
http://crossmark.crossref.org/dialog/?doi=10.1186/s42408-021-00097-1&domain=pdf
http://orcid.org/0000-0003-0006-1922
http://creativecommons.org/licenses/by/4.0/
mailto:dhagan@clemson.edu














Fig. 4 A dendrogram of clustered plots (n = 120) derived from the agglomerative hierarchical cluster analysis (AHCA) for trees shows five distinct
clusters (labeled 1 through 5) in response to treatments (control = C, burned four times = B, mechanical removal two times of stems
<10 cm dbh = M, and combination of M and B = MB). Data from 2016 were used in this study (2001 to 2016) of plant community
change in response to fuel treatments in Green River Game Land, North Carolina, USA. A Bray-Curtis approach was used as the distance metric and a
flexible beta linkage was used as the fusion strategy to determine the appropriate number of clusters. The cluster number was determined from fusion
height, a visualization method that shows natural breaks in the data, indicating the highest number of plot similarities. Each line on the dendrogram is
denoted by orange (burned four times; B), black (control; C), purple (mechanical treatment two times; M), and blue (mechanical treatment two times
plus burned four times; MB) dots that indicate which treatment was applied to that plot. Cluster 1 had 11 plots in B, six in C, two in M, and 15 in MB,
categorizing it as having a different response from C (category 2; Cat. 2). Cluster 2 had 13 plots in B, 15 in C, 16 in M, and 14 in MB,
categorizing it as having a similar response to C (category 1; Cat. 1). Cluster 3 had six plots in B, one in C, one in M, and 0 in MB, falling
under category 2. Cluster 4 had zero plots in B, seven in C, ten in M, and zero in MB, falling under category 2. Cluster 5 had zero plots
in B, one in C, one in M, and one in MB, falling under category 1. The horizontal axis at the bottom of the dendrogram represents the
distance or dissimilarity between clusters
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Fig. 5 A dendrogram of clustered plots (n = 120) derived from the agglomerative hierarchical cluster analysis (AHCA) for shrubs shows four
distinct clusters (labeled 1 through 4) in response to treatments (control = C, burned four times = B, mechanical removal two times of stems <10 cm
dbh = M, and combination of M and B = MB). Data from 2016 were used in this study (2001 to 2016) of plant community change in response to fuel
treatments in Green River Game Land, North Carolina, USA. A Bray-Curtis approach was used as the distance metric and a flexible beta linkage was
used as the fusion strategy to determine the appropriate number of clusters. The cluster number was determined from fusion height, a visualization
method that shows natural breaks in the data, indicating the highest number of plot similarities. Each line on the dendrogram is denoted by orange
(burned four times; B), black (control; C), purple (mechanical treatment two times; M), and blue (mechanical treatment two times plus burned four
times; MB) dots that indicate which treatment was applied to that plot. Cluster 1 had six plots in B, three in C, one in M, and seven in MB, categorizing
it as having a different response from C (category 2; Cat. 2). Cluster 2 had ten plots in B, six in C, four in M, and nine in MB, falling under category 2.
Cluster 3 had eight plots in B, 15 in C, 23 in M, and nine in MB, falling under category 2. Cluster 4 had six plots in B, six in C, two in M, and five in MB,
categorizing it as having a similar response to C (category 1; Cat. 1). The horizontal axis at the bottom of the dendrogram represents the distance or
dissimilarity between clusters
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Fig. 6 A dendrogram of clustered plots (n = 117) derived from the agglomerative hierarchical cluster analysis (AHCA) for herbaceous vegetation
shows five distinct clusters (labeled 1 through 5) in response to treatments (control = C, burned four times = B, mechanical removal two times of
stems <10 cm dbh = M, and combination of M and B = MB). Data from 2016 were used in this study (2001 to 2016) of plant community change
in response to fuel treatments in Green River Game Land, North Carolina, USA. A Bray-Curtis approach was used as the distance metric and a
flexible beta linkage was used as the fusion strategy to determine the appropriate number of clusters. The cluster number was determined from
fusion height, a visualization method that shows natural breaks in the data, indicating the highest number of plot similarities. Each line on the
dendrogram is denoted by orange (burned four times; B), black (control; C), purple (mechanical treatment two times; M), and blue (mechanical
treatment two times plus burned four times; MB) dots that indicate which treatment was applied to that plot. Cluster 1 had nine plots in B, 14 in
C, 12 in M, and zero in MB, categorizing it as having a different response from C (category 2; Cat. 2). Cluster 2 had eight plots in B, zero in C, zero
in M, and 20 in MB, falling under category 2. Cluster 3 had one plot in B, six in C, four in M, and one in MB, falling under category 2. Cluster 4
had five plots in B, five in C, five in M, and two in MB, categorizing it as having a similar response to C (category 1; Cat. 1). Cluster 5 had seven
plots in B, three in C, eight in M, and seven in MB, falling under category 1. The horizontal axis at the bottom of the dendrogram represents the
distance or dissimilarity between clusters
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Table 1 Site specificity, fidelity, relative indicator value (IVrel; specificity × fidelity), abundance (stems ha−1 or percent cover), and the
maximum indicator value (IVmax) results from the indicator species analyses (ISA) on understory tree, shrub, and herbaceous species
in our study (2001 to 2016) of plant community change in response to fuel treatments in Green River Game Land, North Carolina,
USA. These results, based on 2016 data from the study, indicate species compositions in response to repeated treatments
(control = C, burned four times = B, mechanical removal two times of stems <10 cm dbh = M, and combination of M and
B = MB). Asterisks represent the degree of significance (*** = P < 0.001, ** = P < 0.01, * = P < 0.05)

