigid-aridic soil
temperature–moisture regimes, with the majority of the
~250 to 400 mm of mean annual precipitation occurring
in cool winter or spring months. Field plots were located
on flat or hilly terrain that did not exceed ~15% slope.
Burned areas were selected to include a range of dif-

ferent fire years and sizes from those that had previously
been monitored for post-fire sagebrush recruitment. All
burned areas were partially seeded with sagebrush by
aircraft and had their sagebrush density and cover mea-
sured either once or twice between 2011 and 2017 (data
reported in Knutson et al. 2014; Shriver et al. 2018,
2019; and Barnard et al. 2019). Polygons of seeded
areas were obtained from the Land Treatment Digital
Library (Pilliod and Welty 2013). We excluded areas
that were strip seeded (regular alternations of seeded
and unseeded swaths) and instead only used areas
that were seeded homogeneously. We also removed
areas that reburned within ten years of the initial fire
dates to ensure enough recovery time. Next, we cre-
ated polygons for the unseeded burned areas by
selecting all areas that had not been seeded with
sagebrush (with a buffer of 60 m).
Eighty field plots were established using a stratified

random approach across 489 000 ha among the eight ex-
tensive burned areas by the authors of the data we used
(Knutson et al. 2014; Shriver et al. 2018; Barnard et al.
2019). Plots were either located in burned+unseeded
areas, burned+seeded areas, or unburned+unseeded
areas located 150 to 2000 m outside the fire perimeter
(described in detail in Arkle et al. 2014). At each plot,
sagebrush cover was recorded from line-point-intercept

using 150 points along three 50 m belt transects that
were arranged in a spoke design (Herrick et al. 2005).
Recordings of sagebrush included Artemisia tridentata
Nutt., A. arbuscula Nutt., and A. tripartita Rydb. GPS
accuracy of plot location was ~3 m. We used the extract
multi tool in ArcGIS to obtain the 30 m NLCD pixel
value of sagebrush cover at the center of the field plots
for the time point that coincided with the field-
monitoring year.
We used a linear regression and Tukey’s post-hoc con-

trasts (Tukey 1949) to compare the difference in sage-
brush cover estimates between the NLCD cover and the
field data cover measurements between different treat-
ment types (burned+seeded, burned+unseeded, and un-
burned+unseeded plots) and time since fire. We then
used linear regression to assess the correspondence be-
tween field data cover estimates and NLCD cover esti-
mates for all data.

Spatially intensive analysis
To determine minimum sagebrush detection level, we
compared sagebrush cover estimated by NLCD against
field estimates made on 1454 plots dispersed in a strati-
fied random fashion using ArcGIS across the 2015 Soda
Fire burned area (113 000 ha; Table 1, Fig. 2), with mea-
surements and comparisons made in 2016 and again in
2018. Data for 2016 and methods are described in
Germino et al. (2018). Sagebrush cover was determined
by first measuring the density of sagebrush using a
frequency-density approach, and then estimating cover
from the density value. The frequency-density approach
entailed counting the number of sagebrush present in a
1 m2 quadrat, provided at least three seedings were de-
tected. If fewer than three seedlings were detected, the

Table 1 Characteristics of areas burned in sagebrush steppe of the Great Basin, USA, that had sagebrush presence and cover
measured at least once between 2011 and 2018 and were included in the spatially extensive or spatially intensive analyses that
compared estimates of sagebrush from the remotely sensed NLCD (National Land Cover Database) model against benchmark field
data. Points refer to field plots, which were the spatial basis of comparison to the NLCD model estimates. “Year monitored” refers to
both NLCD and field sampling occurring in each noted year

Fire name Burn year Year monitored Fire size (ha) Points (n)

Spatially extensive analysis

Castle Creek 1990 2011, 2016 4 452 14

Indian Springs 1990 2014 7 303 5

Buffalo 1995 2011, 2017 5 425 20

Division 1996 2011 15 158 12

Dun Glenn Complex Poker Brown 1999 2015 101 044 5

Jungo Complex 2000 2014 36 336 4

Charleston 2006 2015 66 385 15

Murphy 2007 2015 252 794 5

Spatially intensive analysis

Soda 2015 2016, 2018 110 069 1454
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search area was expanded to a 5.5 m radius circular area,
and again incrementally to 9, 13, or 18 m radii areas if
necessary. The heights of all sagebrush were recorded as
being in one of the following height bins:<5, 5 to 15, 15
to 30, 30 to 75, 75 to 120, or >120 cm.
Next, sagebrush cover was determined by summing

the product of the number of plants and average crown
area for plants in each height bin:

