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Abstract

Background: National estimates of canopy bulk density (CBD; kg m™) for fire behavior modeling are generated
and supported by the LANDFIRE program. However, locally derived estimates of CBD at finer scales are preferred
over national estimates if they exist, as the absolute accuracy of the LANDFIRE CBD product is low and varies
regionally. Active sensors (e.g, lidar or radar) are better suited for this task, as passive sensors are ill equipped to
detect differences among key vertical fuel structures, such as coniferous surface fuels (£2 m high) and canopy fuels
above this threshold—a key categorical fuel distinction in fire behavior modeling. However, previous efforts to map
CBD using lidar sensor data in the Superior National Forest (SNF) of Minnesota, USA, yielded substandard results.
Therefore, we use a combination of dormant-season synthetic aperture radar (SAR) and optical satellite sensor data
to (1) expand detectability of coniferous fuels among mixed forest canopies to improve the accuracy of CBD
modeling and (2) better understand the influence of surface fuels in this regard. Response variables included
FuelCalc output and indirect estimates of maximum burnable fuel based on canopy gap fraction (CGF) measured at
ground level and 2 m above ground level.

Results: SAR variables were important predictors of CBD and total fuel density (TFD) in all independent model
calibrations with ground data, in which we define TFD as the sum of CBD and primarily live coniferous surface fuel
density (SFD) 0 to 2 m above ground. Exploratory estimates of TFD appeared biased to the presence of sapling-
stage conifer fuel on measures of CGF at the ground level. Thus, modeling efforts to calibrate SFD with satellite
sensor data failed. Both CGF-based and FuelCalc-based field estimates of CBD vyielded close unity with satellite-
calibrated estimates, although substantial differences in data distributions existed. Estimates of CBD from the widest
CGF zenith angle range (0 to 38°) correlated best with FuelCalc-based CBD estimates, while both resulted in
maximum biomass values that exceeded those considered typical for the SNF. Model results from the narrowest
zenith angle range (0 to 7°) produced estimates of CBD that were more in line with values considered typical.
LANDFIRE's estimates of CBD were weakly, but significantly (P = 0.05), correlated to both narrow- and wide-angle
CGF-based estimates of CBD, but not with FuelCalc-based estimates.

* Correspondence: ptwolter@iastate.edu

'Department of Natural Resource Ecology and Management, lowa State
University, 2310 Pammel Drive, Ames, IA 50011, USA

Full list of author information is available at the end of the article

. © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
@ SPrlnger Open which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
— appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s42408-021-00112-5&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ptwolter@iastate.edu

Wolter et al. Fire Ecology (2021) 17:26 Page 2 of 23

Conclusions: The combined use of field estimates of CBD, based on indirect measures of CGF according to Keane
et al. (Canadian Journal of Forest Research 35:724-739, 2005), with SAR and optical satellite sensor data
demonstrates the potential of this method for mapping CBD in the Upper Midwest, USA. Results suggested that
the presence of live, coniferous surface fuels neither confounds remote detection nor precludes mapping of CBD in
this region using SAR satellite sensor data, as C- and L-band idiosyncrasies likely limit the visibility of these smaller
understory fuels from space. Nevertheless, research using direct measures of burnable SFD for calibrations with SAR
satellite sensor data should be conducted to more definitively answer this remote detection question, as we
suspect substantial bias among measures of CGF from ground level when estimating SFD as the difference
between TFD and CBD.

Keywords: Canopy bulk density, Canopy gap fraction, FuelCalc, LANDFIRE, Satellite, Sub-boreal forest, Synthetic
aperture radar, Upper Midwest

Resumen

Antecedentes: Las estimaciones nacionales sobre la densidad aparente (CBD; kg m™) para el modelado del
comportamiento del fuego, son generados y apoyados por el programa LANDFIRE. Sin embargo, la CBD derivada
de estimaciones locales a escalas mas finas son preferidas a las nacionales (si estas existieran) dado que la precision
absoluta de LANDFIRE CBD es baja y varia regionalmente. Los sensores activos (i.e, Lidar o Radar) estan mejor
preparados para esta tarea, dado que los sensores pasivos estan débilmente equipados como para detectar
diferencias entre estructuras verticales de combustibles clave como los combustibles superficiales de coniferas (<2
m de altura) y combustibles del dosel por encima de este limite, una categoria distintiva clave en el modelado del
comportamiento del fuego. Sin embargo, esfuerzos previos para mapear CBD usando datos del sensor Lidar en el
Bosque Nacional del Superior (SNF) de Minnesota, EEUU, dio resultados deficientes. Por ese motivo, usamos una
combinacién de datos de Radar de apertura sintética (SAR) para épocas de dormancia y de un sensor satelital
optico para (1) expandir la detectabilidad de combustibles de coniferas en doseles mixtos para mejorar la exactitud
del modelo CBD, y (2) para entender mejor la influencia de los combustibles superficiales en ese aspecto. Las
variables respuesta incluyeron la salida del FuelCalc y estimaciones indirectas de combustibles de méxima
combustibilidad, basados en la fraccion de apertura del dosel (CGF) medida a nivel del suelo y a dos metros sobre
la superficie del suelo.

Resultados: Las variables SAR fueron importantes predictores de CBD y de la densidad total de los combustibles
(TED) en todas las calibraciones de modelos independientes con datos del suelo superficial, en los cuales definimos
TFD como la suma de CBD y primariamente la densidad del combustible vivo superficial de coniferas (SFD) de 0 a
2 m por encima de la superficie del suelo. Las exploraciones estimativas de TFD aparecen como sesgadas hacia la
presencia de combustible representado por pléantulas de coniferas en mediciones de CGF a nivel del suelo.
Entonces, los esfuerzos del modelado para calibrar SFD con datos de sensores de satélite fracasaron. Las
estimaciones de ambos, CGF y de campo mediante FuelCalc sobre el CBD brindaron una gran paridad con las
estimaciones calibradas de los satélites, aunque existieron diferencias sustanciales en la distribucion de los datos.
Las estimaciones de CBD desde el rango del dngulo zenital mas ancho (0 a 38°) se correlacionaron mejor con las
estimaciones basadas en FuelCalc, mientras que ambas resultaron en estimaciones de biomasa méximos que
excedieron a aquellos considerados tipicos para la SNF. Los resultados de los modelos de rangos de angulos
zenitales mas angostos (0 a 7°) produjeron estimaciones de CBD que estuvieron mas en linea con los valores
considerados tipicos. Las estimaciones de CBD producidas por LANDFIRE fueron débiles, aunque correlacionadas
significativamente (P = 0.05), con las estimaciones de CBD derivadas de ambos dngulos angostos y anchos de CGF,
pero no con estimaciones basadas en FuelCalc.
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diferencia entre TFD y CBD.

Conclusiones: El uso combinado de estimaciones de campo de CBD, basados en medidas indirectas de CGF de
acuerdo con Keane et al. (Canadian Journal of Forest Research 35:724-739, 2005), con SAR y datos de sensores de
satélite, demostraron el potencial de este método para mapear CBD en el Medio-Oeste Alto de los EEUU. Los
resultados sugieren que la presencia de combustible vivo superficial de coniferas ni confunde a la deteccion
remota ni excluye el mapeo de CBD en esta region usando datos de sensores satelitales, como las bandas
idiosincraticas C y L pueden limitar la visibilidad, desde el espacio, de esos combustibles més pequefos. De todas
maneras, la investigacion usando de medidas directas de SFD combustible para calibraciones con datos del sensor
del satélite SAR deben conducir a contestar definitivamente esta cuestion de la deteccién remota, dado que
sospechamos un sesgo sustancial entre medidas de CGF a nivel del suelo cuando estimamos SFD como la

Background

Canopy bulk density (CBD) is routinely cited as a salient
biophysical forest canopy fuel variable—along with can-
opy base height, stand height, and percent canopy
cover—required for modeling crown fire behavior and
risk (Finney 1998; Scott 1999; Keane et al. 2005; Keane
et al. 2006; Krasnow et al. 2009; Engelstad et al. 2019).
In this study, CBD represents burnable mass per unit
canopy volume (kg m™>) available to crown fires, primar-
ily live foliage (needles) and branches less than 3 mm in
diameter and dead branches less than 6 mm in diameter
(Van Wagner 1977; Alexander 1988; Finney 1998; Keane
et al. 2005). Live broadleaf tree foliage is not considered
critical canopy fuel due to low overall flammability (Van
Wagner 1977). Thus, exclusion of broadleaf fuels from
CBD calculations is standard practice (Cruz et al. 2003).
Spatially explicit estimates of CBD, often used in model-
ing wildfire behavior (e.g., FARSITE; Finney 1998), are
provided by the Landscape Fire and Resource Manage-
ment Planning Tools (LANDFIRE) program (Reeves
et al. 2009; Rollins 2009; www.landfire.gov). These CBD
estimates are national in scope, calibrated using a com-
bination of optical Landsat sensor data, US Forest Ser-
vice Forest Inventory and Analysis (FIA) ground data,
and the LANDFIRE reference database (Rollins 2009),
which are then extrapolated to the landscape using so-
phisticated statistical and environmental modeling ap-
proaches (Keane et al. 2006). In this calibration process,
certain assumptions regarding both the spatial and bio-
physical accuracy of FIA field plot data as well as the al-
lometry used to determine CBD were adopted (Keane
et al. 2006). With respect to FIA, recent work in Minne-
sota, USA, provides evidence to question some of the
common assumptions regarding the combined use of
Landsat and FIA for mapping biophysical forest struc-
ture information, especially spatial accuracy and sub-
optimal subplot design with regard to 30-m satellite sen-
sor data (Thapa et al. 2020). Regardless of the sources of
mapping error, it is understood that the absolute accur-
acy of the LANDFIRE CBD data product varies region-
ally (Keane et al. 2006; Scott 2008; Krasnow et al. 2009)

and should not replace locally derived fuel products if
they exist at finer spatial scales (Keane et al. 2006),
which is the pretext for this research.

