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Abstract

Background: Our study was designed to reveal a detailed forest fire history at Catoctin Mountain Park, Maryland,
USA. We compared the ages of living trees to known fire dates in the dendrochronological record. Seasonality and
years of fires in the dendrochronological record were juxtaposed with specific dates of fires recorded in
newspapers.

Results: Twenty-seven pines (Pinus L.) captured 122 fire scars representing 58 distinct fire years between 1702 and
1951. Climate was significantly hotter and drier in the years of burns that affected at least two trees and was wetter
two years prior. Thirty-three fires described in local newspapers were reported largely in the spring and fall months
(68% between March and June, 32% between September and December). Ninety-one percent of fire scars in our
tree-ring chronology had dormant seasonality. The mean fire interval was 547 + 10.14 (SD; standard deviation) yr,
and the Weibull median fire interval was 3.22 yr during the entire chronology. The longest fire-free interval was
from 1952 to 2018,

The size structure of living trees was biased toward smaller black gums (Nyssa sylvatica Marshall) and oaks (Quercus L.)
that recruited in the 1930s and 1940s. Most living pitch pines (Pinus rigida Mill) recruited between 1890 and 1910, but a
few individuals recruited before the 1850s. Diversity of tree stems smaller than 10 cm diameter at breast height (DBH)
was generally lacking; the youngest tree >10 cm DBH in our study area had recruited by 1967.

Conclusions: The Catoctin Mountains experienced frequent fire during the 1800s and early 1900s. The causes of fires
were diverse, including accidental ignitions and purposeful cultural burning for berry (Vaccinium L) production. The
current forest developed during a period of low deer density and after the demise of the charcoal iron industry ended
an era of logging. The lack of fire since the 1950s has encouraged the development of a black gum dominated mid-
and understory. Management with frequent fire would facilitate pine and oak regeneration.
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Resumen

de 1952 a 2018.

y robles.

Antecedentes: Nuestro trabajo fue disefado para exponer una detallada historia del fuego en el Parque de las
Montafas Catoctin, en Maryland, EEUU. Comparamos las edades de arboles vivos con fechas de fuegos conocidas a
través del registro dendrocronolodgico. La estacionalidad y afios de incendios tomados del registro
dendrocronolédgico fueron yuxtapuestos con datos especificos de incendios registrados por los periddicos locales.

Resultados: Veintisiete pinos (Pinus L.) registraron 122 cicatrices de fuegos, representado 58 afos diferentes de
ocurrencia de incendios desde 1702 hasta 1951. El clima fue significativamente mas calido y seco en los afos de
fuego en que fueron afectados al menos dos arboles, y que su vez los dos afos previos al incendio fueron mas
humedos. Treinta y tres incendios descriptos en diarios locales fueron reportados mayoritariamente durante los
meses de primavera y otofio (68% entre marzo y junio, 32% entre septiembre y diciembre). Noventa y uno por
ciento de las cicatrices de fuego en nuestra cronologia de recuento de anillos tuvieron dormancia estacional. El
intervalo medio entre fuegos fue de 547 + 10,14 afos, (SD; desviacion estandar) y la mediana de Weibull de
intervalo entre fuegos fue de 3,22 afios durante toda la cronologia. El intervalo méas alto de periodos sin fuegos fue

El tamafo de la estructura de los drboles vivos estuvo sesgado hacia pequefos tupelos (Nyssa sylvatica Marshall) y
robles (Quercus L) reclutados entre los afos 1930 y 1940s. La mayoria de los arboles vivos del pino bronco (Pinus
rigida Mill) se reclutaron entre 1890 y 1910, y muy pocos individuos fueron reclutados antes de 1850s. La diversidad
de tallos de arboles menores a 10 cm de didmetro a la altura del pecho (DAP) estuvo generalmente ausente; el
arbol mas joven con DAP >10 cm en nuestra drea de estudio fue reclutado en 1967.

Conclusiones: Las Montafas Catoctin experimentaron fuegos frecuentes durante los afios 1800 y principios de
1900s. Las causas de los incendios fueron diversas, incluyendo igniciones accidentales e intencionales con el
propdsito cultural de promover la produccion de ardndanos (Vaccinium L). El bosque actual se desarrolld durante el
periodo de baja densidad de ciervos y después de que la industria del hierro cesara el uso carbon de lefia, lo que
finalizd con una era de tala de esos bosques. La falta de fuegos desde los afos 1950s ha promovido el desarrollo
del tupelo en el dosel medio y bajo. El manejo con fuegos mas frecuentes podria facilitar la regeneracion de pinos

Abbreviations
CCC: Civilian Conservation Corps
DBH: Diameter at Breast Height
GIS: Global Information Systems
GPS: Global Positioning System
MFI: Mean Fire Interval
NPS: National Park Service
PDSI: Palmer Drought Severity Index
SEA: Superposed Epoch Analysis
WMI: Weibull Median Interval