Cover ¼ Density plants m −2
� �

�Mean crown area m2plant −1
� �� 100

ð2Þ

Mean crown areas were determined for each sage-
brush height class based on regressions of crown area
and height measurements made on a centrally located
common garden in the Soda Fire burned area (Davidson
et al. 2019). Crown area was determined for each of
1321 plants measured multiple times over the course of
three years (6899 individual data points) in the garden
by measuring diameter of the foliar extent in two dimen-
sions and then assuming the crown to be circular (i.e.,
area = πr2). To assess accuracy of this method, we com-
pared sagebrush cover derived from this method for
each plot to an ocular estimate of sagebrush cover taken
in 2019 (R = 0.35, P < 0.0001, y = −0.42 + 0.45x). The
coordinates of each plot (~3 m accuracy) were used to

identify the corresponding NLCD pixel to create a basis
for comparison.
We compared the Soda Fire monitoring sagebrush

cover estimates from 2016 and 2018 with NLCD data.
We created a contingency table using sagebrush cover
bins (0%, >0 to 1%, >1 to 5%, or >5%) and calculated a
Cohen’s kappa metric (Cohen 1960) to assess agreement
between sagebrush cover field estimates and NLCD data.

Results and discussion
Change point detection for spatially extensive data
For the burned areas assessed, NLCD sagebrush regener-
ation signal for both cover and presence did not fluctu-
ate strongly after reaching a stabilizing point four to six
years after fire (Figs. 3 and 4). Once the NLCD dataset
showed that sagebrush occurrence was similar to pre-
fire levels (as measured by the proportion of pixels con-
taining sagebrush), this signal tended to stay consistent.
One exception was the Jungo Fire (Figs. 3 and 4), both
unseeded and seeded areas, that had a transient decrease
in sagebrush occurrence 13 years after fire. Previous field
studies have shown strong fluctuations in sagebrush
population density (and frequently in cover) for up to 40
years post fire that reflect ecologically important pro-
cesses (Shriver et al. 2019). It is likely that these fluctua-
tions are not well captured by the spatial or spectral
scale of the NLCD data.

Fig. 2 Map of field data point (plot) locations where sagebrush cover was measured in 2016 and 2018 on the 2015 Soda Fire burned area, Idaho
and Oregon, USA, to create a spatially intensive field benchmark of sagebrush abundance, for the purpose of comparing sagebrush estimates
from the satellite-based model. Variation in elevation is also shown
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Sagebrush cover estimated by NLCD tended to de-
crease from 4 to 16% of ground area before each fire
(year −1 on abscissa of Fig. 4) to <1 to 8% the year
after each fire, and then recovered progressively to-
ward pre-fire abundances in subsequent years. Tem-
poral patterns of sagebrush recovery and Chow F
statistics were consistent between seeded and un-
seeded areas, indicating that naturally regenerating
areas displayed spectral signals similar to managed
areas, although some important distinctions are
notable. For example, sagebrush presence in unseeded
areas of the Buffalo Fire burn area did not appear to
decrease as appreciably after fire (at year 0 compared
to year −1 on abscissa of Fig. 4) compared to seeded
areas. This may reflect manager’s decisions to seed in
areas that experienced greater loss of sagebrush. The
differences between field and observed data at specific
measurement years were appreciable and reflected a
substantial overestimate by NLCD (Fig. 4). The excep-
tions included seeded areas of the Indian Springs and
Jungo fires, where field data better matched NLCD
cover estimates (sees asterisk symbols in Fig. 4).

Comparison between spatially extensive field data and
NLCD data
Estimates of sagebrush cover made by NLCD and in the
field were positively related (P = 0.0004), although there
was a high level of unexplained variation in the relation-
ship (R2 = 0.15) and a relatively large y-intercept (6.5%
cover) revealed a tendency for sagebrush cover to appear
appreciably abundant in NLCD estimates in areas for
which field data revealed no sagebrush cover (Fig. 5).
Seeding treatment and time since fire can sometimes
strongly affect the abundance of sagebrush (e.g., Ger-
mino et al. 2018), and we asked if the relationships
would differ between NLCD and field estimates for these
different spatial and temporal windows, but there was
no such variation in the relationship (Table 2). We ex-
pected that there would be lower-accuracy sagebrush de-
tection primarily in the initial years after fire because
dispersed small seedlings would likely not be spectrally
detected in a 30 m pixel. However, NLCD also overesti-
mated sagebrush cover compared with field estimates in
later years after fire. After the detection threshold of
four to six years post fire, NLCD estimates of sagebrush