While CBD is a salient variable for modeling crown
fire behavior, it is also one of the most difficult parame-
ters to measure accurately in the field (Alexander 1988;
Keane et al. 2005). This is because the vertical distribu-
tion of biomass varies by conifer species, crown position,
and shade tolerance and from stand to stand (Brown
1978; Keane et al. 2002; Keane et al. 2006). Moreover,
according to Keane et al. (2005), various vertical average
measures of CBD likely underestimate effective CBD fuel
conditions, noting that a few patches of fuel having sub-
stantially higher biomass values than the vertical canopy
average will sustain fire spread. Therefore, they included
the maximum CBD among all 1-m vertical layers as an
important fuel variable to model, which we follow in this
study. Equally vexing is the fact that key forest fuel prop-
erties (e.g., surface fuel, CBD, and canopy base height)
are practically impossible to detect or distinguish via op-
tical satellite sensors (e.g., Landsat-8 and Sentinel-2). Lo-
gical options suggested for remote detection of vertical
canopy structures include lidar and radar (Keane et al.
2001; Keane et al. 2006).

Efficient methods for the calculation of CBD from in-
direct measurement of canopy gap fraction (CGF) and
leaf area index (LAI) have been tested under Western
forest conditions. Keane et al. (2005) described and
tested six indirect ground-based methods to measure
CGF (AccuPAR ceptometer, CID digital plant canopy
imager, hemispherical photography, LI-COR LAI-2000,
point sampling, and spherical densiometer). Of these
methods, the LAI-2000 instrument (LI-COR Biosciences
Inc., Lincoln, NE, USA) measures transmittance of dif-
fuse sky radiation through a vegetation canopy via separ-
ate optical sensors oriented at five zenith angles (7, 23,
38, 58, and 68°). With this instrument, CGF and LAI are
modeled in three dimensions using radiation attenuation
rates at the different zenith angles (Norman and Welles
1983; Perry et al. 1988). In the Keane et al. (2005) study,
iterative, incremental, destructive sampling of the
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coniferous forest canopy (25% basal area removal per it-
eration) was performed to produce field estimates of
CBD across a gradient of crown biomass conditions.
Concurrently, they collected six intervening measure-
ments of CGF (listed above) before and after each de-
structive removal of the forest basal area. Results were
used to build a suite of regression models to relate CGF
estimates to their direct field measurements of burnable
CBD. One of their models (CID digital plant canopy
imager; R* = 0.94, root mean squared error [RMSE] =
0.01 kg m~?) required the use of a tree height parameter,
while the remaining models did not. Of the remaining
methods tested, the summed weighted average of LAI-
2000 sensor data using the top three zenith angles (7,
23, and 38°) showed the strongest relationship to the
maximum burnable CBD (foliage and small branches <3
mm diameter) in the vertical profile for Western conifer-
ous forests (R* = 0.70, RMSE = 0.03 kg m~>). Equation 1
shows the Keane et al. (2005) weighted transformation
of CGF for estimating maximum burnable CBD (CBD,
kg m~?) across LAI-2000 zenith angles ©;:

_ X—~(InCGF;)sin®;cos ©;

CBD
2

(1)

Field estimates of CBD may also be modeled using
specific desktop software, such as FuelCalc (Reinhardt
et al. 2006). Current versions of FuelCalc (e.g., v1.6, re-
leased February 2019) use lists of inventoried tree spe-
cies, with the associated bole diameter at 1.37 m height
and canopy position information, to model available can-
opy fuel (i.e., foliage plus half the fine branch material
<6.3 mm diameter) using Brown’s (1978) allometric bio-
mass equations. In instances for which species-specific
allometry for fine, burnable branch material is not avail-
able, less specific allometry is substituted. The resulting
estimates of crown biomass are then scaled to fit
Brown’s (1978) equations (Reinhardt et al. 2006). In
other cases, where no published allometry exists for a
tree species, allometry for similar, substitute species is
used. In such cases, canopy fuel estimates are adjusted
using specific factors to account for crown position
(Gray and Reinhardt 2003). It is important to note that
the FuelCalc routine excludes all trees less than 1.83 m
(6 ft.) in height from CBD calculations, as biomass below
this threshold is not canopy fuel, but rather surface fuel
(Saatchi et al. 2007). As such, a substantial quantity of
burnable, coniferous fuel in the Superior National Forest
(SNF) in northern Minnesota, USA (Fig. 1), straddles
this categorical boundary, especially balsam fir (Abies
balsamea [L.] Mill.) (Frelich and Reich 1995).

In 2015, the US Forest Service funded a pilot study
(see Engelstad et al. 2019) to investigate the potential
improvement in methodologies for local modeling and
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mapping of forest structural parameters critical for mod-
eling wildfire behavior within the Gunflint Ranger Dis-
trict of the SNF in northern Minnesota, USA (Fig. 1).
Study-specific field data were combined with low-
density lidar data (0.44 points m~?) to model stand age,
crown fuel height, live crown base height, and CBD. For
CBD, field estimates were derived using three methods:
US Forest Service plot-based line-intercept method
(USDI National Park Service 2003), allometric modeling
of component fuel biomass from biophysical tree data
according to Perala and Alban (1994), and transform-
ation of indirect measures of CGF according to Keane
et al. (2005). Of the fuel variables modeled using ran-
domForest (Breiman 2001) k-nearest neighbor imput-
ation, CBD models were the weakest (adjusted
coefficient of determination [Adj R*] range = 0.32 to
0.48; Engelstad et al. 2019) and did not exceed the ac-
curacy of CBD estimates provided by the LANDFIRE
program (R*> = 0.58) for the Lake States region, Zone 41
(LANDFIRE 2011). The low reported accuracy among
modeled estimates of CBD is discouraging, especially
since low-density lidar has been used successfully (R* >
0.83) for these purposes in other regions (Andersen
et al. 2005; Erdody and Moskal 2010). Thus, a need ex-
ists for alternative methodologies for mapping CBD
within the SNF.

For passive satellite sensors (e.g., Landsat), the ap-
proximate 2-m boundary above ground level (AGL) sep-
arating canopy fuel from coniferous surface fuel is
problematic for detection efforts, as such sensors are ill
equipped to directly distinguish differences in fuel height
(Keane et al. 2006; Saatchi et al. 2007; Jakubowksi et al.
2013). Data from active sensors (i.e., lidar and radar)
represent a potential remedy for such limitations (see
Keane et al. 2001; Keane et al. 2005). However, consider-
ing the marginal lidar-based CBD mapping results re-
ported by Engelstad et al. (2019), coupled with decade-
long revisit times proposed for higher-density lidar
coverage (MNGAC [Minnesota Geospatial Advisory
Council] 2020), an examination of the capabilities of
synthetic aperture radar (SAR) satellite sensor data for
quantifying CBD within this region is warranted due to
proven canopy penetration characteristics (Huang et al.
2018). Encouraging CBD mapping results have been
achieved (R* = 0.85, RMSE = 0.67 kg m™>) using high-
resolution (i.e., 5 to 10 m, L-band and P-band), polari-
metric AIRSAR sensor data within Yellowstone National
Park, USA (Saatchi et al. 2007). While the authors used
allometric equations (Brown 1978; Van Hooser 1983) to
derive field estimates of CBD from inventoried tree data,
it is was unclear whether their estimates were equivalent
to burnable CBD defined by Keane et al. (2005). In any
event, it has yet to be determined whether data from
space-based SAR sensors (e.g., Sentinel-1 and Palsar-1)
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Fig. 1 Location of Minnesota, USA, pilot study area (black box) proximal to the Superior National Forest (SNF) and the Boundary Waters Canoe
Area Wilderness (BWCAW) and Lake Superior. Here, we investigated the potential of mapping coniferous forest fuel density using satellite sensor

can afford similar CBD modeling results under Minne-
sota forest conditions. Moreover, it is important to de-
termine whether the presence of coniferous surface fuel
may influence CBD characterization, especially given the
factors that affect canopy penetration depth (Ustin 2004;
Schlund et al. 2019).

Hence, we combined study-specific biophysical field
data with both SAR and optical satellite sensor data to
calibrate models for estimation and mapping of CBD to
support fire behavior modeling efforts in the SNF. Field
estimation of CBD response variables included both (1)
FuelCalc output and (2) weighted transformation of in-
direct optical field measurements of canopy gap fraction
(CGF) according to Keane et al. (2005) using a LAI-
2200C instrument (LI-COR Biosciences Inc.). The fusion
of optical and SAR satellite sensor data has been shown
to augment remote characterization of forest structure
in this region (Wolter and Townsend 2011). As such, we
hypothesized that inclusion of SAR backscatter ampli-
tude imagery with optical satellite sensor data would en-
able increased characterization of forest CBD over that
possible via low-density lidar in this region (Engelstad
et al. 2019). We also investigated the potential effects of
coniferous surface fuel density on our ability to distin-
guish and model CBD using SAR satellite sensor data,

given the greater canopy penetration afforded by radar.
Finally, we compared and discussed the results of CBD
model calibration strategies and provided recommenda-
tions for their operational use.