Background

Fire-adapted ecosystems in the eastern US, such as oak—
pine (Pinus L.—Quercus L.) woodlands and forests, were
much more prevalent in the past when fire was common
across the landscape. The composition of pre-colonial
forests has been reconstructed from witness trees
(Abrams 2003; Thomas-VanGundy and Nowacki 2013;
Thomas-VanGundy et al. 2015; Briand and Folkoff
2019), palynological evidence (Brush 2001; Willard et al.
2003; Ballard et al. 2017; Horn et al. 2019), and archaeo-
logical dendrochronology (Grissino-Mayer et al. 2013; de
Graauw and Hessl 2020), and pyrophilic species (e.g.,
oaks and pines) were common. Direct evidence of fire is

present in sediment cores (Brush 2001; Mitra et al. 2009;
Horn et al. 2019), in soils as charcoal (Kirwan and
Shugart 2000; Hart et al. 2008; Howard 2015), and in
fire-scarred trees (Brose et al. 2014; Lafon et al. 2017;
Stambaugh et al. 2018). Microscopic charcoal in sedi-
ment cores collected from the Chesapeake Bay aligns
with climatically dry periods in the wider watershed
and airshed (Mitra et al. 2009). Although fires have
been uncommon in the Central Appalachian region
since the mid twentieth century because of active fire
suppression, models of climate, fuels, and vegetation
show that the eastern US has been predisposed to-
ward flammability for thousands of years (Guyette
et al. 2012).

Tree-ring research from the Appalachian Mountains
in the eastern US has consistently shown mean fire in-
tervals less than ten years prior to the 1930s (the begin-
ning of the fire suppression era), dormant seasonality,
and reduction or lack of fires by the 1930s to 1950s
(Hessl et al. 2011; Brose et al. 2013; Flatley et al. 2013;
Silver et al. 2013; Aldrich et al. 2014; Marschall et al.
2016; Saladyga 2017 and Stambaugh et al. 2018). All but
the most recent studies were included in regional
reviews by Brose et al. (2014) and Lafon et al. (2017).
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Understanding the historical range of variation in these
factors and processes is an important component of de-
signing fire management plans for ecological restoration
that conserve fire-dependent flora and fauna (Frost
1998; Keane et al. 2009; Beller et al. 2020). Thus, fire his-
tory studies fill a critical need in the management of
Central Appalachian ecosystems.

Although patterns of historical fire are becoming bet-
ter known across the eastern US, few studies have been
conducted in the state of Maryland. Dendrochrono-
logical work on fire history in Maryland so far includes
Shumway et al. (2001) and Dobey et al. (1987). Shumway
et al. (2001) focused on 20 stumps of an old-growth oak
stand in Garrett County that had been logged in 1986.
They found evidence of 42 historical fires ranging from
1616 to 1959, with a Weibull modal fire interval of
7.6 yr. Dobey et al. (1987) dated eight white and pitch
pines (Pinus strobus L. and Pinus rigida Mill, respect-
ively) cut from the same area as our current study on
Catoctin Mountain in Frederick County. In their study,
the fire intervals recorded by the trees ranged from 5 to
49 yr (mean = 21.5 yr), and fires occurred between 1876
and 1936. This study quoted a local resident as saying
that income from berry (Vaccinium L.) picking necessi-
tated customary burning in the area between 1901 and
1935 (Dobey et al. 1987). While the authors referenced
the charcoaling that occurred on the mountain prior to
the twentieth century, a prolonged absence of fire scars
between 1813 and 1876 seemed to indicate that this
practice was not a major driver of fires. We suspected
that a larger sample size would show that the fire inter-
val was actually shorter than the Dobey et al. (1987) re-
sultant mean fire interval (MFI) of 21.5 yr at Catoctin
Mountain and closer to what has been documented in the
Appalachian Mountains.

We focused our study on Catoctin Mountain be-
cause it presented a unique opportunity to study fire
history alongside its cultural context, which Harley
et al. (2018) and Roos et al. (2019) identified as a gap
in knowledge for fire history research. Unlike the re-
mote locations of many other fire history studies in
the Appalachian Mountains (e.g, study area of Shumway
et al. 2001), Catoctin Mountain is located close to major
population centers, allowing for a detailed newspaper
record of fires. Newspaper articles from Frederick,
Hagerstown, Baltimore, and Thurmont revealed the
anthropogenic and landscape contexts of these his-
toric fires, and allowed us to pinpoint exact ignition
dates to compare to dendrochronological seasonality
and historical weather data. We sought to juxtapose
historical descriptions and current forest compos-
ition data to link Catoctin Mountain’s ecology to its
past land use and extrapolate possible futures under
different management regimes.
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Methods

