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ABSTRACT 

 

Ecological definition and detection of fire severity are influenced by factors of spatial resolution 

and timing. Resolution determines the aggregation of effects within a sampling unit or pixel 

(alpha variation), hence limiting the discernible ecological responses, and controlling the spatial 

patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, 

alpha variation increases, extracting beta variation and complexity from the spatial model of the 

whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, 

sun angle, and potential contrast between responses within burns. Detection sensitivity can 

degrade toward the end of many fire seasons when low sun angles, vegetation senescence, 

incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede 

many rapid response applications when remote sensing conditions improve. Lag timing, or time 

since fire, notably shapes the ecological character of severity through first-order effects that 

only emerge with time after fire, including delayed survivorship and mortality. Survivorship 

diminishes the detected magnitude of severity, as burned vegetation remains viable and 

resprouts, though at first it may appear completely charred or consumed above ground. 

Conversely, delayed mortality increases the severity estimate when apparently healthy 

vegetation is in fact damaged by heat to the extent that it dies over time. Both responses depend 

on fire behavior and various species-specific adaptations to fire that are unique to the pre-fire 

composition of each burned area. Both responses can lead initially to either over- or under-

estimating severity. Based on such implications, three sampling intervals for short-term burn 

severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, 

two months, and depending on the ecotype, from three months to one year after fire, 

respectively. Spatial and temporal conditions of sampling strategies constrain data quality and 

ecological information obtained about fire severity. Though commonly overlooked, such 

considerations determine the objectives and hypotheses that are appropriate for each 

application, and are especially important when building comparative studies or long-term 

reference databases on fire severity.  
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INTRODUCTION 

 

This paper concerns basic spatial and 

temporal factors that generally affect 

detection and definition of fire severity in a 

landscape context. Such factors result from 

the ecological conditions and dynamics that 

arise following fire, which largely determine 

the limitations and appropriate uses of 

derived information. Since remote sensing is 

a primary means to collect information across 

large burned areas, a focus is on how factors 

influence those results and the ecological 

conclusions drawn from them. The discussion 

is intended to be conceptual and apply 

generally across a broad spectrum of 

methodologies, recognizing that some 

approaches have unique properties or 

limitations that go beyond these 

considerations. 

Burn assessments have a basic goal to 

gather reliable site-specific information over 

at least significant portions of impacted areas. 

Constraints on such efforts depend upon 

objectives, which can vary from quite general 

and simple to very specific and complex 

(Table 1). Often coincident with information 

specificity is increasing difficulty, cost, effort 

and modeled inference that can be 

accompanied by decreasing reliability or 

coverage. Thus, the acceptability of an 

approach depends on the intended content, 

quality and detail of desired information. 

There are many factors that influence 

results, partitioned into two general groups; 

those physically based in the measurement 

systems or sensors used, and those closely 

related to fire ecology and ensuing responses. 

Many are important to non-fire-related 

applications as well, but particularly for fire 

effects and no matter what remote sensing 

technique is used, there are perhaps four 

conditions of the methodology that can 

influence and limit the definition of severity 

(Table 2). 

A common challenge is to employ 

standard protocols to ensure comparable 

results from area to area and over time. That 

depends in large part on understanding the 

sensitivity of a method to the environmental 

conditions that influence fire effects and 

severity detection, which are not always 

straightforward. When factors in Table 2 

differ between study cases, observed 

differences actually may be due to such 

factors and not to real fire effects. This paper 

attempts to demonstrate the influence of 

several important factors in Table 2, and 

identify relationships to ecological definitions 

of severity. An objective is to explore those 

variables and derived types of information 

commonly integrated into burn severity 

studies.  

  Level of Detail 

Information Content or Specificity Low Medium High 

Burn Perimeter 1 2 3 

Area burned and not burned within perimeter 2 3 4 

Nominal burn categories, e.g. crown burn 3 4 5 

A continuous scale of severity magnitude 4 5 6 

Specific first-order effects, e.g. duff consumption 5 6 7 

Second-order effects and recovery, e.g. erosion 6 7 8 

Table 1.  A numeric, relative ranking of difficulty in determining different types information 

used in fire research and management at three levels of detail. Complexity and uncertainty in 

measures also tend to follow the numeric ranking  
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BACKGROUND 

 

A Conceptual Model of Severity and Recovery 

 

In this paper, the terms burn severity and 

fire severity are used interchangeably to refer 

to conditions that result directly from active 

fire, recognizing that distinctions between the 

two have been made (Agee 1993, DeBano et 

al. 1998, McPherson et al. 1990, Romme 

1980). One context for discussion is that fire 

severity and recovery measure change from 

pre-fire and near-term post-fire conditions, 

respectively. Figure 1 displays a hypothetical 

response in one variable, which constitutes an 

individual fire effect. In nature, potentially a 

large number of variables are affected by fire, 

with unique dynamics that likely differ from 

one to the other but continue to track 

magnitudes of fire-caused change over time. 

A second context is that responses are 

trends of individual ecological components. 

Some are more sensitive, while others are 

more resistant to fire, even to the point of 

being enhanced by fire. Thus, particularly in 

landscape studies, it is useful to consider that 

severity and recovery, though possibly 

represented by just one effect, actually 

encompass all the responses within some 

defined area to gauge the overall condition 

and summarize fire's ecological impact on the 

site.  This is appropriate because: 1) many 

fire effects are very difficult to measure 

individually over large areas; 2) effects that 

can be monitored individually stand alone for 

specific objectives without the need for an 

overall gauge of severity; 3) just one or two 

individual effects may not represent the 

ecological condition of the area as a whole; 

and 4) though fire can affect components of 

the community differently, there is value in 

knowing the comprehensive ecological 

impact.  