Methods

Study area

The 356-km? pilot study area falls within the Gunflint
Ranger District of the Superior National Forest (SNF),
Minnesota, USA, and is a mix of both managed and wil-
derness forest (Fig. 1). Forest cover is diverse (e.g., five
conifer genera and seven broadleaf genera) and is con-
sidered transitional between the sub-boreal Great
Lakes—St. Lawrence forests and boreal forest (Heinsel-
man 1973; Baker 1989). Non-wilderness forest areas are
intensively managed for wood fiber, which has resulted
in a dominance of quaking aspen (Populus tremuloides
Michx.), paper birch (Betula papyrifera Marsh), white
spruce (Picea glauca [Moench] Voss), and balsam fir for-
est associations (Frelich and Reich 1995; Wolter and
White 2002). Wilderness areas have an extensive fire
history that supports vast stands of pioneer forest domi-
nated by jack pine (Pinus banksiana Lamb.), as well as
remnants of old-growth white pine and red pine (Pinus
strobus L. and P. resinosa Ait., respectively) (Heinselman
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1973; Frelich and Reich 1995). However, early twentieth
century fire suppression policies led to an increase in the
dominance of shade-tolerant, fire-sensitive balsam fir on
this landscape (Frelich and Reich 1995; Corace et al.
2012). Several wilderness and non-wilderness areas
within the northwestern portion of the study perimeter
experienced the effects of a severe downburst wind event
in 1999 that caused substantial wind throw damage
(Rich et al. 2007). Much of the downed course woody
material from this wind event persists today amidst the
regenerating forest. Throughout much of the study area,
balsam fir exists largely in the understory below domin-
ant and co-dominant canopy associates (Frelich and
Reich 1995; Wolter and Townsend 2011). High flamma-
bility and understory canopy position make balsam fir
an effective ladder fuel for crown fire propagation (Ab-
bas et al. 2011). Other conifer species in this study area
include eastern larch (Larix laricina [Du Roi] K. Koch),
northern white cedar (Thuja occidentalis 1.), and black
spruce (Picea mariana Mill). The coniferous forest spe-
cies within this landscape are the focus of this research,
which we discuss in the methods below.

Field sampling

Personnel from the Gunflint Ranger District of the SNF
generated and field-marked 110 random plot locations
throughout the pilot study area (Fig. 1) as candidates for
field sampling. We visited plots (n = 61) that were within
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1 km of a road (Fig. 2) in 2015 and 2016 to collect bio-
physical tree data and conifer CGF data, each needed to
calibrate models for estimating burnable fuel biomass
(primarily standing conifer foliage and twigs 0 to 3 mm
in diameter) using two different approaches, described
below. Approximately 20% of these 61 randomly marked
plot center locations fell in large canopy openings or on
the boundary of such an opening. In such cases, we
shifted plot centers toward adjacent intact forest by ~42
m (i.e., 30-m pixel diagonal dimension) to accommodate
potential pixel registration errors and the spatial breadth
of our field sampling design (Fig. 3). All plot locations
were recorded using a dual-frequency Trimble Geo7X
(H-Star) GPS receiver (Trimble Inc., Sunnyvale, CA,
USA) and later differentially corrected (carrier-phase,
mean 2dRMS = 0.48 m) using the Grand Marais, Minne-
sota, CORS base station (https://www.ngs.noaa.gov/
CORS_Map/; site ID: GDMA).

The presence of broadleaf tree foliage during the
growing season is problematic for forest fuel mapping
using satellite sensor data and equally problematic for
estimating conifer CGF. Broadleaf foliage partially con-
ceals coniferous fuels from above while also causing er-
roneously high estimates of CGF from below canopy. In
both cases, ground-to-space fuel density calibrations
would be confounded. Therefore, we collected field CGF
data during dormant, leaf-off conditions for broadleaved
tree species (late October 2015 and early May 2016) to

(+) Field plots
—— Roads

Fig. 2 Pilot study area showing 61 field plot locations within the Gunflint Ranger District of the Superior National Forest, Minnesota, USA. Field
data collections occurred in 2015 and 2016 to investigate the potential of mapping coniferous forest fuel density using satellite sensor data and
ground data. Plot locations and roads displayed on pre-leaf flush 7 May 2017 Sentinel-2 near-infrared imagery, in which lakes are black, conifer
forest is dark gray, leaf-off broadleaf forest is bright gray, and mixed conifer—broadleaf forest is intermediate gray
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Fig. 3 Ground plot sampling design (2015 to 2016) to quantify
coniferous forest fuel density for calibration with satellite sensor to
enable mapping across the Superior National Forest, Minnesota,
USA. Nine-point grid (black dots) at 5-m spacing are the canopy gap
fraction (CGF) sample locations used to estimate coniferous fuel
density. The central gray-shaded circle is a forest height-dependent
fixed-radius plot (average area = 102 m?; standard deviation = 56.8
m?) for measurement of tree biophysical dimensions (species, bole
diameter, crown spread, and height to first live branch). Field data
are used to calculate both canopy bulk density (kg m~?) via the
FuelCalc routine and to estimate understory (£3 m above ground)
coniferous biomass (kg m~ of ground area)

maximize the visibility of conifer foliage and branch
structures from below the forest canopy. Similarly, dor-
mant seasons are optimal for space-based visibility of
these same coniferous fuel structures (Wolter et al.
2008). At each plot, we collected two types of ground
data: CGF and tree species biophysical data (i.e., bole
diameter at 1.37 m height, or 10 cm if height < 1.37 m;
tree height; height to first live branch; and canopy diam-
eter). On the rare occasion that trees were exactly 10 cm
tall, we used the base diameter instead. We measured
field CGF using a dual-sensor LI-COR LAI-2200C in-
strument (LI-COR Biosciences Inc.) during dawn and
dusk hours to avoid direct sunlight. We placed one of
the two LAI-2200C sensor wands at a fixed position in
an open area (less than 100 m from a given forest plot)
with an unobstructed view of sky conditions to collect
measurements every 5 s. Concurrently, the other wand
was used below the forest canopy to collect CGF mea-
surements at each of nine grid locations per plot (3 x 3
at 5-m spacing), where the center grid location was the
plot center (Fig. 3). Hence, all below-canopy measure-
ments were time-synchronized (within 2.5 s) to the open
sky sensor. The grid was oriented north and south on
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flat terrain, or up and down slope, according to Keane
et al. (2005). We recorded CGF for all nine grid loca-
tions at both ground level and at 2 m above ground level
(AGL). Ground-level CGF measurements capture all fuel
(ie, surface and canopy fuels) within the LAI-2200C
sensor’s upward field of view, while 2-m AGL measure-
ments capture just canopy fuel. In each instance, we
used the top three zenith angles of the LAI-2200C sen-
sor: 7° (1), 23° (2), and 38° (3). Time-synchronized CGF
digital readings from the open area and nine grid points
were stored onboard their respective wands and later
downloaded to a computer for post-processing to both
eliminate spurious readings (transmittance >1 for each
zenith angle) and to correct sub-canopy readings for
varying open sky conditions. Resulting sets of sky-
corrected measurements were averaged by plot at each
separate level (0 m and 2 m AGL) and zenith angle
range (0 to 7° [1], O to 23° [12], and O to 38° [123]) to
provide more robust spatial estimates of CGF (LI-COR
2011).

We collected biophysical tree data for all trees (conifer
and broadleaf) greater than 10 cm tall (4584 trees across
61 plots) within a single circular subplot concentric with
the plot center (Fig. 3). The radius of each circular sub-
plot varied by plot according to the product of the sine
of the second LAI-2200C sensor zenith angle (23°) and
the maximum tree height identified for each plot (Fig.
3). The resulting average ground plot circular area was
102 m? with a standard deviation of 56.8 m* We mea-
sured tree heights using a Trimble Laser Ace 1000
rangefinder (Trimble Inc.) to within circa +20 cm preci-
sion (Jamali et al. 2014). We collected crown spread
measurements for trees taller than 5 m using a densi-
tometer instrument, according to Wolter et al. (2009),
and recorded bole diameters by species to estimate basal
area (m* ha™'). Conifer field data were used in two ways:
(1) as FuelCalc inputs for determination of plot-wise
maximum burnable CBD and (2) as means to estimate
total bole, branch, and foliar biomass according to Perala
and Alban (1994) to explore relationships between over-
story canopy composition (i.e., broadleaf, mixed conifer—
broadleaf, and percent canopy cover) and coniferous sur-
face and lower canopy biomass (<3 m AGL). For the lat-
ter analyses, tree-wise biomass values were stratified
using respective live canopy cone volumes to distribute
biomass vertically into 1-m increments (see Engelstad
et al. 2019), which we summed by increment and nor-
malized by ground plot area.

Field estimates of coniferous fuel density

We converted indirect LAI-2200C CGF data from each
field plot to maximum, burnable fuel density (kg m~)
using the Keane et al. (2005) transformation equation
(Eqg. 1). Fuel density estimates included CBD (fuel > 2 m
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AGL) and total fuel density (TFD; fuel > 0 m AGL),
which is primarily the sum of live, coniferous surface
fuel density (SFD; 0 to 2 m AGL) plus CBD. We gener-
ated estimates of TFD and CBD across three LAI-2200C
zenith angle range combinations: TFD;, TFD;,, TFDy53,
CBD;, CBD;,, and CBDj,3. Respective fuel density dif-
ferences, TFD minus CBD, served as indirect field esti-
mates of burnable SFD. It is important to note that
transformation of CGF to fuel density (kg m™>), whether
CBD, TED, or SDF, includes all fuels visible to the LAI-
2200C sensor, which consisted primarily of live conifer-
ous fuel structures.

Field estimates of CBD were also determined allome-
trically using plot-wise biophysical tree data and the
FuelCalc routine (CBDp¢; kg m™3). As mentioned above,
in the absence of species-specific allometry, FuelCalc
makes use of allometry from structurally similar forest
species to determine a plot’'s CBD profile (Lutes 2020),
from which we extracted the maximum CBD. In north-
ern Minnesota, most of the conifer species found in the
pilot study area lacked the necessary allometry to calcu-
late CBD. Hence, FuelCalc substituted the following spe-
cies: Abies lasiocarpa (Hook.) Nutt. for Abies balsamea,
Pinus contorta (Dougl.) for Pinus banksiana, Pinus pon-
derosa (Dougl.) for Pinus resinosa, Picea engelmannii
(Parry) for Picea glauca, and Pseudotsuga menziesii
(Mirb.) Franco for Picea mariana.