Study area

Our study was conducted at Catoctin Mountain Park, a
national park located west of the town of Thurmont in
Frederick County, Maryland, USA  (longitude:
-77.450255°, latitude: 39.634109°). The study area was
located north of route MD-77, Rocky Ridge Road, be-
tween the visitor’s center to the west and the park office
to the east (Fig. 1). The site was in the Blue Ridge
Province of the Appalachian Mountains. The stratig-
raphy was mapped as the Chilhowee Group-Weverton
and Loudoun Formations, which are primarily light gray
to gray quartzite, metaconglomerate, phyllite, and meta-
graywacke (Whitaker 1955; Brezinski 1992; National
Park Service 2020a). The soils were mapped as Stump-
town-Bagtown-Rock outcrop complex and Bagtown cob-
bly loam (USDA 2020). The mean maximum annual
temperature was 15.9 °C while the minimum was 6.1 °C.
The mean annual precipitation was 124 cm per year and
evenly distributed throughout the year, ranging from
8.1 cm (February) to 12.9 cm (September) (Western
Regional Climate Center 2020). Typical vegetation was
characterized as Central Appalachian Pine—Oak/Heath
Woodland (NatureServe 2021). We consulted primary
and secondary sources to construct a cultural history
timeline for the study site (Additional file 1).

Fire history

We applied a Geographic Information Systems (GIS)
aspect-slope filter to search the most likely locations for
fire-scarred trees, based on a slope of at least 20° and a
southern or western aspect (170 to 300° azimuth). These
criteria highlighted the driest environmental conditions
and often corresponded with locations of pines. Fire
scars were most likely to be found on the uphill sides of
trees or on the underside of fallen logs, where standing
dead trees later fell in the direction of the “catface”
(Yocom Kent and Fulé 2015; Additional file 2).

Once a fire-scarred tree was found, its position was re-
corded using Geographic Positioning System (GPS), then
photographed, identified to species (or genus for long-
dead trees), and measured for diameter at breast height
(DBH). We collected sections approximately 5 to 7 ¢cm
thick or, for living pines, we collected partial pie-slice-
shaped sections of a similar thickness from one side of
the catface (Arno and Sneck 1977). Following Speer
(2012), wood samples were progressively sanded from
P80 to P1200 grit sandpaper so that a clear view of
xylem tracheids and annual ring boundaries could be ex-
amined. We developed a chronology by cross-dating tree
cores collected from 23 live pitch pine trees, which was
then used to fit the deadwood pine samples into the
chronology and determine years and seasons of fire
scars. Cross-dating was accomplished using visual and
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Fig. 1 Location of our fire history study conducted in 2018 at Catoctin Mountain Park in Frederick County, Maryland, USA. Location abbreviations:
DC = Washington, District of Columbia; MD = Maryland; PA = Pennsylvania; VA = Virginia; WV = West Virginia
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statistical methods to ensure accuracy (Bunn 2008, 2010;
Speer 2012; Brewer 2014; R core team 2019).

We calculated mean fire interval (MFI) and Weibull
median interval (WMI) of the study area using all fires,
and again for fires that scarred at least two trees in the
same year using Fire History Analysis and Exploration
System (FHAES; Sutherland et al. 2016). The fire-free
period after the last fire was included as an interval. We
calculated the percentage of fires occurring in each sea-
sonality category over the entire period of record.

We compared dates of fires in the dendrochronological
record with those in the following periodicals: Washington
Post, Baltimore Sun, Catoctin Whig, Catoctin Clarion,
Frederick News-Post, and Hagerstown Herald. The online
search terms we used were: fire, wildfire, and forest fire.
Microfiche archives at local libraries were also searched using
dates from the tree-ring record to guide the search. Fire
events that had a referenced location that referred to
“Catoctin” or the surrounding area in Frederick and
Washington counties in Maryland were used for our analysis.
We also consulted maps from the Library of Congress to
narrow down the time period in which railroads were built
in the Catoctin Mountain area. We analyzed MFI and WMI
of newspaper fire dates in FHAES, using a dormant season
cutoff date of 1 November. If the event occurred on or after
1 November, it was entered for the following year.

We used a two-tailed Welch two sample ¢-test (Welch
1938) and a Superposed Epoch Analysis (SEA) using the
sea function in the burnr package in R (Malevich
et al. 2018) to compare the occurrence of historical fire
scars with the mean Palmer Drought Severity Index
(PDSL; Wells et al. 2004). PDSI data for June through
August of each year was compiled from 1600 to 2005 for
the specific region of Maryland surrounding the study
site (North American Drought Atlas 2019 and Cook
et al. 2010 for the polygon 39.34° N to 39.93° N, 78.93° W
to 77.21° W). We divided PDSI values into two
groups: PDSI values in years in which we found only
one tree scarred, and compared it to PDSI values in
the group of years in which we found more than one
scarred tree in our sample. We confirmed that PDSI
data were normally distributed using Shapiro-Wilks’
test (Razali and Wah 2011) prior to performing the T
test, because normally distributed datasets are an
underlying assumption (Shapiro-Wilks P = 0.67 for
single-tree fire years and P = 0.74 for fire years that
scarred two or more trees).