In Figure 1, the degree of change 

representing severity or recovery is a 

continuum against time. First-order effects 

are considered to be ecological consequences 

to components or conditions that existed 

before fire. The interval for sampling first-

order effects is relatively short following fire, 

as many effects fade and become altered by 

ensuing biophysical processes. Some form of 

this short-term severity is most commonly 

incorporated into the meaning of burn 

  

Conditions General Factors Fire Specific 

Spatial resolution aggregation of effects 

  autocorrelation patch size, contagion 

Temporal site phenology fire completion 

 moisture content time since fire 

  sun angle, snow fire seasonality 

  sampling interval   

Radiometric transmittance smoke 

  available bandwidths range of burn variation 

  reflectance specific bandwidth response 

Geographic geo-registration ecotype properties 

  topography elevation gradients 

Factors Relevant to Modeling Fire Severity   

Table 2.  Selected factors affecting quantification of fire severity and recovery are grouped into 

four conditions of the methodology. 
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severity, although there are longer-term 

implications. In particular, short-term severity 

initiates an interval of recovery by setting the 

reference conditions from which recovery is 

measured. 

Many processes follow that control 

recovery, encompassing all biophysical 

elements and conditions arising on site. The 

implication is that recovery can differ 

between two essentially identical sites 

experiencing the same short-term severity, 

depending future conditions. Moreover, 

between compositionally different sites, 

recovery intervals can be very long or 

relatively short, depending on species 

adaptations to fire and interactions with 

climate, sil type and other factors, like seed 

sources (Grau and Veblen 2000, Abrahamson 

1984, Huddle and Pallardy 1999). 

At any point during recovery, its 

complement can be viewed as long-term 

severity, which continues to gauge the status 

of the burned area in relation to the pre-fire 

state. In addition, some elements during that 

period can be viewed as second-order effects 

and constituents of long-term severity (Diaz-

Delgado et al. 2002). They include processes 

like erosion or disease that develop indirectly 

after fire and also potentially alter the 

trajectory of recovery.  

The model suggests spatial and temporal 

dynamics to the definition of severity. It 

implies that the detected character of severity, 

as well as the potential performance of 

remote sensing, also varies along the 

continuum. Those issues seem to be at the 

core of apparent discrepancies between some 

studies, and sources of incompatibility when 

comparing results or defining severity. It is 

important, therefore, to be able to recognize 

and identify the spatial and temporal contexts 

inherent in specific measures of severity. The 

discussion below attempts to expand on key 

factors related particularly to fire disturbance 

over landscapes as viewed at moderate 

resolutions. 

37 

Figure 1.  A conceptual model of burn severity and recovery that is dynamic over time.  
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A Complementary Remote Sensing Index 

of Severity 

 

Only one index of severity is used 

throughout the paper, the differenced 

normalized burn ratio, delta-NBR or dNBR 

(Key and Benson 2006). While some have 

reported mixed results using dNBR in certain 

cases, it is not the purpose of this paper to 

evaluate the index per say. Rather, the intent 

is to focus on outside factors, independent of 

the remote sensing algorithm, which can 

affect the information received about burn 

severity. In addition, there exists a rich 

variety of other techniques for mapping 

burned areas, many of which predate or 

parallel the development of dNBR, such as 

Principal Components Analysis, the 

Multitemporal Kauth-Thomas protocol, 

spectral mixture analysis, and other 

classification techniques (Milne 1986; 

Patterson and Yool 1998; Rogan and Franklin 

2001; Rogan and Yool 2001; Rogan et al. 

2002; Sa et al. 2003; Hudak and Brockett 

2004; Chuvieco et al. 2006). These have been 

shown to be useful in particular applications, 

and to model burn severity under alternative 

ecological definitions, including individual 

effects like tree mortality or burn categories 

like understory burn (Turner et al. 1994; 

Lentile et al. 2006). The dNBR is used in this 

paper, chiefly to have a common reference 

for comparison, and because it is relatively 

simple to produce and understand directly as 

a gradient of change. Moreover, the dNBR is 

appropriate in this context because, as a 

magnitude difference using bandwidths 

responsive to burning, it hypothetically fits 

the conceptual model of severity representing 

a magnitude of fire-caused ecological change.  

López García and Caselles (1991) first 

demonstrated the efficacy of a normalized 

Band 4 – Band 7 difference to identify areas 

burned in Spain in 1984. They compared TM 

bandwidth reflectance within a burn to 

reflectance from a reference area outside the 

burn using single-date post-fire acquisitions. 

They verified this "vegetation index" for 

mapping burnt area, and considered it a good 

parameter to gauge regeneration, although 

they did not suggest differencing the index, or 

discuss potential application for mapping 

burn severity. Unfortunately, their results did 

not receive much attention in the literature 

until about a decade later, for example, the 

absence from White et al. (1996) and García-

Haro et al. (2001). White et al. (1996) settled 

on classification of burn severity levels using 

only post-fire Band 7 reflectance, as the 

simplest and most useful approach tested for 

mapping severity on a 1988 burn. In the 

process, the study demonstrated individual 

bandwidth responses to burning, but in this 

case, the same area was compared from 

before to after fire using multi-temporal TM 

datasets. The post-fire NDVI and temporal 

change in NDVI were also evaluated. 

Following White et al., this author then 

re-tested individual bandwidth responses on 

two northwest Montana fires that burned in 

1994, using the same pixel locations in pre- 

and post-fire TM datasets. The results of all 

three investigations were quite similar 

regarding TM bandwidth response to burning 

within generally forested cover types. In 

essence, all found that Band 4 reflectance 

decreased the most of all bands, while Band 7 

increased the most and had the greatest 

variation when comparing unburned to 

burned pixels. These responses were linked to 

the physical properties of reflectance in Band 

4 shown to increase with increasing green 

vegetation cover and vigor, and the opposite 

response in Band 7, which decreases with 

vegetation cover and moisture content, but 

increases with greater cover of soil, ash or 

carbon (Knipling 1970; Tucker 1980; Ahern 

et al. 1991; Cibula et al. 1992; van 

Wagtendonk et al. 2004). The high Band 4 

reflectance in spectra of vegetation is slightly 

reduced when vegetation is scorched, and 

dramatically reduced when vegetation is 

replaced by soil, ash and carbon (Kokaly et 

al. in press). Conversely, the very low Band 7 

165 38 
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reflectance over spectra of green vegetation is 

about equal to Band 4 when vegetation is 

scorched, but very high when vegetation is 

burned to ash, carbon and soil (Kokaly et al. 

in press). Band 5 has been shown to have 

similar absorption and reflective trends as 

Band 7, and has been used to gauge 

vegetation damage and moisture content 

(Vogelmann and Rock 1988; Collins and 

Woodcock 1994; Hunt and Rock 1989). 