Satellite sensor data

Optical imagery. We acquired images from three optical
satellite sensors (Table 1) for this study: five Landsat-8
Operational Land Imager (OLI) scenes, one SPOT-5
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multispectral (XS) image, and one Sentinel-2 Multispec-
tral Instrument (MSI) image. All OLI images were from
the worldwide reference system (WRS-2) path 26 row 27
footprint and were downloaded from the US Geological
Survey’s Earth Explorer portal (www.earthexplorer.org).
Images came processed to surface reflectance, ortho-
rectified, and geo-corrected as part of the Landsat Eco-
system Disturbance Adaptive Processing System
(LEDAPS; Vermote et al. 1997; Masek et al. 2006). A
SPOT-5 winter image (with 53-cm snow ground cover)
from 13 March 2013 was downloaded from the Earth
Explorer portal (https://earthexplorer.usgs.gov/) under a
temporary data purchase agreement between the US
Geological Survey and SPOT Image Corporation (https://
www.spotimage.com/). Finally, a MSI image from 7 May
2017 (pre-leaf flush) was downloaded from the Earth
Explorer portal (https://earthexplorer.usgs.gov/) as an
orthometrically and radiometrically corrected top of
atmosphere reflectance product. The relative humidity
recorded by the Seagull remote automated weather station
(48.120536°, —90.838725°) at the time of MSI image acqui-
sition (1030 Central Daylight Time) was ~40%. Hence,
further corrections to surface reflectance were not neces-
sary, as our goals did not include date-specific change de-
tection (see Song et al. 2001).

Landsat-8 OLI images for CBD, TFD, and SFD work
included three leaf-off winter dates with snow ground
cover (4 March 2014, 121-cm snow depth; 1 December
2015, 42-cm snow depth; and 19 February 2015, 53-cm
snow depth), for which the Minnesota State Climatology
Office provided date-specific estimates of snow depth
(https://climateapps.dnr.state.mn.us/doc/snowmap.htm).

Table 1 Synthetic aperture radar (SAR) and optical satellite sensor characteristics and image dates used in this Minnesota, USA,
study to quantify coniferous forest fuels using field data collected in 2015 and 2016. Images used to classify overstory canopy
composition are in boldface. Sensors include the Phased Array L-band Synthetic Aperture Radar (PALSAR-1) aboard the Japan
Aerospace Exploration Agency's Advanced Land Observing Satellite (ALOS); the European Space Agency's Sentinel-1 C-band SAR
sensor (interferometric wide swath mode; IW) and their Sentinel-2 MultiSpectral Instrument (MSI) optical sensor; the Space Agency
of France's fifth Satellite Pour 'Observation de la Terre (SPOT-5) multispectral (XS) optical sensor; and the US Geological Survey’s
optical Operational Land Imager (OLI) sensor aboard the Landsat-8 satellite. Polarization for SAR sensors includes horizontal send
and receive (HH), vertical send and receive (W), and two cross-polarizations (HV and VH). Dashes (-) denote multiple images from

the same sensor

Satellite Sensor Bands Wavelength Polarization Pixel size (m) Date

ALOS Palsar-1 2 23.6 cm (L-band) HH, HV 12 6 Nov 2010
22 Dec 2010

Sentinel-1 W 2 5.54 cm (C-band) W, VH 10 18 May 2016
4 Mar 2014
8 Jun 2014

Landsat-8 oLl 6 435 t0 2294 nm - 30 14 Oct 2014
19 Feb 2015
1 Dec 2015

Sentinel-2 MSI 6 444 t0 2190 nm - 10, 20 7 May 2017

SPOT-5 XS 4 500 to 1750 nm - 10, 20 13 Mar 2013
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No precipitation events were recorded for at least 2
weeks prior to each winter image date. Two leaf-on
Landsat-8 images (8 June and 14 October 2014) were ac-
quired for the determination of overstory canopy com-
position. The 14 October imagery coincided with peak
foliar senescence (autumn leaf coloration) of quaking
aspen and paper birch, which served to augment multi-
spectral contrast with other forest species in the over-
story (Wolter et al. 1995). The 8 June OLI image served
as a growing-season contrast to October OLI sensor
data. Optical remote sensing data from dormant seasons
are optimal for observing conifer canopies otherwise ob-
scured by broadleaf tree foliage (Sayn-Wittgenstein
1961; Wolter et al. 2008). Moreover, winter optical im-
agery capturing snow ground cover conditions is ideal
because potential spectral confusion between canopy
and forest floor is minimized (Wolter et al. 2012).

In addition to optical sensor bands from each date, we
calculated three indices for use as predictors of burnable
fuel density: normalized difference vegetation index
(NDVI; Rouse et al. 1974), shortwave infrared to near-
infrared ratio (SWIR:NIR; Vogelmann and Rock 1988),
and SWIR to visible ratio (SVR; Wolter et al. 2008)
(Table 2). We also included ten mapped estimates of
forest basal area (total, conifer, broadleaf, and seven
conifer species; Wolter and Townsend 2011) at 30-m
spatial resolution to the pool of optical predictors. Thus,
there were 61 initial optical sensor predictors and ten
structure estimates as predictors available for calibra-
tions with ground data.

Synthetic aperture radar imagery. We acquired SAR
backscatter amplitude imagery (Table 1) from two satel-
lite sensors (Sentinel-1 and Palsar-1) to complement

Page 9 of 23

optical sensor data for calibrating fuel density models
(TFD, SFD, and CBD). We downloaded Sentinel-1 dual-
polarity (vertical send, vertical receive [VV]; vertical
send, horizontal receive [VH]) C-band SAR interfero-
metric wide (IW) imagery from 16 May 2016 from the
European Space Agency’s Copernicus Open Access Hub
website (https://scihub.copernicus.eu/dhus/#/home) as
ground range detected images georeferenced and
resampled to a common pixel spacing (10 m) in both
range and azimuth. These SAR data captured pre-leaf
flush conditions for deciduous tree species in the study
area. Leaf-off Palsar-1 dual-polarization (HH, HV) L-
band data from 6 November 2010 (no snow cover) and
22 December 2010 (38-cm snow cover) were down-
loaded from the Alaska Satellite Facility’s NASA distrib-
uted active archive center as high-resolution (12.5 m),
terrain-corrected backscatter amplitude imagery (https://
www.asf.alaska.edu/about/asf-daac/).

In addition to the original six SAR bands (Table 1), we
calculated three ratios to highlight potential differences
in canopy volume structures (Joshi et al. 2017). Ratios
included May Sentinel-1 send-receive polarization ratio
(VH:VV) and two Sentinel-1 to Palsar-1 cross-frequency,
cross-polarization ratios (VHc:HVy and VVcHH;, re-
ferred hereafter without frequency subscripts C and L).
We created 24 additional SAR predictors from a subset
of the original bands and ratio images described above
using 3 x 3, 5 x 5, and 7 x 7 low-pass filters to spatially
dampen high-frequency, signal-dependent noise (Sader
1987; Rauste 2005). Thus, there were 31 SAR variables
available for fuel density calibration procedures, along
with a subset of 25 optical sensor predictors from leaf-
off seasons (Table 1).

Table 2 Landsat-8 Operational Land Imager (OLI), SPOT-5 multispectral (XS), and Sentinel-2 Multispectral Instrument (MSI) bands;
wavelength intervals (A); and indices used as predictors of forest structural attributes in this Minnesota, USA, study to quantify
coniferous forest fuel using field data collected in 2015 and 2016. Indices include normalized difference vegetation index (NDVI;
Rouse et al. 1974), shortwave infrared to near-infrared ratio (SWIRINIR; Vogelmann and Rock 1988), and SWIR to visible ratio (SVR;
Wolter et al. 2008). Equations for NDVI, SWIRNIR, and SVR are shown using sensor-specific band numbers defined below each sensor
column. Dashes (-) denote where SPOT-5 lacks an equivalent predictor band

Predictor Landsat-8 OLI SPOT-5 XS Sentinel-2 MSI
Band A (nm) Band A (nm) Band A (nm)
Blue 2 452 to512 - - 2 458 to 523
Green 3 533 to 590 1 500 to 590 3 543 to 578
Red 4 636 to 673 2 610 to 680 4 650 to 680
Near-IR 5 851 to 879 3 780 to 890 8 785 to 899
SWIR1 6 1566 to 1651 4 1580 to 1750 1 1565 to 1655
SWIR2 7 2107 to 2294 - 12 2100 to 2280
Equation Equation Equation
NDVI 5-4+0GB+4 B3-2+3B+2 B8—-4)+(@8+4)
SWIRNIR 6+5 4+3 11 +8
SVR 6+7)+Q2+3+4 4+01+2) (1MM+12)+Q2+3+4
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Prior to ground-to-satellite calibration analyses and
mapping, we identified and masked forest change areas
due to harvest (i.e., clear-cutting, November 2010 to
May 2017) from all image data.

Ground-to-satellite model calibration

Partial least squares regression. We performed model
calibrations between ground data and satellite sensor
data using iterative exclusion partial least squares re-
gression (xPLS; Wolter et al. 2008, Wolter et al.
2012). The xPLS algorithm was originally adapted for
use with the PLS regression routine in SAS (SAS In-
stitute Inc., Cary, NC, USA; Wolter et al. 2008) and
later modified to run in Matlab v. R2010a (Math-
works Inc., Natick, MA, USA; Wolter et al. 2012;
Singh et al. 2013). The xPLS model-building routine
iteratively withholds individual predictor variables and
performs intermediate cross-validations (Gong 1986)
to determine the optimal number of latent compo-
nents to use. This is important because, as latent di-
mensionality  increases, lower  order  latent
components—often describing random measurement
error—are more likely to retain collinearity issues (see
Wolter et al. 2008 and Geladi and Kowalski 1986 for
a detailed discussion of PLS regression and latent
variable structure). The predictor variable that, when
withheld, results in the greatest improvement in
RMSE is permanently removed from further analysis.
The model-building process proceeds iteratively until
the search for improvements in model RMSE is
exhausted, at which time prediction accuracy is
assessed using the results of cross-validation, includ-
ing predicted residual error sum of squared (PRESS)
statistic (Geladi and Kowalski 1986) and Adj R?.