Current forest composition

Current vegetation at the study area was sampled inside
two sets of nested plots that were positioned using a re-
stricted random technique to be at least 100 m from a
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vegetation boundary. For each plot center, we noted
slope, aspect, and deer impact (scale of 1 to 5, with 5 be-
ing the highest). Trees greater than 10 cm DBH were
sampled within a 500 m?” circular plot. The species,
DBH, canopy class (suppressed, intermediate, codomi-
nant, dominant), and status (living, standing dead, down
dead) were noted. If the tree was not hollow, it was
cored twice from just above the root collar (approxi-
mately 30 cm above the ground surface). Saplings
(smaller than 10 cm DBH but greater than breast height)
were tallied inside of 50 m? circular plots and were not
cored. Ground flora was quantified inside four 1 m?
plots using percent cover classes (<1%, 1 to 5%, 5 to
25%, 25 to 50%, 50 to 75%, 75 to 100%). Tree seedlings
were tallied if they were at least 5 cm tall with at least
two normal-sized leaves, and their regeneration source
(stump sprout, seedling, competitive seedling [root collar
diameter = 1.9 to 2.54 c¢cm]) was recorded (Brose et al.
2008). We recorded leaf-litter depth and duff depth at
12 points across the study area using traditional planar
intercept sampling (Brown 1974).

We characterized the composition and structure of the
present-day tree community using the following:
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absolute density (individuals per hectare), relative density
(percentage of all individuals), absolute basal area (square
meters per hectare), and relative basal area (percentage of
basal area). Abundance of shrubs, herbs, and seedlings
was the mean percent cover of each species. Seedlings per
hectare of each tree species were also calculated. To
facilitate interpretation of forest dynamics, we examined
size structure using DBH data and determined age
structure from cores. Age was estimated within decadal
categories using ring counts.

Results

Fire history

Twenty-seven pine trees with fire scars were sampled
with date coverage from 1652 to 2018. The interseries
correlation of our chronology including both pine cores
and fire-scarred sections was 0.51, and 0.42 when only
fire-scarred samples were used. We identified 122 fire
scars and 13 injuries representing 58 distinct fire years
between 1702 and 1951 (Fig. 2). The mean fire interval
(MFI) was 5.47 + 10.14 (SD) yr, and the Weibull median
fire interval (WMI) was 3.22 yr. The longest fire-free
interval was from 1952 to 2018. One hundred five
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Fig. 2 Diagram of the fire history of Catoctin Mountain Park, Maryland, USA, from 1652 to 2018, created from data collected in our fire history
study in 2018. Each horizontal line represents the years covered by an individual tree sample (three-digit number starting with CAT, given at
right), while vertical tick marks indicate fire years and vertical rectangles indicate injuries. Slanted lines at the beginning or end of a sample
represent missing pith or bark, whereas a vertical line represents intact pith or bark. The composite timeline at the bottom shows the dates of
fires that scared at least two trees in the same year. In the graph at the top, the blue line indicates the sample depth (number of samples that
cover any given year), while the vertical black lines represent the percentage of our samples that were scarred in that year
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(95.5%) fire scars were dormant-season scars. Twenty-
three of the 58 fire years were recorded by scars on at
least two trees. These fires with potentially greater ex-
tent ranged from 1819 to 1951, had a MFI of 8.70 +
13.47 (SD) yr, and WMI of 5.95 yr (Fig. 2, see compos-
ite). Fire years that were recorded on four or more trees
were 1829, 1838, 1849, 1853, 1865, 1872, 1923, and
1936.

At least 134 fires were documented in newspapers be-
tween 1837 and 1960, 33 of which were near or specific-
ally on Catoctin Mountain. The MFI of these 33 fires
was 5.27 + 1146 (SD) yr and the WMI was 2.84 yr.
Sixteen of the 33 also appeared in our tree-ring record
(Table 1). The number of days without rain preceding
these 16 fires ranged from six to 30 days with a mean of
11.6 days (Midwestern Regional Climate Center 2020;
National Oceanic and Atmospheric Administration
2020). Seventy-five percent of these fires scarred more
than one tree, and several newspaper reporters described
prolonged drought conditions. See Additional file 3 for
example newspaper articles describing fires on Catoctin
Mountain.

Years in which fires scarred multiple trees had a mean
PDSI 1.15 units lower compared to years with only one
fire-scarred tree (Welch two sample T-test P = 0.008
with ¢ = 2.78 and df = 46.6; Fig. 3A). Fire years with
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multiple scars were also 1.05 units hotter and drier than
the average year according to SEA (P < 0.001; Fig. 3B).
In addition, the year two years prior was 0.86 units wet-
ter than average (P = 0.009).