However, the three studies agreed that the 

empirical measures for Band 5 response to 

burning, though similar to Band 7, were not 

as great and contained less variation than 

Band 7. Band 5 typically has reflectance 

levels intermediate between Bands 4 and 7 in 

the spectra of vegetation and ash/char areas 

(Kokaly et al. in press). Thus, the response of 

Band 4 relative to Band 5 was observed to be 

less extreme than the response of Band 4 

relative to Band 7.  

Without knowledge of López García and 

Caselles (1991) at the time, this author 

independently formulated and named the 

NBR in 1996, which turned out to be the 

same Band 4 – Band 7 normalized difference 

proposed earlier by López García and 

Caselles. The only distinction was the 

sampling strategy used to elucidate the index; 

one study referenced an area outside a burn in 

single-date imagery, while the other used the 

same set of within-burn pixels compared 

between datasets before and after fire. Once 

bandwidth sensitivity to fire effects were 

identified and encapsulated by NBR, 

however, the pre- to post-fire difference in 

NBR (dNBR) was examined in 1996 as an 

index of severity (Key and Benson 1999, 

2002). One advantage of dNBR over the post-

fire NBR alone was it tended to isolate the 

burn from unburned surroundings (where the 

difference is near zero), while the NBR alone 

retained values that occurred naturally in both 

burned and unburned areas. Moreover, the 

dNBR provided a continuous scale of 

difference that could be related to a 

magnitude of ecological change, which in 

turn offered a conceptual model for burn 

severity, and a testable hypothesis, i.e. the 

greater the detected change by fire, the higher 

the severity. This enabled analysis with 

continuous environmental variables, and an 

alternative to more traditional categories of 

severity. The approach was fully documented 

in the 2002 Internet version of FIREMON 

(Lutes et al. 2006) within the chapter on 

landscape assessment. 

Subsequently, dNBR has undergone 

extensive testing and use outside of northwest 

Montana, and has been found to be useful, 

considering simple algorithms derived from 

available Landsat bandwidths. Since 2001, it 

has been used nationally to map fires for the 

National Park Service (USGS EROS 2006). 

Fo l low-up invest iga t ions  l ed to 

implementation of the dNBR when feasible to 

support Burned Area Emergency Response 

(BAER) teams (Gmelin and Brewer 2002; 

Orlemann et al. 2002; Bobbe et al. 2001). 

Recently, the Wildland Fire Leadership 

Council (WFLC) adopted Monitoring Trends 

in Burn Severity (MTBS), which relies on 

Landsat satellite imagery and the dNBR as a 

strategy to assess environmental impacts of 

large wildland fires and identify trends in 

burn severity across the U.S. A national 

evaluation for operational burn mapping in 

the U.S. involved over 2500 plots on 80 fires, 

and supported MTBS development (Zhu et al. 

2006). In addition, several studies have been 

based on relatively few observations or only 

one to a few burns (Cocke et al. 2005; van 

Wagtendonk et al. 2004, Chuvieco et al. 

2006; Finney et al. 2005; Miller and Yool 

2002; Rogan and Franklin 2001; Lieberman 

and Rogan 2002; Brewer et al. 2005; Kokaly 

et al. in press). Others have been more 

regional in scope or spanned more than one 

fire season (Sorbel and Allen 2005; Bigler et 

al. 2005; Roy et al. 2006; Thode 2005; Miller 

and Thode in press; Hudak et al. 2004; Epting 

and Verbyla 2005). 

39 
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METHODS 

 

Ecological and systematic factors 

affecting burn severity and its detection are 

illustrated using a combination of multi-

spectral false color composites (FCC), band 

ratio differences, and frequency distributions 

of detected change magnitude within burns. 

The FCC images represent Landsat bands 

7,4,3 in red-green-blue (RGB), respectively. 

Cases are from an archive of burn 

assessments developed by the author since 

1996, using 30-meter Landsat TM/ETM+ 

datasets that were geometrically terrain 

corrected and normalized to band reflectance. 

Burn perimeters were produced from on-

screen digitizing, referencing pre- and post-

fire Landsat and dNBR imagery. 

The dNBR (Key and Benson 2006) is 

based on the normalized burn ratio (NBR), 

which is the Landsat TM/ETM+ band 4 to 

band 7 reflectance difference, divided by the 

sum of the two reflectances (NBR = R4 – R7 / 

R4 + R7). The dNBR is the pre-fire to post-

fire difference in the NBR (dNBR = NBRPRE – 

NBRPOST). The NBR varies between –1.0 and 

+1.0, where burned areas take on distinctly 

negative values, at times lower in magnitude 

than non-vegetated and unburned background 

surfaces, such as soil and rock. Vegetated 

areas are highly positive, generally increasing 

in value with the amount and vigor of green 

vegetation. Thus, NBR alone is potentially 

sensitive to reflectance characteristics that 

result from burning, and can contribute to 

classification of fire effects based on surface 

materials (Hudak et al. 2004; Kokaly et al. in 

press). The dNBR can vary between –2.0 and 

+2.0. Typical burned areas are either 

distinctly positive or negative. Unchanged, or 

theoretically unburned areas retain values 

near zero. The dNBR is scaled by 1000 in this 

paper for the ease of interpreting and 

processing integer values. For comparability, 

all dNBR images have a linear grayscale 

between –800 (black) and +1100 (white). 

Unburned areas are compared to burned 

areas using obvious visual differences, and 

statistical properties of the two populations of 

pixels extracted from the imagery. Unburned 

statistics and frequency histograms are based 

on samples drawn from outside burn 

perimeters (N > 10,000 pixels each case), 

avoiding areas that may have changed due to 

other anthropogenic or natural causes, such as 

logging or snow cover. Within-burn 

populations of pixels are extracted using the 

burn perimeters to produce the burned-area 

statistics and histograms. 

 

RESULTS AND DISCUSSION 

 

Spatial Constraints – Alpha Severity  

(Intra-Site Variation) 

 

Spatial factors affect information about 

burns through interactions between resolution 

and the ecological responses possible to 

detect (Chen 1999, Liang 2000). This 

includes the variation that occurs within the 

minimum sampling unit, as well as variation 

between units, i.e. throughout an entire burn. 