Fuel density model calibration. Using the XPLS rou-
tine, respective field estimates of TFD and CBD were
each analyzed independently against the candidate group
of 77 optical and SAR image predictors to calibrate par-
simonious models (fewest predictors) for estimating fuel
density metrics (i.e, TFD;, TFDj; TFDjy3, CBDy,
CBD;5, CBD;93, and CBDgc). We also used the three re-
spective differences between TFD and CBD to build
models for surface fuel density (SFD;, SFDj,, and
SFD;,3). Given the procedural differences in deriving
fuel density estimates (i.e., CGF and FuelCalc), we chose
to perform separate XxPLS regression sequences for each
response variable. In each instance, final model calibra-
tions were assessed based on results of leave-one-out
cross-validation (PRESS), Akaike’s information criterion
(AIC; Akaike 1973), Bayesian information criterion (BIC;
Schwartz 1978), and other standard metrics (Adj R? and
RMSE). Relationships between respective field estimates
of fuel density were evaluated using Pearson correlation
plots (Miiller and Biittner 1994). For canopy fuels, we
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used each final set of image predictors for mapping the
respective estimates of CBD across the SNF study area.

Understory conifer biomass and overstory forest structure
We performed two sets of analyses to compare observed
levels of live coniferous biomass present in the forest
understory (e.g., boles, branches, and foliage <3 m AGL)
to factors known to affect forest understory light envir-
onment: (1) percent canopy cover and (2) Anderson
(1976) level-1I forest types (Zavitkovski 1976; Messier
et al. 1998; Légaré et al. 2002). While LAI-2200C CGF
data measured from the narrowest zenith angle (7°) are
suitable for measuring forest canopy cover (Paletto and
Tosi 2009), our CGF data were insufficient in this re-
spect as they were intentionally collected during dor-
mant seasons, when all broadleaf species were leafless, to
optimize visibility of coniferous fuels. Hence, we down-
loaded the 2016 continuous tree canopy cover dataset
from the Multi Resolution Land Characteristic (MRLC)
Consortium website (https://www.mrlc.gov/data/type/
tree-canopy). Understory biomass was calculated using
our biophysical tree data and local allometry (Perala and
Alban 1994) and scaled to ground plot area, as FuelCalc
excludes a substantial portion of this biomass, especially
below 2 m AGL. Next, we classified overstory forest
cover into two Anderson level-II types (broadleaf and
mixed broadleaf—conifer) using 8 June 2014 and 14 Oc-
tober 2014 Landsat-8 OLI sensor data and unsupervised
classification techniques, for which 2015 leaf-on color
infrared aerial photography (https://www.dnr.state.mn.
us/maps/landview/) served as ground truth.

Conifers were not present at nine plots, reducing sam-
ple size for understory biomass comparisons from 61 to
52. Of these 52 plots, we identified two potentially influ-
ential outliers based on results of a multiple regression
procedure performed on overstory composition and can-
opy cover against understory coniferous biomass. Each
of these plots had Cook’s distance (D) metric (Cook
1979) greater than four times the mean D, which is a
conservative outlier threshold (see Kutner et al. 2005). In
one instance, we noted that understory biomass was
substantially higher than all other plots, while canopy
cover from our MRLC source was 70%. This was suspect
since we only measured six trees greater than 6 m tall
on that plot. On the other plot, understory biomass was
also high, while field data did not show an inordinate
number of trees with either heights or height to first live
branch below 3 m AGL. Hence, we removed these plots
from further analysis. We tested the remaining field data
for mean contrast among two levels of vertical biomass
(0 to 2 m AGL and 0 to 3 m AGL) using Tukey’s hon-
estly significant difference test (HSD; Tukey 1953) across
two separate overstory groups: forest type and canopy
cover. Of the 50 field plots, there were 19 with broadleaf
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overstory and 31 with a mixed broadleaf—conifer over-
story, while 13 plots had overstory canopy cover in the
47 to 66% range and 37 plots in the 67 to 78% range.

Results

Fuel density calibrations with satellite sensor data

We performed model calibrations between ground-
based fuel density estimates (TFD, SFD, and CBD)
and satellite sensor data in separate XPLS regression
sequences (Tables 3 and 4). Among these, all xPLS
regression attempts between CGF-based estimates of
SFD and satellite image predictors failed to resolve vi-
able solutions and were aborted. For TFD and CBD,
all ground-to-satellite calibrations yielded strong
models based on statistical metrics except TFD;
(Table 5). Of these, the four CBD models performed
similarly (Adj R*> = 0.95 to 0.98, RMSE = 0.05 to 0.17
kg m™>, and PRESS < 0.47) and were superior to the
TED group of fuel models according to these metrics
(Table 5, Fig. 4). The TFD group of models (TFDy,
TFD;,, and TFD;,3) derived from weighted ground-
level CGF data were less complex in that they used
fewer of the initial 66 satellite-based predictors (11,
16, and 23 predictors used, respectively) with lower
latent dimensionality (i.e., orthogonal components)
with respect to the response variable (Table 5). How-
ever, all of the TFD models resulted in over-
prediction bias for low values of fuel density and the
opposite trend among the upper range of fuel density
compared to field estimates (Fig. 4).

Final reduced sets of image predictor variables
retained from the initial set of 66 candidate predictors
(31 SAR, 25 leaf-off optical, and 10 basal area estimates
from Wolter and Townsend 2011) for the seven models
varied from 11 for TFD; to 38 for CBD;,3 (Tables 3 and
4). The two CGF-based sets of fuel models (TFD;_ o3
and CBDj_;,3) revealed some trends in predictor variable
retention. Only one of the TFD models (123) retained
any of the OLI predictor variables (green band from 19
February 2015; OLI 3), while the CBD models collect-
ively retained 13 of the OLI predictors. On average, each
set of three CGF-based TFD and CBD models retained
similar proportions of SAR predictors (48.8 and 43.7%,
respectively; Table 4). However, TFD models, on aver-
age, used a greater proportion of cross-frequency SAR
ratio predictors (18.0% versus 5.8%; Table 4), while the
three CBD models retained a higher proportion of L-
band predictors on average (15.1% versus 4.5%). Overall,
CGF-based CBD models collectively retained a more
uniform mix of both SAR and optical variables (Table
3). No clear trends in predictor variable retention by
zenith angle range emerged among the three LAI-2200C
sensor zenith angle ranges (0 to 7°, 0 to 23° and O to
38°) used for TFD and CBD model development.
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However, the TFD; model was substantially different
from the CBD; model in this respect, retaining 0 versus
7 C-band and 1 versus 5 L-band SAR predictors in favor
of cross-frequency SAR ratios. The CBDgc model
showed variable retention trends similar to that of the
CGF-based CBD models (Tables 3 and 4).

Last, the TFD and CBD models retained different
numbers of the basal area estimate variables from the
Wolter and Townsend (2011) study (Table 3). The TFD
models retained two to four of these basal area esti-
mates, while CGF-based CBD models retained five to
seven and CBDgc retained four. All seven of these fuel
density models retained the white spruce basal area esti-
mate predictor and, all four CBD models retained the
red pine basal area estimate predictor. All but two of the
fuel density models (TFD;, and CBD,) retained the east-
ern white pine basal area predictor. There were no clear
predictor retention trends among fuel density models by
CGF measurement elevation or LAI-2200C zenith angle
range (Table 3).

Comparison of fuel density estimates and distributions
To keep modeled fuel density results in perspective, the
reader should note that plot-wise field estimates of CBD
derived via FuelCalc (CBDgc) were treated here as quasi-
ground truth (modeled, not actual), even though West-
ern species substitutions were necessary (R. Keane, US
Forest Service, Rocky Mountain Research Station, Mis-
soula, MT, USA; personal communication). That said,
correlations between our seven estimates of fuel density
and the CBD estimates from LANDFIRE (CBD;g) are
shown in Fig. 5 along with their respective data distribu-
tions. As expected, estimates of CBD and TFD derived
from the weighted transformation of CGF according to
Keane et al. (2005) were more strongly correlated among
respective levels of CGF measurement than between
them (Figs. 4 and 5). All six CGF-based estimates of fuel
density show substantially weaker but significant correl-
ation (Fig. 5) with FuelCalc-derived estimates of CBD
(predicted CBD«c), for which TFD;, and TFD;,3 showed
the strongest correlations (r = 0.51, P = 0.001). Correla-
tions between CBD;p and CGF-based estimates of fuel
density were either not significant or marginal (r = 0.25
to 0.31, P = 0.1 to 0.05). The relationship between the
CBDyr and CBDgc estimates was not significant (Fig. 5).
Measures of TFD and CBD distribution shape
(skewness, SK; and kurtosis, KU) across our 61
ground plots vary among the different field fuel esti-
mates (Figs. 5 and 6). According to Bulmer (1979),
the TFD;,5, TFD;,3, CBD;5, CBDj,3, and CBDyf esti-
mates of fuel density have distributions that may be
considered symmetric around the mean (i.e., SK be-
tween -0.5 and +0.5), while TFD; and CBD; show
moderate, positive skew (SK = 0.56 to 0.59). The



Wolter et al. Fire Ecology (2021) 17:26 Page 12 of 23

Table 3 Final sets of image predictors (left side) and model coefficients for respective total fuel density (TFD; kg m ) and canopy
bulk density models (CBD; kg m>) calibrated using dependent ground data collected in 2015 and 2016 in the Superior National
Forest, Minnesota, USA. Model subscript notations 1, 12, and 123 reference the zenith angle range used for canopy gap fraction
(CGF) measurements (0 to 7°, 0 to 23°, and 0 to 38°, respectively), while FC represents FuelCalc-derived field estimates of CBD.
Dashes (=) indicate image predictors removed during model calibration. Image predictors include synthetic aperture radar (SAR)
backscatter amplitudes and ratios, optical sensor bands and ratios, and previously derived estimates of forest basal area (BA) by
species or group: Abies balsamea (ABBA), conifer (CON), broadleaf (BRD), Larix laricina (LALA), Picea glauca (PIGL), Picea mariana
(PIMA), Pinus resinosa (PIRE), Pinus strobus (PIST), and total basal area (Total). Where necessary, image month is indicated.
Combinations of SAR send and receive polarization are indicated with H (horizontal) and V (vertical). Spatially filtered (low-pass)
versions of original resolution SAR variables have notations 3 x 3, 5 x 5, and 7 X 7. Optical sensor indices include the normalized
difference vegetation index (NDVI), shortwave infrared to near-infrared ratio (SWIRNIR), and SWIR to visible ratio (SVR). Sensors
include Phased Array L-band Synthetic Aperture Radar (PALSAR-1); Sentinel-1 C-band SAR; Sentinel-2 optical MultiSpectral Instrument
(MSI); Satellite Pour I'Observation de la Terre (SPOT-5) multispectral (XS) optical sensor; and Landsat-8's optical Operational Land
Imager (OLI)