Current forest composition

We measured 82 trees greater than 10 cm DBH and four
saplings, representing seven tree species: black gum
(Nyssa sylvatica Marshall; 50% of stems), chestnut oak
(Quercus montana Willd.; 34% of stems), scarlet oak
(Quercus coccinea Minchh.; 8% of stems), pitch pine
(Pinus rigida Mill; 3% of stems), black oak (Quercus
velutina Lam.; 2% of stems), sassafras (Sassafras albidum
[Nutt.] Nees; 1% of stems), and American beech (Fagus
grandifolia Ehrh.; 1% of stems). The three oak species
together accounted for 76% (26.5 m? ha™') of the basal
area. While numerically abundant, small-diameter black
gum only accounted for 14% (5 m* ha™') of the basal
area. Pitch pine accounted for only 9% (3.2 m*> ha™) of
the basal area. Ericaceous shrubs included Blue Ridge
blueberries (Vaccinium pallidum Aiton), mountain
laurel (Kalmia latifolia 1.), and black huckleberry
(Gaylussacia baccata [Wangenh.] K. Koch), all at or
below 5 to 25% cover on the landscape. Leaf-litter depth
in July 2016 ranged from 5 to 10 cm, while duff depth
ranged from 2.54 to 12.7 cm. Deer impact in the study

Table 1 Historical newspaper articles reporting fires from the same years as the tree-ring record near or on Catoctin Mountain,
Maryland, USA, from 1845 to 1942, used in our fire history study in 2018. Date reported is the date that newspapers recorded as the
wildfire ignition date, not the date of the article. Fire scar seasonality by tree-ring follows Speer (2012). Days since wetting rain is the
number of days without >0.254 cm of rain. Cause of fire recorded as “incendiary” in the newspapers refer to human causation

Date reported Fire scar seasonality by tree-rings Reporting newspaper name Days since wetting rain  Cause of fire

16 Apr 1845 Dormant Catoctin Whig 10 None given
13 May 1857 Undetermined Hagerstown Herald 9 None given
11 May 1872 Dormant The Catoctin Clarion 10 Charcoal pits and incendiary
12 May 1879 Dormant Hagerstown Herald 14 None given
20 May 1885 Dormant The Washington Post 24 None given
8 May 1888 Dormant The Washington Post, 7 Incendiary
The Catoctin Clarion
12 May 1891 Dormant The Baltimore Sun 9 None given
11 May 1899 Dormant The Catoctin Clarion 5 Incendiary or locomotive spark
15 Nov 1901 Dormant The Washington Post 30 None given
15 Dec 1913 Dormant The Frederick Post 8 None given
17 Nov 1917 Dormant The Frederick Post 18 None given
23 Apr 1923 Dormant The Baltimore Sun, 9 Incendiary
The Frederick Post
9 Sep 1930 Dormant The Frederick Post 13 Incendiary
20 Apr 1936 Early earlywood and dormant The Frederick Post 8 Huckleberry pickers
13 Nov 1939 Dormant The Morming Herald' 6 Incendiary
17 Apr 1942 Dormant The News’ 6 None given

'Published in Hagerstown, Maryland
2Published in Frederick, Maryland
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Fig. 3 Graph of relationship of historical fires (1702 to 1951) to
drought at Catoctin Mountain Park, Maryland, USA, created from
data collected in our fire history study in 2018. (A) Welch two
sample t-test was used to compare mean Palmer Drought Severity
Index (PDSI) between fire years that scarred one tree and those that
scarred two or more trees. The box represents the 75th and 25th
percentile around the median PDSI, whereas the vertical whisker
represents 1.5 times the interquartile range. Dots are data points
that are outliers. (B) Superposed Epoch Analysis of PDSI across all
fire years represented by two or more fire-scarred trees. Bars above
the center line indicate wetter and cooler than average conditions,
whereas bars below the center line indicate hotter and drier
conditions than average. The floating lines above and below the
mean represent the 95% (dashed) and 99% (solid) confidence levels.
The numbers on the x-axis represent the time lag before (—) and
after (+) a fire year (0)

area was estimated to be high, with an intensity of 4 on
a scale of 5. Photographs of the study sites are available
in Additional file 4.

Age structure of the 82 trees 210 cm DBH showed
that the current forest was established between 1880 and
1930, but there was no significant linear relationship
(R? = 0.046 and P = 1) between a tree’s age and its
DBH. Oaks that we estimated were established in the 1920s
and 30s spanned the entire range between 13 and 40 cm
DBH. We sampled eight living pines that we estimated
were established between 1880 and 1930. Three larger,
older pine individuals located outside of the study plots
were recruited to the site before the 1880s. Beginning in
1920, the main cohort of black gums and oaks that make
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up the majority of trees in the current forest reached 30 cm
tall (coring height; Fig. 4). There was no tree recruitment
inside our study area after the 1960s.

Discussion

Historical role of fire

Frequent fire was a part of the ecology of Catoctin
Mountain for at least several hundred years, likely for
millennia, due to lightning and Native American stew-
ardship of the area (Tyndall 1992; Brown 2000; Stewart
et al. 2002; Huffman 2013). Charcoal inputs to Chesa-
peake Bay sediments during four dry periods over the
last 1000 years provide a long record of fire in the region
(Brush 2001; Mitra et al. 2009). Beginning in the eight-
eenth century, some fires may have been set by European
immigrants using fire to clear woods for agriculture (Rush
2005). An agricultural practice called swidden cultivation
was employed by German and Scandinavian immigrants
of the time, in which fire was used to clear land for grain
crops and to encourage growth of resprouting tree species
for coppicing (Sigaut 1979).