These sources are the intra- and inter-site 

variation in severity, respectively, introduced 

here as alpha and beta variation, or alpha and 

beta severity. The terms can be considered 

analogous to concepts of within-habitat and 

between-habitat diversity, or alpha and beta 

diversity as proposed by Macarthur (1965). 

As illustrated in Figure 2, the general 

trend of detectable alpha variation lessens 

with decreasing resolution. At left, the field 

view reveals detail that can be measured 

throughout a 30x30 m site. Here, effects such 

as char height on each tree, and survivorship 

of individual understory species can be 

differentiated and used either individually or 

collectively to establish the burn severity. At 

0.3 to 1.0 m resolution (center), the 30-meter 

site retains some alpha variation, like scorch 

to individual tree crowns, but the number of 

discernable severity indicators is reduced. 

40 
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General survivorship and consumption 

patterns in the understory still can be assessed 

separately from the overstory, but understory 

effects predominantly represent overall 

conditions rather than species-specific 

responses. The site, however, now appears in 

context with surroundings, which enables 

spatially uninterrupted assessment over 

broader areas and a measure of beta severity. 

As resolution decreases to 30 m (right), 

components of the site are not detectable 

individually, being reduced to a single, 

synoptic value for the whole pixel. In 

ecological terms, all understory and overstory 

effects become spatially and compositionally 

integrated into an average condition for the 

whole area to represent the site severity. Data 

at this level records no alpha variation, except 

what may be established independently at 

higher resolutions. We know, for example, 

that site severity can be inherently complex 

when ecological effects are examined within 

30 m field plots. Also, spectral mixture 

analysis can estimate proportional 

composition of 30-meter pixels, when 

material endmenbers are established 

previously at higher spatial and spectral 

resolutions (Ustin et al. 1993; Caetano et al. 

1994; Rogan and Franklin 2001; Hudak et al. 

2004). 

A question arises then, concerning what 

burn attributes are captured by remote sensing 

at the 30-meter site level. If the quantity is a 

blend of individual effects as described, 

severity field measures should reflect the 

spatial extent and aggregation recorded by 

remote sensing. The Composite Burn Index 

(CBI) attempts such a rating, derived from an 

average of 4-5 rating factors per each of five 

potential strata in the ecological community 

Figure 2.  Stepwise aggregation of fire effects occurs as spatial resolution decreases. From left 

to right, field photo taken about 1 year post-fire; color aerial photo 1 month post-fire; dNBR 

image using data from1 month post-fire. White squares, roughly 30x30 m, denote approximate 

location of the site shown at left. 

41 
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(Key and Benson 2006). Where in turn, each 

factor reflects the average condition of a fire 

effect across the area of the plot. Ideally, once 

site severity is defined in such a manner, field 

measures and remote sensing values should 

match appropriately for content, and correlate 

effectively (Figure 3, left). In practice, it is 

often difficult to gauge the average condition 

of fire effects across a 30-meter site, and 

difficult to discern the change relative to pre-

fire conditions, since pre-fire conditions are 

often radically altered by fire. However, if the 

field definition of severity does not match the 

remote sensing capability, then one can 

expect even more noise in the burn model, as 

remote sensing captures ground components 

unrelated to the desired definition being 

measured in the field. 

Secondarily, site severity may be related 

back to individual effects, such as newly 

exposed mineral soil, but with varying 

degrees of reliability (Figure 3, right). A 

similar observation was made by Hudak et al. 

2004 when attempting to relate individual 

effects to 30-meter derivations of severity. At 

very low or very high severity, such 

associations can be relatively certain. In 

middle ranges, where alpha variation in the 

plot can be high, individual effects are not 

expected to be uniform from site to site 

(Peterson and Stow 2003, Schimmel and 

Granstrom 1996). Fire intensity and 

ecological response can vary over the 30-

meter site, while each stratum and component 

may be affected differently. It follows that 

similar aggregate magnitudes of severity can 

result from different combinations of effects 

and burn pattern within the site. Moreover, 

some effects, such as litter consumption, 

reach maximum possible levels before 

maximum severity is reached, so they are not 

expected to show any relationship to severity 

above certain levels. Thus, ability to detect 

and model individual ecological effects, 

though partly limited by radiometric factors, 

is also spatially constrained by resolution and 

decreasing detectable alpha variation. 

 

Figure 3.  Graphs show relationships between CBI field measures of severity and the dNBR, 

i.e. the change detected by Landsat. Total plot scores average all rating factors over all 5 strata 

on the plot, the substrate mean is one of 5 strata integrated into the total plot score, and the 

exposed soil rating is one of 5 factors averaged into the substrate mean. General disaggregation 

of fire effects tends to lessen correlation to the 30-m dNBR (to the right), such that individual 

effects are less reliably predicted at 30-m than are other composite measures of site severity.  

42 
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Spatial Constraints - Beta Severity  

(Inter-Site Variation) 

 

Beta variation impacts the ability to 

define ecologically important burn 

characteristics, such as edge, mosaic 

complexity (the variety and distribution of 

patches), and the overall range of responses 

(Slocum et al. 2003, Beaty and Taylor 2001, 

Weir et al. 2000, Chen 1999). Other affected 

attributes include the derived sizes of burns 

and the area of sub-units, e.g. distinct burn 

classes, watersheds or affected ecotypes 

(Nelson 2005, Soja et al. 2004). Figure 4 

illustrates qualitative differences in beta 

severity that result from different sampling 

resolutions. At upper left, a color aerial photo 

taken soon after fire shows sharp boundaries 

for larger patches of crown fire, and degrees 

of crown scorch down to individual trees. 

Very small patches and much spatial 

complexity are evident in the burn mosaic. 