TFD, TFD;, TFD123 CBD, CBD;; CBD;33 CBDgc

Sentinel-2A (MSI)

MSI 2 0.0014 0.0104 - - 0.0070 0.0085 -

MSI 3 - —0.0058 —-0.0083 - —0.0041 - -

MSI 4 - - - -0.0019 - -0.0109 —-0.0044

MSI 8 - - - 0.0005 —-0.0021 -0.0018 -

MSI 11 0.0000 - 0.0055 - - - -

MSI 12 0.0000 - - - 0.0068 00118 0.0084

MSI NDVI - - - -0.0247 0.0585 - -

MSI SVR —0.0419 - —-5.2946 - —-3.1050 -5.5613 —7.2481

MSI SWIRNIR - - - - - - 29540
Palsar-1 (P1)

HH, 5 x 5, Dec - - - - 17.7236 25.2843 -120514

HH, 7 x 7, Dec - - —12.5204 -8.0620 —33.3317 —47.0995 -

HH, 3 x 3, Nov - - - —2.8668 - - -

HH, 5 x 5, Nov —0.7608 - - - —12.8692 —24.8212 -

HH, 7 x 7, Nov - - - 3.5551 14.6509 276294 -

HV, Nov - - - —2.5963 - - -

HV, 5 x 5, Nov - - - - - —19.4630 —48.3685

HV, 7 x 7, Nov - - - 11.7498 15.6451 44.7208 804010
Landsat-8 (OLI) Feb

oLl 2 - - - —0.0002 - - -

OoLl'3 - - 0.0002 - - - —-0.0032

OLI'5 - - - —-0.0001 0.0004 0.0013 0.0030

oL 6 - - - 0.0010 —0.0007 —-0.0023 —-0.0033

OLI NDVI - - - - —0.0265 -0.0223 -

OLI SVR - - - -5.9211 0.0121 0.0053 -0.0314

OLI SWIRINIR - - - - - 24.7883 504194
Sentinel-1 (S1)

VH - - - 0.0066 0.0141 0.0332 0.0259

VH,3x 3 - 0.0630 0.0625 - - - -

VH, 5 x5 - -0.1781 -0.1152 —-0.0349 -0.1061 -0.2172 -0.1708

VH, 7 x7 - 0.0642 - 0.0291 0.0645 0.0961 -

W - —-0.0106 —0.0251 -0.0103 —0.0061 -0.0142 —-0.0095

W,3x3 - - 0.0205 0.0147 - - -
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Table 3 Final sets of image predictors (left side) and model coefficients for respective total fuel density (TFD; kg m ) and canopy
bulk density models (CBD; kg m™>) calibrated using dependent ground data collected in 2015 and 2016 in the Superior National
Forest, Minnesota, USA. Model subscript notations 1, 12, and 123 reference the zenith angle range used for canopy gap fraction
(CGF) measurements (0 to 7°, 0 to 23°, and 0 to 38°, respectively), while FC represents FuelCalc-derived field estimates of CBD.
Dashes (=) indicate image predictors removed during model calibration. Image predictors include synthetic aperture radar (SAR)
backscatter amplitudes and ratios, optical sensor bands and ratios, and previously derived estimates of forest basal area (BA) by
species or group: Abies balsamea (ABBA), conifer (CON), broadleaf (BRD), Larix laricina (LALA), Picea glauca (PIGL), Picea mariana
(PIMA), Pinus resinosa (PIRE), Pinus strobus (PIST), and total basal area (Total). Where necessary, image month is indicated.
Combinations of SAR send and receive polarization are indicated with H (horizontal) and V (vertical). Spatially filtered (low-pass)
versions of original resolution SAR variables have notations 3 x 3, 5 x 5, and 7 x 7. Optical sensor indices include the normalized
difference vegetation index (NDVI), shortwave infrared to near-infrared ratio (SWIRNIR), and SWIR to visible ratio (SVR). Sensors
include Phased Array L-band Synthetic Aperture Radar (PALSAR-1); Sentinel-1 C-band SAR; Sentinel-2 optical MultiSpectral Instrument
(MSI); Satellite Pour I'Observation de la Terre (SPOT-5) multispectral (XS) optical sensor; and Landsat-8's optical Operational Land
Imager (OLI) (Continued)

TFD, TFD;, TFD123 CBD, CBD;; CBD;33 CBDgc
W, 5 x5 - 0.0452 - - 0.0488 0.1091 0.0981
W, 7x7 - - 0.0488 - -0.0182 -0.0350 -
VH:W - —0.0034 —-0.0030 —0.0005 - —-0.0013 —-0.0028
VHW, 5 x 5 - 0.0146 - 0.0027 0.0108 0.0278 0.0319
VHW, 7 x 7 - 0.0038 0.0185 - - - -
S1:P1 (Nov) ratios
VH:HV —0.0051 - - - - - —-0.1553
VHHY, 3 %X 3 - - 0.3947 - - - -
VH:HV, 5x 5 —0.0051 - —04542 —-0.0950 - - —-0.1553
VHHV, 7 x 7 -0.0025 -0.0706 - 0.0770 - - 04612
W:HH, 5 X 5 - 1.2505 - -0.8196 —1.6456 —3.7624 -
W:HH, 7 x 7 - 19131 - 09522 2.1599 4.6099 -
SPOT-5 (XS)
XS - - - —-0.0341 —0.0851 —0.1435 -
XS 2 - - 0.1409 0.0368 0.0488 0.1022 0.1278
XS 3 - -0.0172 -0.1854 - - -0.0781 -
XS 4 -0.0028 - - —-0.0201 - 0.0618 —-0.1030
XS NDVI - - - - 0.0367 0.0770 0.0228
XS SVR - —-1.2025 - -25112 —-10.5606 —-17.6685 4.6225
SWIRINIR - - - 2.1590 6.5851 9.2176 -
BA estimates
ABBA - - —-0.6006 - 1.8371 23587 -
CON - - 0.3828 —-0.1695 -0.3521 - -
BRD - - - - -0.3770 —0.5943 -
LALA - - 28078 1.6604 - - -
PIGL 04334 1.2487 1.6620 19919 2.2904 2.8725 —2.5577
PIMA - - -0.5171 - 0.2985 - -
PIRE - - - 04379 1.2880 1.3795 -0.9524
PIST 1.3065 - 4.5840 - -2.8129 —4.6389 -1.1636
Total - 0.2282 - - - - 1.7470

CBDgc estimates show a highly positive skew (SK > have KU values in the range of 2.13 to 2.79, which
1). In terms of kurtosis—relative comparison of tail indicates platykurtic distributions that are substan-
shape to that of a normal distribution (Westfall tially flatter and wider with shorter, thinner tails than
2014)—the CGF-derived estimates of CBD and TDF that of a normal distribution (KU = 3). The CBDgc
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Table 4 The number (n) and relative proportion (% of total) of satellite predictors (optical, estimates of basal area [BA], and synthetic
aperture radar [SAR]) retained by each canopy bulk density (CBD) and total fuel density (TFD) model during calibration in this
Minnesota, USA, study (2015 to 2016) to quantify coniferous forest fuels. Subscript notations 1, 12, and 123 reference the zenith
angle range of canopy gap fraction measurements (0 to 7°, 0 to 23°, and 0 to 38°, respectively) used to estimate field fuel density,
while FC represents FuelCalc-derived estimates of CBD. A further breakdown of the SAR predictors into C-band, L-band, and C to L
ratios is shown in italics. Dashes (-) indicate groups of SAR predictors not used during calibration for two fuel density models

Satellite TFD, TFD,, TFD423 CBD, CBD;, CBD;33 CBDgc
variable n % n % n % n % n % n % n %
Optical 5 455 4 235 6 273 12 375 15 4.7 17 447 13 44.8
BA 2 182 2 11.8 6 27.3 4 125 7 194 5 132 4 13.8
SAR 4 364 11 64.7 10 455 16 50.0 14 389 16 421 12 414

C-band - - 8 47.1 7 31.8 7 21.9 7 194 8 21.1 6 20.7

L-band 1 9.1 - - 1 4.5 5 15.6 5 13.9 6 15.8 3 103

Cto L ratio 3 27.3 3 17.6 2 9.1 4 12.5 2 56 2 53 3 10.3
Total 1 17 22 32 36 38 29

estimates show an opposite trend (KU = 3.93), which
suggests longer, relatively flatter tails compared to
normal (leptokurtic). The CBD;p estimates extracted
for our field plot locations show a distinctly uniform
distribution trend (KU = 0.26), which is considered
highly leptokurtic (Fig. 6).

Understory conifer biomass and overstory forest structure
Of the 3738 conifer trees measured in this study across
61 field plots, 70% (2617) were balsam fir; of these,
50.4% were <2 m tall, with an additional 15.6% in the 2
to 3 m range and 9.7% in the 3 to 4 m height range (i.e.,
75.7% of balsam fir were < 4 m tall). Mean understory
coniferous biomass (needles, branches, and boles) within
two separate vertical aggregations (0 to 2 m and O to 3
m AGL) did not show any significant differences (P =

0.291 to 0.978), according to Tukey’s HSD test, when
grouped by two broad overstory forest types (broadleaf
and mixed broadleaf—conifer) or two overstory percent
canopy cover ranges (47 to 66% and 67 to 78%).