Fig. 3 Proportion of pixels containing sagebrush according to the National Land Cover Database (NLCD; black line) and corresponding F-statistic
from the Chow test that indicates how the temporal trend before each post-fire year differs from the temporal tread after the year (blue line).
The red line shows the significance level for the Chow F-statistic; F-statistic values greater than the red line are significant. The maximum F-
statistic values in each panel indicate the year when the most change has occurred from before compared to after the year, and thus generally
correspond with inflections between the initial post-fire increase in sagebrush followed by a period of stabilization, having little or no directional
change in sagebrush from year to year. Values at <0 years since fire are pre-fire conditions. Each panel shows a different fire and treatment
(seeded or unseeded) for the areas burned in sagebrush steppe of the Great Basin, USA, that had sagebrush presence and cover measured at
least once between 2011 and 2018
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cover ranged from 3 to 13% in years with corresponding
field estimates (Fig. 4) while field estimates ranged from
0 to 7% (Fig. 5).
The 6.5% overestimation of NLCD sagebrush cover

compared to field data is on one hand contrary to the
expectation that underestimation and lack of detection
would be more likely in remotely sensed estimates of a
scarce shrub. On the other hand, the 6.5% difference is
within a similar range of error reported by other readily
available rangeland remote sensing products, such as the
Rangeland Analysis Platform, which reportedly had a
mean absolute error of 6.9% overall (Jones et al. 2018).
The correlation we found between NLCD and field esti-
mates of sagebrush cover was greater than the
correlation R2 of 0.03 found by Parsons et al. (2020) in
South Dakota on unburned areas. The South Dakota
analysis was conducted in a landscape where the growth
habitat of short-stature sagebrush individuals was inter-
spersed with dense grass, atypical of the sagebrush
biome as a whole, although likely more analogous to our
post-fire study systems than “typical” intact sagebrush
stands. The scale of our field data (three 50 m transects

radiating out from a common origin) was larger than the
30 m pixel size of the NLCD data. Typically, accuracy
assessments on remote sensing products rely on ground-
truthing data that align exactly with imagery pixel scales,
but the ground-truthing accuracy data may differ in plot
size and measurement method from those used by man-
agers for monitoring land treatment effects. As land
managers increasingly use remote sensing products,
there is a critical question about whether and how
these products are comparable to regularly used field
monitoring techniques, such as the AIM protocol
(Herrick et al. 2005).

Minimum NLCD detection level for spatially intensive
field data
There was no evidence of a minimum detectable percent
sagebrush cover in the field that would be a detection
threshold for the NLCD data. The category of sagebrush
cover for each sampled pixel on the Soda Fire burn area
estimated by NLCD was greater than the corresponding
field data in both 2016 (Cohen’s kappa = −0.02, P = 0.2)
and 2018 (Cohen’s kappa = −0.002, P = 0.7; Table 3). A

Fig. 4 Average percent sagebrush cover (%) according to the National Land Cover Database (NLCD; black line) and corresponding F-statistic from
the Chow test that indicates how the temporal trend before each post-fire year differs from the temporal tread after the year (blue line). The red
line shows the significance level for the Chow F-statistic; F-statistic values greater than the red line are significant. The maximum F-statistic values
in each panel indicate the year when the most change has occurred from before compared to after the year, and thus generally correspond with
inflections between the initial post-fire increase in sagebrush followed by a period of stabilization, having little or no directional change in
sagebrush from year to year. Field data (when available) is shown with asterisks (*) at the years in which monitoring was done and is given as an
average of the monitoring cover. Values at <0 years since fire are pre-fire conditions. Each panel shows a different fire and treatment (seeded or
unseeded) for the areas burned in sagebrush steppe of the Great Basin, USA, that had sagebrush presence and cover measured at least once
between 2011 and 2018

Applestein and Germino Fire Ecology            (2021) 17:5 Page 8 of 11



negative Cohen’s kappa indicates disagreement between
the two data sources. Sagebrush cover estimated by
NLCD tended to be one or two categories greater than
field-based measurements (Table 3). The NLCD tended
to have commission errors rather than omission errors.
In 2016, the NLCD cover data misclassified sagebrush

absences (0% cover) as presences (>0% sagebrush cover)
four times more often than it correctly classified ab-
sences and in 2018, misclassification of absences was 20
times more frequent than correct absence classifications
(Table 3). Out of 731 plots where sagebrush was de-
tected in the field in 2016, only 93 incorrect omissions