Life form Treatment Species Specificity Fidelity IVrel
Abundance
(stems ha−1) IVmax

Trees B Acer rubrum L. 0.40 1.00 0.40 2376.40 0.63 ***

Liriodendron tulipifera L. 0.39 0.77 0.30 526.43 0.55 **

Amelanchier arborea (F. Michx.) Fernald 0.71 0.33 0.23 413.89 0.49 **

M Pinus strobus L. 0.64 0.20 0.13 116.67 0.36 *

MB Quercus coccinea Muenchh. 0.34 0.97 0.33 1360.43 0.58 ***

Sassafras albidum (Nutt.) Nees 0.38 1.00 0.38 1173.89 0.62 ***

Nyssa sylvatica Marshall 0.40 0.90 0.36 966.98 0.60 ***

Oxydendrum arboreum (L.) DC. 0.49 0.60 0.29 838.89 0.54 **

Diospyros virginiana L. 0.66 0.30 0.20 261.10 0.44 **

Quercus montana Willd. 0.37 0.87 0.32 1709.09 0.56 *

Robinia pseudoacacia L. 0.53 0.30 0.16 245.00 0.40 *

Abundance
(%)

Shrubs M Rhododendron maximum L. 0.84 0.37 0.31 287.27 0.55 ***

Kalmia latifolia L. 0.36 0.87 0.31 780.66 0.56 **

MB Rhus glabra L. 0.81 0.60 0.49 135.44 0.70 ***

Ceanothus americanus L. 0.88 0.27 0.24 39.21 0.49 ***

Lyonia ligustrina (L.) DC. 0.84 0.17 0.14 179.15 0.38 *

Hypericum hypericoides (L.) Crantz 0.56 0.27 0.15 20.88 0.39 *

Abundance
(%)

Herbaceous vegetation C Arundinaria appalachiana Triplett, Weakley & L.G. Clark 0.83 0.23 0.19 111.50 0.44 **

MB Rubus argutus Link 0.67 0.70 0.47 122.93 0.69 ***

Coreopsis major Walter 0.73 0.77 0.56 91.41 0.75 ***

Carex L. sp. 0.48 0.73 0.35 83.50 0.60 ***

Dichanthelium (Hitchc. & Chase) Gould spp. 0.46 0.97 0.45 71.57 0.67 ***

Schizachyrium scoparium (Michx.) Nash 0.68 0.50 0.34 69.86 0.58 ***

Helianthus divaricatus L. 0.98 0.27 0.26 53.50 0.51 ***

Potentilla canadensis L. 0.56 0.53 0.30 47.18 0.55 ***

Lespedeza bicolor Turcz. 1.00 0.20 0.20 37.17 0.45 ***

Solidago L. sp. 0.60 0.33 0.20 70.08 0.45 **

Desmodium nudiflorum (L.) DC. 0.64 0.43 0.28 52.79 0.51 **

Scleria P.J.Bergius sp. 0.55 0.53 0.29 23.50 0.54 **

Conyza canadensis L. 0.70 0.30 0.21 5.46 0.46 **

Erechtites hieraciifolius (L.) Raf. ex DC. 0.73 0.27 0.20 3.00 0.44 **

Piptochaetium avenaceum (L.) Parodi 0.63 0.23 0.14 43.00 0.39 *

Houstonia purpurea L. 0.62 0.43 0.27 30.50 0.46 *

Cassia L. sp. 0.90 0.13 0.12 4.50 0.35 *
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to the effects of M (SC3 = eight plots in B, 15 in C, 23 in
M, and nine in MB).
In the herbaceous species dendrogram, clusters 4 and