For comparison, the other images in 

Figure 4 are subsets of a 30-meter dNBR, 

based on post-fire Landsat TM from about 10 

months after fire. The grayscale corresponds 

to a linear gradient of change in NBR, with 

zero or no change being the medium gray 

lying mostly outside the burn. Higher positive 

and negative values are increasingly lighter 

and darker tones, respectively. Both represent 

degrees of departure from the neutral 

unburned condition, and relate to effects 

caused by fire when within the burn 

perimeter. Rising positive dNBR corresponds 

basically to increased scorch, char, ash or 

soil, and decreased green vegetation 

compared to pre-fire. The more negative the 

dNBR, the more plant growth is enhanced by 

fire over pre-fire conditions through nutrient 

and competition effects (McCarron and 

Knapp 2003). Strongly negative dNBR pixels 

are visible in Figure 4 as small dark patches 

of mostly herbaceous vegetation that burned 

on moist sites. 

Compared to the aerial photo, decrease in 

beta variation is evident in the 30-m dNBR 

(upper right). Minimum patch size increases, 

edges are less distinct, and thin linear features 

disappear, as alpha variation captured by 

individual pixels increases. General shape and 

distinction of larger patches, however, are 

preserved. The mosaic retains at least the 

range and distribution of beta severity 

depicted in the aerial photo, with roughly 

one-to-one correspondence between larger 

patches. At 30 m, a pixel may overlap 

different burn conditions, but alpha variation 

is generally less than variation found between 

entirely dissimilar ecological communities or 

distinct burn patches. As a result, 30 m tends 

to suitably capture beta variation for whole-

burn coverage and landscape perspectives on 

fire responses (lower left). Ecological 

inferences at this level are somewhat different 

than from the aerial photo, with a general 

trade off of detail for spatial coverage and 

aggregation of effects. In practice, 30-m data 

is more efficient to use as a single contiguous 

dataset in whole-burn studies than higher 

resolutions, especially for burns exceeding ca. 

3000 ha; while it remains suited for stand-

level and watershed summaries. 

As resolution decreases to 500 m and 1 

km, whole-burn heterogeneity incrementally 

declines as attributes of beta-severity get 

incorporated into the alpha variation of the 

larger grid cells (Figure 4 lower). Portions of 

multiple dissimilar patches become 

aggregated, small patches consolidate with 

surroundings, and very few patches remain 

intact. Few patches are represented distinctly 

by pure cells of severity or stand type. The 

averaging reduces the potential range of 

values, greatly decreases the contrast or edge 

between distinct patches, and impacts the 

ability to monitor small habitats, like 

meadows or wetlands. Thus, the within-cell 

ecological definition of severity is altered by 

broadened alpha variation. It encompasses 

between-stand characteristics and a broader 

diversity of burn conditions. 
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The influence of resolution is a function 

of fire-created patchiness, where in most 

ecotypes, natural spatial variation in fire 

behavior and effect is more fine scale than 

can be modeled at increments of 500 to 1000 

m (Price 2003, Romme 1982, Soja et al. 

2004). Nelson (2005), for example, indicates 

that burn sizes need to be much larger than 

5,000 ha before 500-m MODIS data 

adequately estimates the area burned. The 

same may apply to effectively map and 

estimate the size of distinct patches within 

burns. Thus, the lower resolutions may be 

suitable for sub-continent to global scales, 

where cruder estimates would suffice for 

regional totals of all burns, but not to 

represent the beta variation within individual 

burns.  

Temporal Constraints – Seasonal Timing 

 

Temporal factors strongly influence the 

measure and detection of fire severity and 

recovery, including the time of year (seasonal 

timing) and time since fire (lag timing) for 

sampling. These influences result from the 

dynamic nature of fire responses, and from 

non-fire-induced biophysical conditions that 

normally vary throughout a year. 

Seasonal timing relates to the time of year 

when sampling occurs. In remote sensing, 

timing can detract from fire assessment in 

many temperate regions when data 

acquisition closely follows the fire season, 

which is typically dry or during months 

distant from the summer solstice. Other 

factors aside, indices like dNBR in late 
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Figure 4.  Burn pattern viewed at different scales (top left 0.3-1 m resolution; others 30 m). 

Grids provide a reference to beta variation pooled into individual pixels at lower resolutions. 

Coverage is about one third of a 13,780 ha burn from 1988. 
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season can show less contrast within the burn 

and less distinction between burned and 

unburned areas (Figure 5), when naturally 

senescent and dry unburned vegetation can 

mimic scorch or girdle associated with low 

fire impacts. Conversely, generally better 

contrast and a broader range of severity can 

be detected with dNBR when unburned 

vegetation is relatively green and productive. 

Unburned green vegetation contrasts greatly 

with burned vegetation, especially when 

effects include light scorching or mottled 

burn patterns. Snow is also a factor in 

mountains for both early- and late-season 

acquisitions. If fire spans a large elevation 

range, it may be necessary to process two 

post-fire datasets, in order to capture the best 

time for phenology and snow in low and high 

elevation areas, respectively. 

A compounding influence of seasonality 

is the low sun angle that accompanies early- 

and late-season acquisitions at middle to high 

latitudes (Miura et al. 2001). Generally, poor 

illumination and increased shadow, even on 

relatively flat terrain occupied by tall 

vegetation, decreases the definition of fire 

effects and sharpness of burn images (Figure 

6 left). Low reflectance effectively degrades 

burned and unburned qualities, and very dark 

shadow effectively eliminates large areas 

from analysis (appearing speckled with high 

and low dNBR values). By contrast, images 

in Figure 6 right are much more distinct and 

enhanced by the better illumination near 
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Figure 5.  Top, post-fire Landsat TM band 7,4,3 RGB composites; bottom, derived dNBR. 

Images at left are during the growing season, 28 May 1995; and at right, from near-end of 

growth, 1 Sept. 1995. The fire occurred in August 1994. 
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summer solstice, even on slopes facing away 

from the sun. A diagnostic characteristic is 

the narrower range and more uniform values 

of dNBR in unburned areas (lower right), 

which enhances burn distinction and 

detection of ecological changes. 

Seasonal timing is most relevant to multi-

temporal analyses, or when several burns are 

compared using datasets from different times. 

To isolate change only due to fire, and to 

minimize affects from other processes, multi-

temporal datasets should represent similar 

environmental conditions outside the burn. In 

regions with predictable seasonality, images 

from near the same time of year may serve 

that purpose, but adjustments are frequently 

needed to account for inter-annual variability. 