Discussion

Canopy gap fraction and canopy bulk density

The ability to model and map CBD via indirect CGF
measurements hinges on the relationship between such
measures, leaf area index (LAI), and canopy biomass
(Brown 1978; Keane et al. 2005). However, CGF mea-
sured by the LAI-2200C and similar instruments tends
to underestimate LAI, especially for conifers (Bolstad
and Gower 1990; Gower and Norman 1991). Thus,
branches and species-specific clumping of needles
around shoots blocking the direct view of some fraction

Table 5 Satellite image to ground total fuel density (TFD; kg m~>) and canopy bulk density (CBD; kg m ™) model calibration results
using field data collected in 2015 and 2016. Results used to evaluate the potential for mapping coniferous fuel density across the
Superior National Forest, Minnesota, USA. Models for TFD and CBD are denoted T and C, respectively, while numbers 1, 12, and 123
reference the zenith angle range used for canopy gap fraction measurements: 0 to 7°, 0 to 23°, and 0 to 38°, respectively.
FuelCalc-derived estimates of CBD are denoted FC. LANDFIRE's CBD estimates (LF) for our plot locations are shown for comparison;
dashes (-) indicate no data. Descriptive model statistics include mean and maximum (Max) fuel density (kg m™), standard deviation
(SD), adjusted coefficient of determination (Adj R%), root mean squared error (RMSE; kg m™), cross-validation predicted error sum of
squared (PRESS), Akaike information criterion (AIC), and Bayesian information criterion (BIC). The number of initial (iVar) and final
(fVar) image predictor variables retained and the number of latent component variables (Comp) used in each of the final models are

given

Model Mean Max sD iVar fvar Comp Adj R? RMSE PRESS AIC BIC
LF 0.108 0300 0.048 - - - - - - - -

FC 0.999 2991 0.787 66 29 25 0.961 0.165 0.375 —-155.0 1255
T1 0.669 1.037 0.154 66 " 3 0.340 0.122 0.833 —226.0 533
T12 1432 2466 0435 66 16 15 0.769 0.209 0631 -1529 716
T123 2.158 3468 0.726 66 23 18 0.869 0.242 0.575 -1213 99.5
C1 0472 0.934 0.210 66 32 24 0.950 0.048 0463 —299.7 1429
C12 1.035 2492 0.583 66 36 28 0974 0.072 0418 -2369 1573
C123 1.596 3.000 0.743 66 38 30 0.978 0.103 0378 -1943 164.2
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Fig. 4 Regression results between field estimates and satellite-derived estimates of total fuel density (TFD; kg m ™) and canopy bulk density (CBD;
kg m~3) used for mapping fuel within the Superior National Forest, Minnesota, USA, following field data collection in 2015 and 2016. Models of
TFD (coniferous fuels above ground level) and CBD (coniferous fuels 2 m above ground level) based on weighted canopy gap fraction are
denoted T and C, respectively, while numbers 1, 12, and 123 refer to zenith angle ranges (0 to 7°, 0 to 23°, and 0 to 38°, respectively) of the
LAI-2200C instrument. FuelCalc-based estimates of CBD are denoted FC. The dotted black line represents unity between field-measured and
satellite-calibrated estimates of fuel density

of needles in an instrument’s optical field of view have
been suggested (Gower and Norman 1991; White et al.
1997). However, Fassnacht et al. (1994) found no improve-
ments in modeling conifer LAI when specific clumping
bias factors (sensu Gower and Norman 1991; Stenberg
et al. 1994) were employed. Interestingly, Gower and Nor-
man (1991) speculated that the impact of needle-bearing
branches on CGF and LAI is likely small due to foliar
masking effects. Keane et al. (2005) went further and sug-
gested that skyward projection of foliage may largely block
the view of small and large supportive branch tissues.
Their speculation arose from the fact that only small dif-
ferences in predicted CBD values (i.e, maximum CBD
measured within any 1-m increment up to tree top) were
obtained when using LAI-2000 CGF measurements (col-
lected at 2 m AGL) across different aggregations of can-
opy biomass data (e.g., foliage alone; foliage + small,
burnable branches; and foliage plus all branches). Thus,
the use of CGF as a basis for the determination of CBD,
while not perfect, may be robust to species-specific differ-
ences among coniferous fuel structures.

Disparity among CBD estimates: CGF, FuelCalc, and LANDFIRE
We developed field estimates of CBD in the SNF via two
methods: allometric modeling via the FuelCalc routine

and transformation of CGF according to Keane et al.
(2005), in which the authors meticulously calibrated
CGEF-to-CBD models based on the iterative destructive
sampling of Western conifer stands to determine the
amount of biomass removed and amount of biomass
that remained. We extended the use of their methodolo-
gies and equations to model field estimates of CBD
using the 0 to7° (1) and O to 23° (12) zenith angle ranges
for comparison to their 0 to 38° (123) models. Of the
CBD models, CBD;,3 most closely approximated field
estimates of CBD obtained using FuelCalc (CBDgc; Figs.
4 and 5). However, the CBD;,3 model produced esti-
mates that far exceed values believed to be typical for
this region (see Engelstad et al. 2019). In this study, the
upper range among CBD estimates increases substan-
tially with increasing LAI-2200C sensor zenith angle
(Fig. 4). In this respect, the CBD; model produced a
more realistic range of estimates, while the CBD;, model
was intermediate between the extremes (Fig. 4, Table 5).

Fire managers on the SNF suspect that actual CBD
values do exceed that which LANDFIRE portrays due to
the abundance of lower canopy fuels (e.g, 2 to 4 m
AGL), but lack a definitive set of sampling data to
reinforce such conjecture (P. Johnson, USDA Forest Ser-
vice, Grand Marais, MN, USA, unpublished data).
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Fig. 5 Correlation scatterplots for field estimates (data collected in 2015 and 2016) of total fuel density (TFD; kg m™) and canopy bulk density
(CBD; kg m™) compared to LANDFIRE (LF) estimates of CBD extracted for our 61 field plot locations within the Superior National Forest,
Minnesota, USA. Estimates of TFD (all coniferous fuel above ground level) and CBD (coniferous fuel 22 m above ground) based on weighted
canopy gap fraction are denoted T and C, respectively, while numbers 1, 12, and 123 refer to zenith angle ranges (0 to 7°, 0 to 23°, and 0 to
38°, respectively) of the LAI-2200C instrument. FuelCalc-based field estimates of CBD are denoted FC. Pearson correlation coefficients with
corresponding P-value significance codes (*** for 0 to 0.001; ** for >0.001 to 0.01; * for >0.01 to 0.05; - for >0.5 to 0.1; and no symbol for >0.1 to
1) are shown above the diagonal, while the diagonal shows distributions of fuel density estimates. Bivariate scatter plots with fitted lines are
below the diagonal. Linking field fuel estimates and satellite sensor data facilitates ground-to-satellite calibration of fuel models for fuel
mapping purposes

Moreover, according to our findings, modeling the dis-  found within any 3.5-m layer of the canopy, a value that
tribution and abundance of such fuels in the SNF based  often exceeds twice the profile average (Scott and Rein-
on overstory canopy characteristics may not be a viable  hardt 2005; Scott 2008). This is in response to both fire
mapping option. Current versions of FuelCalc conserva-  spread sensitivity to maximum CBD (Keane et al. 2005)
tively overestimate CBD by using the maximum CBD and underlying issues with fire spread equations (van
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Wagner 1977; Rothermel 1991). In this study, however,
average estimates for CBDgc were over nine times
greater than average CBDyr across our study area (Table
5). Hence, we suspect that the actual CBD values for the
SNF region lie somewhere between these estimates. Irre-
spective of such conjecture, it is curious that Pearson
correlations between the two CBD estimates are neither
significant nor marginally significant (Fig. 5).

Whether such offsets are linked to the substitution of
functionally similar conifer species (Western for Eastern)
within the FuelCalc routine or some other factor such as
inappropriate use of canopy closure rather than canopy
cover during the calculation of CBDy¢ driving values
downward (Scott 2008) is difficult to determine. Early in
our investigation, we questioned FuelCalc’s use of
Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) al-
lometry over Engelmann spruce as a substitution for
black spruce. However, even higher estimates of CBD re-
sulted when we substituted Engelmann spruce allometry.
Similar questions arose for other species having low
abundance on this landscape. However, for conifer spe-
cies that do dominate this landscape (Fig. 7), we had no
defensible reason to question FuelCalc’s substitutions.
Nevertheless, while we assumed FuelCalc-derived esti-
mates of CBD were quasi-ground truth in this research,

we suspect that some Western species substitutions for
Eastern species that lacked detailed allometry may repre-
sent a potential flaw in these analyses. Hence, detailed
allometric equations that afford accurate, region-specific
estimation of CBD for common Eastern conifer species
remain a research need.

Effects of CGF measurement level on fuel density
estimation

The collection of CGF data from 2 m AGL to estimate
CBD (Keane et al. 2005), LAI (Fassnacht et al. 1994), and
other forest canopy parameters (Paletto and Tosi 2009) is
standard practice, while the collection of ground-level
CGF for these purposes is not. This region of the SNF has
a high abundance of understory coniferous fuel (mainly
balsam fir) that straddles the 2-m AGL fuel boundary be-
tween surface and canopy fuels. As such, we used ground-
level CGF measurements to enable overall assessment of
the sensitivity of satellite sensor data (especially SAR) to
canopy fuel biomass (CBD) and coniferous surface fuel
density (SFD). That said, the most dramatic differences
among CGF-based fuel density models were between
levels of CGF measurement (0 versus 2 m AGL) rather
than between the LAI-2200C sensor’s fields of view (0 to
7° [1], 0 to 23° [12], and O to 38° [123]). In regression
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Fig. 7 Distribution of forest basal area (BA; m? ha™') showing the relative abundance of conifer and broadleaf forest associates among 61
random field plots sampled in 2015 and 2016 within the Superior National Forest, Minnesota, USA. Shown are three forest BA levels (0 to 5, 5 to
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include balsam fir (ABBA), white spruce (PIGL), black spruce (PIMA), tamarack (LALA), jack pine (PIBA), red pine (PIRE), eastern white pine (PIST),

analyses, field-based estimates and satellite-based esti-
mates of fuel density for all TFD models deviated from
unity, showing both additive and multiplicative shifts be-
tween dependent TFD variables and independent,
satellite-based estimates of TFD (Fig. 4). In contrast, all
satellite-based estimates of CBD followed unity with field
estimates of CBD via CGF (Fig. 4).