5 responded similarly to C (36% of total plots [HPTotal]),
while clusters 1, 2, and 3 responded distinctly to MB, B,
and M treatments (64% HPTotal) (Fig. 6). Cluster 1 (HC1)
responded distinctly to B and M effects (HC1 = nine
plots in B, 14 in C, 12 in M, and zero in MB), cluster 2
(HC2) responded distinctly to MB effects (HC2 = eight
plots in B, zero in C, zero in M, and 20 in MB), and
cluster 3 (HC3) responded similarly to B and MB effects
(HC3 = one plot in B, six in C, four in M, and one in
MB).

Indicator species analysis (ISA)
The ISA for trees identified 11 indicator species total:
three species in B (Acer rubrum, Amelanchier arborea [F.
Michx.] Fernald, and Liriodendron tulipifera), one species
in M (Pinus strobus), seven species in MB (Sassafras albi-
dum [Nutt.] Nees, Diospyros virginiana L., Nyssa sylvatica
Marshall, Oxydendrum arboreum [L.] DC., Quercus
coccinea Muenchh., Q. montana Willd., and Robinia
pseudoacacia L.), and no species in C (Table 1). The ISA
for shrubs identified six indicator species total: two species
in M (Kalmia latifolia and Rhododendron maximum),
four species in MB (Ceanothus americanus L., Hypericum
hypericoides [L.] Crantz, Lyonia ligustrina [L.] DC., and
Rhus glabra L.), and no species in B or C (Table 1). The
ISA for herbaceous species identified a total of 17 indica-
tor species or genera: one species in C (Arundinaria appa-
lachiana Triplett, Weakley & L.G. Clark), 16 species or
genera in MB (Dichanthelium [Hitchc. & Chase] Gould
spp., Piptochaetium avenaceum [L.] Parodi, Schizachyrium
scoparium [Michx.] Nash, Scleria P.J.Bergius spp.; Carex L.
sp., Cassia L. sp., Conyza canadensis L., Coreopsis major
Walter, Desmodium nudiflorum [L.] DC., Erechtites
hieraciifolius [L.] Raf. ex DC., Helianthus divaricatus L.,
Houstonia purpurea L., Lespedeza bicolor Turcz., Potentilla
canadensis L., Rubus argutus Link, and Solidago L. spp.),
and no species in B or M (Table 1).

Discussion
Non-metric multidimensional scaling (NMDS)
Contrary to our hypothesis, the overlapping treatment
polygons suggest similarity in post-treatment species
composition because treatments share many species.
Most of the tree, shrub, and herbaceous species
showed little separation in ordination space, suggest-
ing somewhat differential but mostly shared responses
to treatments. Additionally, the relatively short dis-
tances between species made the ecological trends
represented by each axis difficult to interpret. Little
separation between treatment polygons and little vari-
ability in species spread was also observed when all

species were included in the ordination. This suggests
that there may not have been a strong species re-
sponse to the treatments and that further analyses
may be necessary to examine the changes that may
have occurred.

Agglomerative hierarchical cluster analysis (AHCA)
While the NMDS showed only modest differences in
understory community composition between treatments,
the results of the AHCA supported our hypothesis,
showing evidence of treatment effects within life form
categories. The largest portion of clusters was associated
with category 1 (those with no apparent pattern in rela-
tionship to treatments; similar to C), suggestive of the
predominance of generalist species that are largely un-
affected by treatment type. However, some clusters
responded similarly to fire-related disturbance (B or
MB), suggestive of modest compositional shifts to a
more ruderal or early seral plant community in those
treatments. This may predominantly be due to the over-
story and midstory canopy openings that were mostly
created by MB treatments (due to localized areas of
higher-intensity fire in MB), as reported in Waldrop
et al. (2016). However, identifying individual species that
are driving these responses would give more indication
of compositional and abiotic changes in response to re-
peated treatments (Keyser et al. 2008; Azeria et al. 2011).
Overall, many clusters showed similarities in vegetation
response among treatments; however, the few clusters
that showed divergence from the C treatments suggest
only subtle and perhaps localized treatment effects on
understory vegetation.