When pre- and post-fire datasets are 

adequately paired for sun angle and 

phenology, unburned areas show little beta 

variation, and differenced-values are near 

zero with similar gray tone (Figure 6 lower 

right). A frequency distribution of unchanged 

pixels (used to test correspondence between 

scenes) tends to be normally distributed with 

a mean dNBR < ± 20 and standard deviation 

ca. < 50, on a scale of –2000 to +2000 

(Figure 8 left). These conditions can model 

unburned areas more correctly as being 

ecologically unchanged by fire. 
If pre- and post-fire datasets are not 

suitably matched, results like Figure 7 are 

Figure 6.  Images emphasizing the impact of sun angle (illumination) on severity assessment 

capability. Post-fire FCC top, corresponding dNBR bottom; 3 October 2001 left, 7 July 2002 

right. 
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diagnostic. The dNBR shows higher (lighter) 
values where pre-fire conditions, left, are 
evidently more productive and greener than 
the post-fire, center. (Oppositely, lower 
dNBR results when the post-fire state is 
greener.) However, the area is not burned; so 
detected change in NBR is not due to fire but 
rather to natural phenological difference 
between acquisitions. This result is 
undesirable as it lessens the distinction 

between burned and unburned, and creates 
false positives for fire effects when near or 
within burn perimeters. Severity levels of 
burned pixels are also biased. With 
mismatched scenes, large samples of dNBR 
unburned pixels may not be normally 
distributed, and tend to have means ca. > ± 
20, on a scale of –2000 to +2000 (Figure 8 
center and right). 

 

Figure 7.  Mismatched phenology between multi-temporal datasets is evident in this unburned subset. 
The dNBR, right, was derived from Landsat TM 16 July 1998, left, and ETM+ 1 August 2001, center. 

Figure 8.  Statistics from populations of unburned pixels sampled from different dNBR 
datasets, where the pre- and post-fire scenes were (left to right) phenologically matched, 
phenologically unmatched but consistently so throughout the area of interest, and 
phenologically unmatched in spatially variable ways over the area of interest. 
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Bias in the unchanged-pixel mean 

represents average phenological difference or 

possible atmospheric effects between 

acquisitions, when known causes of change 

(e.g. land use, fire, infestation, or snow) are 

avoided in sampling. If beta variation within 

unburned is spatially uniform (unlike Figure 

7), the biased distribution is approximately 

normal with a standard deviation ca. < 50 

(Figure 8 center). In those cases, the 

unchanged-pixel statistics can be used to 

calibrate one dNBR to another, by subtracting 

the bias from the dNBR dataset. Then, the 

adjusted unburned distribution has a mean of 

zero to better represent no ecological change 

due to fire. Figure 8 center is a case where 

shifting the dNBR by about + 25 points 

would be warranted, due to the normal 

distribution and relatively low standard 

deviation. This would tend to compensate for 

the ecological difference between scenes that 

was not related to fire, and make fire-caused 

change more directly comparable between the 

dNBR datasets. 

Figure 7, however, depicts fairly high 

beta variation across the unburned dNBR, 

even though the paired dates are similar. Such 

temporal and spatial disparity in phenology is 

difficult to balance without properly matched 

scenes. Unburned dNBR may not be normally 

distributed, and the bias and standard 

deviation are typically larger than the 

previous examples (Figure 8 right). Because 

the ecological effect is spatially variable, 

general calibration by the unchanged bias 

may not be desirable. This scenario may be 

common in alpine or dry ecotypes, including 

herb and shrub communities that are moisture 

or snow limited (Grau and Veblen 2000). 

Growth can vary dramatically year-to-year 

depending on stochastic weather; so multi-

temporal scenes can be challenging to match. 

The distribution and density of green foliage, 

soil moisture and snow are key factors, not 

simply time of year. Obviously, datasets that 

are not phenologically matched have reduced 

application to burn analysis derived from 

multi-temporal ecological difference. 

 

Temporal Constraints - Lag Timing 

(Time Since Fire) 

 

Preceding post-fire assessment, 

information on fire progression and intensity 

may exist if fires were actively managed. 

Several incident teams may rotate in and out 

during the course of one fire, contributing 

several sets of fire data that may not be fully 

integrated after the fact. Many techniques 

may be used to map the going fire, including 

nighttime thermal infrared imaging and 

daytime aerial observation, so data may not 

be standardized overall. The information can 

be useful for post-fire assessment, but caution 

should be exercised if applied to research or 

long-term management as quality and content 

can be variable, while sufficient 

documentation of methods may be lacking. 

The quality of incident-derived fire 

perimeters is variable, depending on methods 

and source data, but they may serve as 

starting points for post-fire assessment. Aside 

from general precision, several situations 

influence whether incident perimeters 

delineate the actual extent of burning. First, 

perimeters may outline the containment area 

out to defensible fire lines, while fire may not 

have actually reached some of those lines. 

Second, perimeters may be intentionally 

generalized and not closely follow very 

convoluted or complex fire boundaries. This 

may be done to better represent the area 

actually managed, or to legitimately justify 

management costs. Third, incident perimeters 

are only current up to the last observation, or 

until the incident teams demobilize, which 

can be before the actual end of burning, 

especially in remote areas or where societal 

values are no longer threatened. Finally, 

incident perimeters may be extended to 

include small spot smokes, e.g. from one log, 

that represented a potential fire hazard at the 
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time, but never developed into a sizeable burn 

patch detectable at the resolution of post-fire 

sampling. Outlying spots may be retained for 

interest in fire behavior, or simply ignored if 

they are insignificant at the scale of 

assessment. In any case, adjustments to 

incident perimeters are usually warranted 

when the intent is to accurately record the 

outermost extent of burning using the most 

up-to-date information.  

Post-fire assessments, on the other hand, 

are meant to determine the actual ecological 

impact of fire, building from and perhaps 

revising information collected at the time of 

active burning. In addition, they document 

the many fires that were not managed in the 

first place or have incomplete incident 

records. A key objective for many 

applications is to capture the spatial 

distribution of short-term severity. As shown 

in Figure 1, however, the ecological quantity 

and quality of severity is very much linked to 

the lag time when measurement occurs. Thus 

in practice, three sampling intervals are 

identified here as rapid, initial, and extended 

assessment. Each has slightly different 

information content and constraints on quality 

and function (Table 3). 