For TFD models, two complementary explanations for
deviations from unity with ground-based estimates arise.
First, based largely on failure of all SFD model calibra-
tions, we suspect that contributions of smaller, understory
conifer saplings to estimates of TFD were not effectively
detected by either optical or SAR satellite sensors, in spite
of the relative retention difference among SAR predictors
observed for TFB and CBD calibrations (Table 4). As
such, TED model calibrations between ground and satel-
lite sensor data remained possible because some portion
of canopy fuel structures were visible to SAR sensors and,
to a lesser degree, by optical sensors, which we posit was
not the case for SFD. Second, with respect to ground-level
CGF measurements, we suspect that TFD is biased by live,
coniferous surface and lower canopy fuels (e.g., saplings)
when present. If true, this may preclude field estimation of
SED (i.e., TFD minus CBD) via CGF metrics, which com-
ports with prior research (Gower and Norman 1991; Fas-
snacht et al. 1994).

With respect to CBD, we suspect that burnable fuel in
lower layers of the forest canopy above 2 m AGL (saplings
and lower branches of mature trees) in this sub-boreal
landscape represents a substantial fuel biomass gap that
remains hidden from remote detection, space-based SAR
sensors notwithstanding. While generally accepted as
dogma for passive optical sensors such as Landsat OLI
(Keane et al. 2005), we suspect that lower canopy fuel de-
tection via the current suite of SAR sensors is also limited
due to a combination of C- and L-band wavelength idio-
syncrasies with respect to forest cover (Le Toan et al
1992; Imhoff 1995; Sadeghi et al. 2018). For instance, L-
band (23.6 cm 1) backscatter from relatively dense, mature
forests of typical basal area (e.g., 20 to 30 m® ha™') corre-
sponds, in decreasing order, to the abundance of larger
canopy components (boles and larger branches); ground-
trunk double bounce; and, to a lesser degree, depending
on canopy cover, the ground (Wang et al. 1995; Ustin
2004). Hence, smaller canopy components, such as over-
story foliage and understory conifer saplings (e.g., balsam
fir) remain largely undetected at L-band wavelengths (see
Imhoff 1995). For larger trees, however, known relation-
ships between bole dimension, basal area, and CBD
(Duveneck and Patterson III 2007; Ferniandez-Alonso
et al. 2013) may partially explain the retention of L-band
predictors during CBD calibrations (Table 3). At C-band
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(5.54 cm 1), for the same forest scenario, the scattering
phase center is primarily a function of smaller compo-
nents in the upper forest canopy, including foliage and
small branches (Wang et al. 1993; Pulliainen et al. 1999;
Sexton et al. 2009). This limits canopy penetration to a
fraction of overall canopy depth (Kellndorfer et al. 2004;
Sadeghi et al. 2018). Therefore, conjecture regarding the
relative significance of SAR predictor retention differences
between TFD and CBD model calibrations (Tables 3 and
4) would be unwise.

Recommendations for the fire modeling community
Given the discussion above, we believe that CBD; and
CBDy,, derived via transformed CGF data according to
Keane et al. (2005), represent the most promising esti-
mates of burnable canopy fuel in the SNF. In spite of po-
tential allometric differences in burnable biomass
between Eastern conifers and their Western substitutes,
the majority of CBDgc estimates lie within the combined
range of these two indirect estimates of CBD (Fig. 4).
Moreover, the SAR sensor data used in this study to
scale field estimates of CBD to the SNF landscape do
not appear biased to the presence of underlying conifer-
ous surface fuels. Hence, we recommend testing these
CGF-based estimates of CBD as well as CBDgc in the
Upper Midwest within the FARSITE modeling frame-
work to evaluate and understand potential fire behavior
sensitivity to these different fuel inputs. What seems to
be of high importance when modeling fire behavior is
having CBD values high enough to propagate fire across
a landscape (Scott 2008). Critical CBD thresholds that,
when exceeded, support active crown fire behavior vary
according to fine fuel moisture content and 10-m wind
speed (Agee 1996; Cruz et al. 2005). For Western con-
iferous forests, this may range from 0.05 kg m™ at 4%
fuel moisture and 25 km h™' wind speed to as high as
0.30 kg m™ at the same fuel moisture and ~2 km h™
wind speed (Cruz et al. 2005). Hence, with respect to fire
behavior modeling in the SNF, our estimates of CBD
certainly seem high enough to propagate fire at almost
any wind speed. However, the potential importance and
impact of various differences in fuel distribution and
density among our estimates of CBD across this land-
scape (Figs. 5 and 6), which may affect rates of fire
spread (Agee 1996), remain untested.

Ladder fuels

Remote detection of coniferous ladder fuels (surface
and lower canopy) in the Upper Midwest remains a
challenge using either low-density lidar (Engelstad
et al. 2019) or dual-polarity C- and L-band SAR satel-
lite sensor data. The distribution and abundance of
ladder fuels within the SNF landscape (Fig. 8)
represent a substantial gap in knowledge that affects
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Fig. 8 Example photos of conifer ladder fuels (primarily balsam fir,
Abies balsamea [L] Mill.) taken by Patricia J. Johnson in 2016 within
the Gunflint Ranger District of the Superior National Forest,
Minnesota, USA, under a mixed conifer-broadleaf overstory and b
pure broadleaf overstory. One goal of this research was to
determine the impact of coniferous surface and lower canopy fuels
on satellite-based detection and mapping of canopy bulk density
(CBD; kg m™) in this region using indirect measurements of CBD as
ground truth

the efficiency of efforts focused on fuel reduction
treatments to mitigate wildfire risk. Research on link-
ages between the abundance of understory biomass
and combinations of overstory canopy type and per-
cent cover (Messier et al. 1998; Légaré et al. 2002)
begs the question of whether modeling the presence
of ladder fuels may be possible in this region. We
suspect that positive understory light-to-biomass rela-
tionships likely hold true regarding broadleaf biomass
in this region. However, the results of our analyses
do not support the possibility of modeling balsam fir
ladder fuels via this mechanism due to its strong
shade tolerance (Corace et al. 2012). Low-density lidar
sensor data (i.e., average of 0.44 points m™>) have not
yet facilitated sufficient characterization of such lad-
der fuels in this region (Engelstad et al. 2019) to en-
able sound management decisions. Resolution of this
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gap in fuel information will likely only be resolved
once higher-density lidar data (e.g., 8 points m?) are
available on a more frequent basis—a project that is
currently underway in Minnesota (MNGAC [Minne-
sota Geospatial Advisory Council] 2020).

Conclusions

In an attempt to capture coniferous fuel structures be-
yond optical detection limits, as suggested by some re-
searchers (Keane et al. 2005; Keane et al. 2006), we
combined dual-polarity C- and L-band synthetic aper-
ture radar (SAR) with leaf-off optical satellite sensor data
to achieve deeper detection depth into forest fuel struc-
tures. Satellite data were coupled with both FuelCalc-
based estimates of CBD and indirect, CGF-based, field
estimates of CBD, TFD (all burnable fuels above ground
level), and SFD (i.e., TFD minus CBD) to calibrate fuel
models to evaluate fuel structure mapping capabilities.
Among the indirect methods, the slope of fuel density
estimates (observed versus predicted) was highly sensi-
tive to the elevation of CGF measurements (0 m versus
2 m AGL), while the magnitude of fuel density estimates
was sensitive to the field of view of the LAI-2200C CGF
sensor. We believe that the presence of understory bal-
sam fir (e.g., <3 to 4 m tall) attenuated the ground-level
view of the LAI-2200C instrument, causing substantial
bias in predicting TFD. This partially contributed to the
failure of all SFD model calibrations with satellite sensor
data, in addition to known canopy penetration limits as-
sociated with C-band SAR (Kellndorfer et al. 2004; Sade-
ghi et al. 2018). At the same time, it is likely that lower
strata biomass structures (boles and large branches) are
invisible at L-band wavelengths (see Imhoff 1995). Thus,
for larger trees, we suspect that the relationship between
bole dimension, basal area, and CBD (Duveneck and
Patterson III 2007; Fernindez-Alonso et al. 2013) may
be linked to the retention of L-band predictors during
CBD model calibrations (Tables 3 and 4).

Models of CBD derived via CGF data did not suffer
equally from suspected lower fuel bias issues, as all
showed better unity between field-derived and satellite-
predicted estimates of CBD. However, the maximum
range of modeled CBD remained sensitive to the zenith
angle ranges of the LAI-2200C instrument. While the 0
to 38° zenith angle range produced statistically superior
CBD calibrations with satellite sensor data and were
most similar to CBDgc estimates, both CBD;,3 and
CBDgc produced suspiciously high upper ranges of
CBD. Canopy gap fraction measured at 0 to 7° and O to
23° zenith angle ranges each produced a more reason-
able range of CBD values for this region. However, the
importance of spatial variability among these CGE-
derived CBD estimates on actual fire behavior modeling
remains unknown. With respect to FuelCalc,
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substitution of Western for Eastern conifer species’ al-
lometry in the calculation of CBD represents an un-
known effect on these analyses. Hence, a need exists for
the development of region-specific CBD allometry.

A substantial amount of coniferous biomass in the
SNF region resides in the understory layers below the
dominant overstory canopy. Much of this biomass strad-
dles the 2-m AGL categorical boundary between surface
fuels and canopy fuels, each of which is largely hidden
from the view of optical and SAR sensors. Unlike other
regions of the USA, the abundance of understory con-
iferous biomass, especially balsam fir, in the SNF appears
to be insensitive to both overstory forest type (broadleaf
versus broadleaf—conifer mix) or percent canopy cover.
This contradicts current dogma (Zavitkovski 1976;
Messier et al. 1998; Légaré et al. 2002) and is likely due
to the strong shade tolerance of balsam fir.
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