Fig. 5 Linear regression of sagebrush cover estimated in the field (abscissa) and the National Land Cover Database (NLCD; ordinate) in the
spatially extensive dataset (Fig. 1) for the burned areas in sagebrush steppe of the Great Basin, USA, that had sagebrush presence and cover
measured at least once between 2011 and 2018. The blue line and equation show the least-squares regression fit, with 95% confidence intervals
in gray. For comparison, the red line depicts perfect agreement between estimates (which was not observed)

Table 2 Coefficient values for a linear regression considering the effects of treatment (burned+seeded, burned+unseeded,
unburned+unseeded) and time since fire on the difference in sagebrush cover in sagebrush steppe of the Great Basin, USA,
between 2011 and 2018, that was estimated by the remotely sensed NLCD (National Land Cover Database) model compared to
benchmark field data.The intercept is given as the coefficient estimate for burned+seeded. Tukey’s post-hoc contrasts between
different treatment types are given below the regression coefficients. SE standard error

Estimate SE t-value P-value

Linear regression coefficients

Intercept 2.8553 1.7306 1.65 0.103

Burned+unseeded 2.1752 1.7079 1.274 0.207

Unburned+unseeded 2.2871 1.633 1.401 0.165

Time since fire 0.1185 0.102 1.162 0.249

Tukey’s contrasts

Burned+seeded versus burned+unseeded −2.175 1.71 −1.274 0.4144

Burned+seeded versus unburned+unseeded −2.287 1.63 −1.401 0.3457

Burned+unseeded versus unburned+unseeded −0.112 2.19 −0.051 0.9986
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were found in the NLCD data. Out of 802 plots where
sagebrush was detected in the field in 2018, only 24
incorrect omissions were found in the NLCD data
(Table 3).
The high commission error indicates that regeneration

of non-sagebrush vegetation may be incorrectly detected
and classified as sagebrush cover at the aggregated plot
scale by the NLCD data, particularly because commis-
sion error sharply increased between 2016 and 2018 as
post-fire regeneration of all vegetative cover increased.
Other shrubs were not a dominant functional group
during this time range, but perennial grass cover did in-
crease in many plots throughout the three-year period.
Obtaining very low or high cover values in remote sens-
ing products, especially those produced using regression
trees, is difficult because of noise and the tendency of re-
gression toward the mean. Accordingly, 0% sagebrush
cover measured in the plots is likely to be mapped as 1
to 10% cover in the NLCD pixels. A large number of our
Soda Fire plots had sagebrush cover between 0 and 1%
for all three years post fire, which points to this temporal
window being a difficult time period in which to classify
sagebrush cover.

Conclusion
As wildfires increase in size every year across the vast
domain of sagebrush steppe, there is a growing manage-
ment need for spatially extensive data that can inform
post-fire vegetative recovery. Remote sensing products
such as the NLCD fractional component dataset offer
one potential source of data that could be used to assess
sagebrush recovery and treatment effectiveness. Similar
to other comparisons between field data and remote
sensing data, this study shows evidence of a “false

moderating effect” (Rigge et al. 2020), for which very low
abundances are overpredicted and high abundances are
underpredicted. Very low sagebrush abundances are
common in early years post fire. This study shows that
current NLCD sagebrush cover data may yield somewhat
different results than typical ground-survey field data
used for post-fire monitoring. Comparisons of entire
polygons containing many pixels may yield a different
level of agreement; however, field data are rarely sam-
pled adequately enough to enable such a comparison.
Our results show that, while further improvement of
post-fire remote sensing products is warranted, NLCD
sagebrush cover data do detect the influence of burns,
but data tend to show faster rates of recovery relative to
field observations. It should be noted that NLCD Back-
in-Time data include cover components for other
functional groups, including annual herbaceous cover,
and future research should examine the initial post-fire
recovery patterns of these components. Finer resolution
remote-sensing data, including LiDAR-derived estimates,
have shown promise for higher accuracy characterization
of small-scale sagebrush biomass and cover, although
underestimation is likely (Mitchell et al. 2011). Contin-
ued large-scale field monitoring efforts are warranted to
obtain this initial post-fire sagebrush cover data to track
recovery trajectories.
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>5 1 5 4 0 10

Total plots (n) 232 796 420 6 1454

2018 0 26 94 297 139 556

>0 to 1 23 96 441 210 770

>1 to 5 1 1 15 6 23

>5 0 0 5 4 9

Total plots (n) 50 191 758 359 1358
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