Rapid assessment (RA) almost 

exclusively assists post-fire emergency 

response (USFS RSAC 2005), which applies 

to typically larger fires or fires affecting 

valued resources or human assets. RA is not 

done on many fires due to expense or lack of 

necessity, so the number of RA fires is a 

subset of all fires. Since time is critical, 

planning and initiation of ground work dictate 

that products be completed within about two 

weeks after significant burning, often before 

the fire is completely out (Figure 9). In most 

cases, RA adequately serves to locate larger 

areas of high severity that constitute 

treatment priorities. Remote sensing data are 

often limited within the timeframe, however, 

so over many incidents, circumstances 

compel using a variety of approaches to offset 

the chance of getting no data from a 

particular source, like Landsat. Moreover, 

timing often comes when seasonal factors 

constrain the content and delineation of burn 

severity and perimeters, as discussed above 

(Miura et al. 2001), and results may record 

partial effects or lingering smoke. Where 

burning is complete, effects are raw and may 

Conditions Rapid Initial Extended 

Time Since Burn < 2 weeks 1 – 8 weeks 2 – 12 months 

Burn Completion Often burning Most are complete Complete 

Fire Coverage Larger, by request Most > minimum size All > minimum size 

Data Availability Limited More Most 

Data Source Multiple Single Single 

Method Variable Single Single 

Information Content P-, S- P, S- P, S+ 

Delayed Mortality Undetected Slightly detected Detected 

Survivorship Undetected Slightly detected Detected 

Phenology May be senescent May be senescent Green 

Transmittance Variable Likely better Likely good 

Sun Angle, Snow Variable Variable Best possible 

Potential Quality Variable Variable Often good 

Uses and Term of Use Limited May be limited Final reference 

Table 3.  General characteristics of burn severity assessments and potential traits arising with 

lag time after fire. For information content, P signifies perimeter and S severity, “-“ and “+” 

indicate general potential for information completeness. See text for explanation. 

49 



36                                                                                                                               Fire Ecology, Vol. 2, No. 2, 2006 

not include some indicators of severity, such 

as vegetation survivorship or delayed 

mortality (Bond and Midgley 2003, 

Abrahamson 1984, Fowler and Sieg 2004). 

Thus over all fires, RA is less standardized, 

which, though necessary for the intended 

purpose, diminishes its long-term utility. 

Also, for data quality and content concerns, 

the collective application of RA to research 

and long-term management is more limited. 

Yet, data from RA is often used in those 

contexts, while there is a need to supersede 

the RA with better, more complete and 

standardized information after the emergency 

response. Some RA can be done with high-

quality optimal data, but the variety of 

potential problems makes achieving 

consistently good results difficult. 

Initial assessment (IA) is the first 

opportunity to get essentially complete 

ecological evaluation of a burn (Figure 10 

left), initiated ideally when 1) burning has 

ended, and 2) quality data are available. 

Secondarily, the non-emergency situation 

enables use of standard comparable data from 

one remote sensing approach across all 

targeted burns. Usually all fires over some 

practical minimum size are candidates for IA 

with less restrictive coverage than RA. 

Flexibility exists to wait for high quality 

satellite acquisitions, and occasionally, 

opportunities to compare multiple 

acquisitions. If reliable data is acquired 

within about two weeks of fire, and 

emergency planning is still in progress, then 

IA and RA are essentially the same, 

distinguished only by the data standards of 

IA. However, the wait for fire completion and 

improved atmospheric conditions usually 

extends IA for up to two months beyond the 

period for RA. Despite the prolonged 

interval, suitable acquisitions still may not be 

available from the sensor. In addition, IA is 

subject to the same limitations as RA when it 

comes to sun angle and phenology, with 

possible slight improvement in detecting 

survivorship or delayed mortality (Kauffman 

and Martin 1990). On the other hand, 

perimeters and severity may be more 

representative of the final state of the burn 

than RA. 

Extended assessment (EA) occurs during 

the first growing season after fire (Figure 10 

right). It captures first-order effects that 

include delayed survivorship and mortality of 

vegetation present before fire. Survivorship is 

50 

Figure 9.  RA with burn perimeter, post-fire 7 September 2003. dNBR, right, penetrates smoke 

to provide some information useful to emergency response; bright spots of active burning occur 

near perimeter. Compare to Figure 10. 
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detected in vegetation that burned when roots 

or stems remain viable and resprout 

(McCarron and Knapp 2003, Safford 2004). 

It is indicative of effects that might appear 

severe a first, but do not result in sustained 

loss of individual plants, though aboveground 

biomass may be temporarily reduced. 

Compared to IA, site severity is diminished 

by this response. The opposite is the case for 

delayed mortality (Ryan et al. 1988, Rebertus 

et al. 1989, Fowler and Sieg 2004, Agee 

2003). It is detected from foliage that appears 

green and outwardly healthy soon after 

burning, where heat may minimally scorch or 

char foliage. Heating, however, effectively 

damages roots or cambium, and symptoms of 

necrosis develop over time. Conditions do not 

appear very severe at first, but actually result 

in lasting ecological changes as plants die on 

the site. Compared to IA, site severity is 

increased by this process. Characteristically 

not recorded by either RA or IA, delayed 

survivorship and mortality, nonetheless, are 

important indicators of the ecological change 

caused by fire, and integral to defining and 

quantifying short-term site severity. 

Most other first-order effects, such as 

char, scorch and fuel consumption, are 

expected to persist until the next growing 

season, with two exceptions. Areas prone to 

surface erosion from wind or precipitation 

may show decrease in ash cover and increase 

Figure 10.  Different perimeters and levels of change are detected in IA (left) and EA (right). 

Post fire scenes were 25 Oct. 2003 and 15 July 2004, respectively. IA also shows strong shadow 

effects, while EA displays prominent delayed mortality responses. Compare to RA in Figure 9. 
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of newly exposed mineral soil. Also, canopy 

foliage that is heat scorched or dies from 

girdling may drop to litter on the ground over 

the interval before EA. Since such effects are 

more or less complimentary to the ecological 

effects detectable soon after fire, these 

delayed responses are not expected to 

significantly alter the remotely sensed 

magnitude of change detected between IA 

and EA timeframes. 