Indicator species analysis (ISA)
Within the tree group, the indicator species in B (Acer
rubrum, Amelanchier arborea, and Liriodendron tulipifera)
indicated that B sites were largely differentiated by mesic
species that grow well under conditions created by low-
intensity prescribed fire. Four repeated dormant-season
burns did not appear to be sufficient for meeting the man-
agement objective of creating understory conditions that
favor oak and yellow pine recruitment (Kuddes-Fischer and
Arthur 2002; Dolan and Parker 2004). However, it is pos-
sible that fires of greater intensity or in a different season
could produce a different result. The indicator species in M
(Pinus strobus) suggests that these sites were differentiated
by white pine, a mesic species (Phillips et al. 2007). This
also suggests that long-term M treatments may not create
conditions that are favorable for fire-tolerant species as they
need a more open canopy and drier microsite conditions to
grow optimally (Vose et al. 1993). The indicator species in
MB (Sassafras albidum, Diospyros virginiana, Nyssa
sylvatica, Oxydendrum arboreum, Quercus coccinea,
Q. montana, and Robinia pseudoacacia) indicate that
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these sites are differentiated by more xeric species,
many of which are light-responsive and grow well
under more open conditions (Clinton and Vose 2000).
More specifically, Quercus montana, Q. coccinea, and
Sassafras albidum and Robinia pseudoacacia grow
best in open, dry conditions, suggestive of some level
of mesophication reversal in MB (Boring and Swank
1984; Dey and Hartman 2005), perhaps caused by
greater fire intensity in that treatment.
Within the shrub group, the indicator species in M

(Kalmia latifolia and Rhododendron maximum) indicate
that these sites are differentiated by ericaceous shrubs
that grow well in shade, prefer mesic conditions (R.
maximum), and resprout prolifically when cut (Vose
et al. 1993). This suggests that M treatments may not
have reduced ericaceous shrub competitors, which is a
priority management objective in this region (Waldrop
et al. 2016). The indicator species in MB (Ceanothus
americanus, Hypericum hypericoides, Lyonia ligustrina,
and Rhus glabra) suggests that these sites are differenti-
ated by more light-responsive and opportunistic species
that grow well in open, xeric sites (Hutchinson et al.
2005; Keyser et al. 2008).
Within the herbaceous group, the indicator species in

C (Arundinaria appalachiana) was widely prevalent,
whereas it was sparse in other treatments. This suggests
that Arundinaria appalachiana may be sensitive to dis-
turbance, or that it is a poor competitor in a post-
disturbance environment. The indicator species in MB
suggest a high level of understory diversity, with five gra-
minoids (Dichanthelium spp., Piptochaetium avenaceum,
Schizachyrium scoparium, Carex sp., and Scleria spp.),
and 11 forb species (Cassia sp., Conyza canadensis,
Coreopsis major, Desmodium nudiflorum, Erechtites hier-
aciifolius, Helianthus divaricatus, Houstonia purpurea,
Lespedeza bicolor, Potentilla canadensis, Rubus argutus,
and Solidago sp.), three of which are nitrogen-fixing
(Cassia sp., Desmodium nudiflorum, and Lespedeza bi-
color). This suggests that MB treatments are facilitating
the establishment of a different set of species that are
largely unique to this treatment (Burton et al. 2011).
The indicator species in MB are also suggestive of a shift
towards annual or early seral species, which is a desir-
able outcome for fire managers (Waldrop et al. 2016).
The forbs, mainly in the Asteraceae family, often re-
spond well to larger disturbances, indicating larger open-
ings in the canopy and midstory (Hutchinson et al.
2005). Many graminoids, such as Schizachyrium scopar-
ium, often grow well in disturbed sites with high light
availability (Peterson et al. 2007).

Conclusions
Four fires and two mechanical treatments over the
course of 15 years resulted in only modest changes in

understory vegetation composition, as observed from
our NMDS results. Nonetheless, we observed the great-
est degree of change, including an increase in early seral,
fire-adapted, or fire-dependent understory species in the
most intensive treatment (MB). This treatment likely re-
sulted in the greatest increases in understory light avail-
ability, as well as reductions in litter and duff necessary for
the establishment of these species. Further research, which
should include the continued frequent application of pre-
scribed fire, should be conducted on the longer-term ef-
fects of B to determine if the effects of B will eventually
approach those of MB. Additionally, the differences in
understory responses observed between M and B treat-
ments suggests that M is only somewhat of a surrogate for
B. The results of this study will prove valuable for man-
agers in the southern Appalachian Mountain region who
are considering using fire and fire surrogate treatments to
manipulate vegetation composition.
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