We developed an interpretive timeline that synthesized
evidence of forest dynamics during the European
colonization, industrialization, and fire suppression pe-
riods (Fig. 5). We focus our discussion on the xeric
south and west facing slopes of Catoctin Mountain
based on our historical investigation, dendrochrono-
logical reconstruction, and age structure analysis.

Prior to 1900, the charcoal-iron furnace industry (pic-
tured in Additional file 5) promoted oak-sprout regener-
ation with a short rotation of cutting that coincided with
frequent fires (Figs. 2, 5A). By the 1930s and 1940s,
industrial use of the forest had stopped and firing for blue-
berry and huckleberry (Gaylussacia baccata [Wangenh.]
K. Koch) production was prohibited, leading to the estab-
lishment of the current cohort of trees (Fig. 5B). Oaks,
having competitive saplings with already-established root
systems (Brose et al. 2008), outgrew the black gums, sup-
pressing them. The canopy was likely closed by the 1960s
as no further recruitment occurred after this time (Figs. 4,
5C). Between the 1960s and present day, shade and deer
changed forest dynamics, leading to a less diverse
understory (Fig. 5D). For a detailed discussion of historical
ignition sources during these time periods, please consult
Additional file 1.

More than 95% of fire scars we recorded occurred dur-
ing the dormant season. November and December fires
reported in newspapers appeared as dormant-season
fires at the beginning of the following year in our fire-
scar record. When the newspaper dates and dendro-
chronological records of fire were combined, we found
that fires in the spring as late as 20 May can appear in
the tree-ring record as dormant, but an earlywood fire
can be recorded as early as 20 April at Catoctin
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Mountain (Table 1). This variability in the timing of the
dormant to earlywood transition could be due to varia-
tions in weather patterns year to year or collections of
samples from different elevations. The dates of fires
from newspaper articles compared to seasonality of fires
recorded in tree-rings highlight the need for further in-
vestigation on timing of fires in the Appalachian

Mountains, similar to recent research in Coastal Plain
pine savannas (Rother et al. 2018).

Both a t-test and Superposed Epoch Analysis (SEA)
confirmed a significant effect of drought on tree scarring
and fire occurrence, respectively (Figs. 3a, b). One im-
portant caveat is that the PDSI values used were the re-
constructed summer (June to August) averages and,
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while some fires did occur in those months, the majority
of fires in our study area took place during the spring
and fall. Fires at the site could have occurred during
discrete dry periods embedded in an otherwise wet year,
weakening the correlation of fires scarring one tree to
yearly PDSI. This was the case with at least some fires,
as the average number of days without wetting rain
(minimum 0.254 c¢m) for the 16 fires recorded in both
our study and in local newspapers was 11.6 days, but
varied from six to 30 days (Table 1). There was a strong
linear relationship between the number of consecutive
dry days and the probability of ignition in the Ridge and
Valley Province in West Virginia and Virginia, USA,
from 1970 to 2001 (Lafon et al. 2017). Our SEA analysis
also showed that wet, cool years with a PDSI higher than
average occurred two years prior to fire events. A similar
trend was found in the American Southwest in an oak—
pine system by Guiterman et al. (2015) and by Whitehair
et al. (2018) on Navajo territory. The most likely mech-
anism is that an increased growth of fine fuels, such as
grasses, facilitated fire spread during subsequent dry
periods.

More fires probably occurred at Catoctin Mountain
than we found, as we discovered many more newspaper
accounts for additional fire dates. One likely explanation
is that sample size can affect the calculation of fire interval
(Aldrich et al. 2014; Lafon et al. 2017) because a shallow
sample depth risks underreporting fire occurrence
(Hutchinson et al. 2019). For example, we found many
more fire dates than did Dobey et al. (1987), whose study
dated eight fire-scarred trees. However the eighteenth
century was represented by only five logs and stumps in
our study, and we found long fire-free intervals during this
period. These longer intervals may be a result of the his-
torical depopulation of native peoples by disease and vio-
lence (as noted in northern Pennsylvania, USA, by Brose
et al. 2013), or they are a sampling artifact. The oldest evi-
dence had to survive the conflagrations and charcoal kilns
of the nineteenth century as well as multitudes of carpen-
ter ants (Camponotus pennsylvanicus De Geer, 1773), ter-
mites (Reticulitermes flavipes Kollar, 1837), and fungi to
become part of our chronology. Thus, the fires we re-
corded at this time represent the minimum number of
fires that could have occurred.