In Figures 9-10, general improvement in 

data content and quality is clearly evident 

from RA until the time of EA, including final 

representation of the burn perimeter. The 

influence on severity for this burn is 

quantified by the dNBR histograms (Figure 

11 left). The burn shows slight decrease in the 

frequency of very high values, due to small 

amount of regrowth, but fairly large shift in 

frequency from unburned and low severity 

values to more mid-range or moderate-

severity values. The overall mean dNBR 

increases from 202 in IA to 270 in EA, 

indicating a strong influence from delayed 

mortality between the two samplings. In this 

case, delayed mortality largely affected 

conifers burned by relatively low-intensity 

ground fire. 

In contrast, Figure 11 right shows severity 

dynamics influenced strongly by survivorship 

between IA and EA. A consistent shift to 

lower values is evident, and mean dNBR 

decreases significantly, indicating lower 

severity overall in EA than initially estimated. 

The response in any given burn or burn 

portion, however, depends on the specific fire 

behavior, pre-fire fuel and vegetation, as well 

as the weather that prevails during and after 

fire (McCarron and Knapp 2003, Safford 

2004, Slocum et al. 2003). Generally, both 

responses occur after any given fire (Figure 

12). Survivorship and delayed mortality may 

completely offset one another when 

considering the whole burn, but rarely is there 

not some quantifiable effect from one or the 

other within at least some portions of a burn. 

Thus, much variation in survivorship and 

delayed mortality is anticipated between 

burns, and the dNBR frequency histograms 

for IA and EA can help identify different 

burn types based on the balance of ecological 

responses throughout the whole burn. 

 

SUMMARY 

 

The relevance of this discussion 

transcends the particular sensor and remote 

sensing model applied to mapping burn 

severity. Indeed, potential data continuity 

issues facing the Landsat mission may 

imperil application of Landsat-based dNBR 

in the near future. Even so, other satellite-

based options exist and will remain useful, 

each creating an intersection between 

sampling characteristics and ecological fire 

effects. In so much as detectable fire 

Figure 11.  Paired IA and EA histograms showing within-burn contrasts in delayed mortality 

and survivorship detected between the two assessment times on different fires. 
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responses relate to resolution, timing, and the 

quality of radiometric data, the ecological and 

sampling constraints discussed continue to be 

germane to remote sensing efforts that define 

landscape fire severity. 

Sensitivities to defining and detecting 

burn severity are spatial, temporal and 

radiometric in nature. Spatial factors 

principally relate to resolution and scale, 

which determine the aggregation of fire 

effects (alpha variation) within the minimum 

sampling unit, or pixel, and control the ability 

to detect response patches and distribution 

throughout a burn (beta variation). As the 

minimum sample unit expands, the 

distribution and variety of effects become 

increasingly complex and variable within the 

unit. The expanding alpha variation extracts 

progressively more beta variation from the 

structure of the whole burn and decreases 

edge distinction. This has implication for the 

definition of burn severity applied to remote 

sensing models. Further, it impacts objectives 

that call for documenting beta variation 

Figure 12.  A composite of IA and EA dNBR, displaying IA in blue and EA in red and green 

bands. Spatially variable responses in survivorship or regrowth (blue) and delayed mortality 

(yellow) occur throughout the burn. EA severity was much lower in the blue areas and much 

higher in the yellow areas, compared to IA. Areas with similar dNBR levels between IA and EA 

appear in neutral gray to white tones, indicating consistent severity detection over the period. 

Lag times for IA and EA were about 2 weeks and 10 months, respectively. 
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across whole burns, but less so when 

combining broad ranges of response over all 

burns at small scales. 

Temporal sensitivities pertain to time of 

year and the time since fire when sampling 

occurs. Seasonal timing can impact 

radiometric quality of data in terms of 

transmittance, sun angle, and the potential for 

enhanced contrast within burn areas. Results 

typically improve when remote sensing 

occurs near summer solstice, when 

illumination is highest, snow effects are 

minimized, and phenology provides green 

and productive unburned vegetation that 

maximally contrasts with fire effects. Remote 

sensing can degrade during or soon after 

many fire seasons when incomplete burning, 

hazy conditions, low sun angles, or plant 

senescence are more common. In any case, 

radiometric and seasonal qualities should be 

selected for optimal discrimination, and 

multi-temporal datasets should be matched to 

reliably isolate fire-specific responses from 

unburned areas. An IA that is delayed to get 

higher quality data from a particular sensor 

can ameliorate problems associated with the 

emergency response RA. An EA, done during 

the growing season after fire, however, may 

be the best interval for quality data. 

Moreover, the lag time enhances detectable 

qualities of burn severity. Most notable are 

the first-order effects evident in survivorship 

and delayed mortality that develop through 

the growing season after fire. The RA and IA 

likely miss these ecologically important 

indicators, resulting in either over- or under-

estimating severity. Accordingly, EA may 

provide more valid and complete 

representation of severity, with broader 

potential application over the long term.  

Severity and recovery represent complex 

ecological conditions and processes, with 

definitions shaped by the data potential 

collected through sampling. Constraints on 

fire-response detection and information 

content point out a need for compatibility 

between objectives and the sampling 

approach. Moreover, different spatial and 

temporal sampling strategies should not be 

m ixed  i nd i s c r imina t e l y ,  w i thou t 

understanding the implications. When spatial 

and temporal sampling factors differ between 

cases studied, the likelihood of non-

comparable results increases. Wrong 

conclusions may be drawn about differences 

in severity or fire ecology, as well as about 

the efficacy of techniques, when studies do 

not control for these factors across test cases. 

This is particularly true of studies that 

analyze multiple burns or test different 

measures, since observed differences may 

actually be due to sampling factors unrelated 

to real fire effects. Thus, fire scientists 

engaged in quantifying burn severity must 

recognize that all burn assessments are not 

equal, and information depends on many 

spatial and temporal constraints outside of the 

spectral algorithm alone. Understanding and 

adapting to such sensitivities will enhance the 

value of permanent records made more useful 

for research and long-term management. 
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