Our fire history shows that fire suppression had been
very effective over the last 70 years. Catoctin Mountain
Park was established as a Recreational Demonstration
Area in 1936, which was a major fire year for the area as
noted by the Frederick Post (Table 1). In this year alone,
four sampled trees in our study as well as one of the
eight trees in the study by Dobey et al. (1987) were
scarred. In 1936 the Civilian Conservation Corps (CCC)
set up a camp and began transforming the landscape by
planting trees and building Park infrastructure; the
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Frederick Post notes that the CCC helped extinguish
multiple blazes that year. By the time the area became
controlled by the National Park Service (NPS) in 1954,
the last fire in our study area had already occurred in
1951. Records at NPS offices show that a few small wild-
fires (<1 ha) burned elsewhere in the Park after 1951,
but no evidence of these wildfires was found in our
study area. A 1941 photo of the visitor’s center and our
sampled hillside is available in Additional file 6.

Consequences for forest dynamics

A lack of fire has been cited as a key factor leading to
transformation from an open, xeric, fire-adapted plant
community into a closed, more shade-tolerant commu-
nity that is resistant to future fires (Abrams 1992; Drury
and Runkle 2006; Nowacki and Abrams 2008; Hanberry
and Abrams 2019; Hanberry et al. 2020). No oak or pine
saplings were found in our nested plots, but also none of
the oak trees larger than 10 cm DBH were recruited to
coring height after the 1960s in the 1000 m” area that
we sampled. While we recognize that this sampled area
was small, it was centrally located among the fire-
scarred pines; thus, all trees were subjected to the spe-
cific fire history we reconstructed.

A combination of environmental factors may be pre-
venting a new generation of oak and pine trees from be-
coming established in our study area. Shade as well as the
8 to 23 cm of leaf litter and duff has probably kept pines
from regenerating for over a century (Burns and Honkala
1990). However, a low-density oak—pine canopy should
not prevent germination of acorns, the transition of seed-
lings into saplings, or the recruitment of saplings into the
>10 cm DBH class. An alternate explanation is white-
tailed deer (Odocoileus virginianus Zimmerman, 1780)
herbivory. When the Park was established in 1936, deer
populations were likely either at extremely low numbers
or non-existent (National Park Service 2007). This time
period correlates with the highest oak regeneration (Fig. 4).
After that time, hunting was prohibited. We found fre-
quent evidence of deer, including scat, tracks, deer trails,
and browsed vegetation. Deer eat leaves, young twigs,
sprouts, seedlings, and acorns, as well as rub the velvet off
their antlers on saplings, causing stem injury. Oaks and
black gums are preferred and nutritious food plants for
deer (Rawinski 2014), but recent research has also found
no relationship between deer densities and tree stocking
(Hanberry and Abrams 2019).

Black gum is a shade-tolerant semi-mesophyte
(Abrams 2007; Vose and Elliott 2016) tree that could fa-
cilitate a transition into a more mesic state. Black gum
can survive in wet habitats and has leaves that lie flat
and may collect moisture similar to those of red maple
(Acer rubrum L.), a classic mesophytic species (Vose and
Elliott 2016; Kreye et al. 2018). Smaller black gums were
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suppressed and of similar age to the larger oaks (Fig. 4).
Oaks most likely grew more quickly than black gums,
shading them enough to stunt their growth but not kill
them. Although black gums are resprouters, they are
classified as shade tolerant, and existing midstory indi-
viduals can recruit into the canopy following disturbance
(Burns and Honkala 1990; Abrams 2007). A future can-
opy disturbance, such as an ice storm or gypsy moth
(Lymantria dispar Linnaeus, 1758) outbreak, could ac-
celerate a transition in forest composition to shade-
tolerant species (Abrams and Nowacki 1992). There are
few or no competitive oak seedlings available at this
study site to replenish the oak canopy or compete with
black gum saplings (Brose et al. 2008; Fig. 5E). Although
oak regeneration was documented in the absence of re-
cent fires by Heeter et al. (2019) on Dan’s Mountain in
western Maryland, their ridgeline study site was more
environmentally extreme than Catoctin Mountain. How-
ever, Heeter et al. (2019) also found a lack of Table
Mountain pine (Pinus pungens Lamb.) and pitch pine re-
generation after 1975 and suggested that this trend
would continue without fire management.

Nowacki and Abrams (2008) suggested a mix of fire
and silviculture to address the challenges posed by
mesophication in oak forests. A review of the oak—fire
literature by Brose et al. (2014) showed that a single
burn alone was usually unsuccessful in regenerating oaks
in the eastern US. Management must create environ-
mental conditions favorable for seedling establishment,
and light at the forest floor is important for the develop-
ment of healthy resilient oak sprouts that can compete
with mesic hardwoods and secure gaps when they ap-
pear overhead (Brose et al. 2014). At our study site,
these conditions were met historically by the distur-
bances created by the charcoal-iron industry and blue-
berry cultivation until the 1930s (see Additional file 1).
Thinning can be used in conjunction with fire to reduce
basal area to prioritize oak regeneration (eg,
shelterwood-burn technique of Brose et al. 1999).
Alternatively, fire alone can create gaps of varying size
due to its heterogeneous severity on the landscape, par-
ticularly when repeated three to five times within ten to
15 years (Hutchinson et al. 2012; Lorber et al. 2018).
That fire interval is comparable to what occurred during
the charcoal-iron period at Catoctin Mountain, but a
longer interval (7 to 8 yr WMI, up to 19 yr, documented
by Shumway et al. 2001 on Savage Mountain) facilitated
the persistence of established oak forest for hundreds of
years in western Maryland. Vose and Elliott (2016)
highlighted the need for future research on the effects of
fire management in relation to a changing climate, as in-
teractions among drought, fire, invasive species, and
other factors may create novel ecosystems with no his-
torical analog.
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Conclusions

Our dendrochronological study demonstrated that fire
was a key historical ecological factor on Catoctin Mountain
in western Maryland from at least 1702 through 1951, with
MFI and seasonality comparable to fires in the wider
Central Appalachian region (Brose et al. 2014; Lafon et al.
2017). Anthropogenic causes of historical fires included ac-
cidental and intentional ignition sources associated with
blueberry production, agriculture, and the charcoal-iron in-
dustry. Extensive fires that scarred multiple trees were spe-
cifically tied to droughts and were often preceded by wet
years. Newspapers provided a seasonal resolution and first
person accounts not normally available in fire history stud-
ies. Reintroducing fire and controlling deer herbivory at
Catoctin Mountain could create open structure and vertical
heterogeneity, establish a new cohort of oak and pine sap-
lings in the understory, and rejuvenate the shrub and herb
layer (Fig. 5F). Developing a long-term fire management
strategy could also help reverse the loss of herbaceous di-
versity and rare species that typically occurs in fire-
suppressed oak—pine ecosystems (Frost 1998; Rooney et al.
2004; Howard 2015; Hanberry et al. 2020; Vander Yacht
et al. 2020).
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Additional file 1. Material used in the construction of our interpretive timeline
(Fig. 5) created from data from our fire history study on Catoctin Mountain,
Maryland, USA, in 2018. It also contains additional historical and cultural context
for the events recorded in the main section of the article (references not cited
in the article main text but cited in Additional file 1 are: Bedell et al. 2011a;
Bedell et al. 2011b; Clarkson 1964; Contract Archaeology, Inc. 1971; Coville 1910;
Duchesne & Wetzel 2004; Geasey & Ballweber 1991; Hoefs & Shay 1981; Library
Of Congress 2020; Maryland Historical Trust 2018; Maryland State Archives 2019;
Mash 1996; National Heritage Corporation 1975; National Park Service 2018;
National Park Service 2020b; Rountree & Davidson 1997; Stewart 1987; Stewart
1989; Wehrle 2000; Williams & McKinsey 1910).

Additional file 2. “Catface” of a scarred, living pitch pine (Pinus rigida
Mill.), found on Catoctin Mountain, Maryland, USA, in 2018, depicting at
least seven nested fire scars. This tree was inside our fire history study
area but not destructively sampled by request of the National Park
Service. Photo credit: L. Howard.

Additional file 3. Labeled partial cross-section of a Table Mountain pine
(Pinus pungens Lamb.; sample number CAT050) collected in 2018 from
Catoctin Mountain Park, Maryland, USA, during our fire history study.
Example corresponding newspaper accounts of droughts and fires from
the Baltimore Sun are matched up with narrow tree-rings and fire scars
on the sample. Seasonality of fire scars: e = earlywood injury; D =
dormant season fire scar. Photo credit for cross-section: G. Cahalan.

Additional file 4. Representative photographs of the chestnut oak
(Quercus montana Willd.) forest with black gum (Nyssa sylvatica Marshall)
midstory at our fire history study sites at Catoctin Mountain Park,
Maryland, USA, in 2016. The forest had not burned since 1951, leading to
(R) a closed forest canopy with (B) a shaded understory with little plant
diversity. Mountain laurels (Kalmia latifolia L) over 3 m tall and sparse
blueberry (Vaccinium L) and black huckleberry (Gaylussacia baccata
[Wangenh.] K. Koch) speak to the long-term absence of fire at the site.
Note the deer trail leading through the middle of (€) and the absence of
tree seedlings and saplings in (B) and (C). Photo credits: L. Howard.
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Additional file 5. Nineteenth century photograph of the Catoctin Iron
Furnace complex, Thurmont, Maryland, USA. Charcoal from our fire
history study area would have been used to feed the furnaces to smelt
pig iron from raw ore. Photo credit: Maryland Department of Natural
Resources.

Additional file 6. Catoctin Mountain Park visitor's center, Maryland, USA,
circa 1941. The hillside in the background is the hillside that we sampled
for fire history and current vegetation in 2018. Notice the young oak

canopy with pines emerging above it. Photo credit: National Park Service.
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