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ABSTRACT 

Traditional fi eld-based methods for estimating burn severity are time-consuming, labour intensive 
and normally limited in spatial extent.  Remotely sensed data provide a means to estimate severity 
levels across large areas, but it is critical to understand the causes of variability in spectral response 
with variations in burn severity.  Since experimental measurements over a range of burn severities 
are diffi cult to obtain, the simulation tools provided by radiative transfer models (RTM) offer a 
promising alternative to better understand factors affecting burn severity refl ectances. Two-layer 
RTM, such as the combined leaf (Prospect) and canopy (Kuusk) model can be used to simulate a 
wide range of burn severity conditions.  Specifi cally, the effects of changes in soil background, leaf 
color and leaf area index as a result of different burn severities can be simulated with two-layer 
RTM models in the forward mode.  This approach can provide a deeper understanding of the effects 
of each factor in satellite-sensed refl ectance, as well as their relative importance.  Additionally, 
RTMs can also be used in an inverse mode, and therefore burn severities can be retrieved from 
remotely sensed data by comparing measured and simulated refl ectance.

Examples of these two-way modes of RTMs are presented in this paper.  Burn severity was 
measured using the Composite Burn Index (CBI).  The Kuusk model was used to simulate scenarios 
of different combinations of changes in the substrate, upper vegetation, and lower vegetation 
strata.  This paper shows some results of inverting the simulated refl ectances to estimate CBI 
from calibrated refl ectance derived from different satellite sensors.  The case study is based on a 
large forest fi re that affected central Spain in July, 2005.  Landsat-TM, SPOT-HRV, IRS-AWIFS, 
Envisat-MERIS and Terra-MODIS data were used for this retrieval.  Determination coeffi cients 
(r2) values range between 0.436 (MODIS) to 0.629 (Landsat-TM), with lower precision for the 
intermediate range of CBI values.
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INTRODUCTION

Discrimination of different degrees in post-
fi re effect assessment is critical to improve 
management of fi re-affected areas, either to 
help natural regrowth, reduce soil erosion and 
degradation, or improve landscape diversity  
(Key 2005, Lachowski et al. 1997, Lentile et
al. 2006, Turner et al. 1994).  Additionally, the 
degree of biomass consumed by the fi re is one 
of the key factors to estimate gas emissions 
derived from wildland fi res (Chuvieco et
al. 2004, Epting et al. 2005, Michalek et al. 
2000).

In recent years, several papers have tried 
to clarify the terminology of post-fi re effects 
assessment (Jain and Graham 2004, Lentile et
al. 2006).  Following these papers, the term  burn 
severity will be used throughout this paper to 
refer to the analysis of post-fi re characteristics 
of vegetation and substrate after the fi re is fully 
extinguished.  When referring to other papers, 
we will try to convert their terminology to this 
one, based on this “what is left after the fi re” 
concept.

Several authors have proposed fi eld 
methods to discriminate burn severity based 
on quantitative or qualitative criteria (Key and 
Benson 2005, Lentile et al. 2006, Miller and 
Yool 2002, Moreno and Oechel 1989, Pérez and 
Moreno 1998).  These methods are laborious 
and costly and present severe obstacles to be 
spatially representative.  Remotely sensed 
images have been used as an alternative 
because they provide a spatial comprehensive 
view, are cost-effi cient, and provide up to date 
information on landscape conditions.  In the last 
years, a  large number of papers have explored 
the use of remote sensing in burn severity 
assessment (Brewer et al. 2005, Cocke et al. 
2005, Díaz-Delgado et al. 2003, Díaz-Delgado 
et al. 2001, Epting et al. 2005, Kachmar and 
Sanchez-Azofeifa 2006, Key 2005, Michalek 
et al. 2000, Miller and Yool 2002, Parra and 
Chuvieco 2005, Rogan and Franklin 2001, 
Rogan and Yool 2001, Roy and Landmann 
2005, Roy et al. 2006, Ruiz-Gallardo 2004, Sa 

et al. 2005, van Wagtendonk et al. 2004, White 
et al. 1996).  These papers covered a range of 
different techniques: spectral indices, principal 
components, classifi cation, multitemporal 
change detection, etc.  Although most rely on 
Landsat-TM/ETM+ data, there are also some 
examples of hypespectral data (Parra and 
Chuvieco 2005, van Wagtendonk et al. 2004). 

One of the main diffi culties of using these 
studies for global assessment of burn severity 
from remotely sensed data is the empirical 
approach that has guided most studies published 
so far.  Empirical models are simple to calibrate 
and provide a quantitative estimation of burn 
severity, but they provide little confi dence on 
whether they are applicable or not to other 
ecosystems or fuel characteristics.

For this reason, the use of alternative 
tools for interpreting remotely sensed data is 
desirable.  In recent years, physical models 
have been proposed as a viable alternative to 
derive quantitative information from refl ectance 
calibrated images.  Successful application of 
these models has been reported in the estimation 
of chlorophyll (Zarco-Tejada et al. 2001), 
moisture content (Danson and Bowyer 2004), 
and dry matter (Riaño et al. 2005).  Simulation 
models attempt to account for the effects of 
different factors that modify plant refl ectance 
and transmittance: chemical composition, 
geometrical confi guration, illumination and 
observation angles, etc.  The large number of 
proposed models can be classifi ed into general 
groups depending on their main assumptions: 
turbid medium models, geometrical models, 
stocastic models and ray-tracing models (Liang 
2004).  Most common models are based on 
the radiative transfer equation and therefore 
are named radiative transfer models (RTM) 
since they account for the multiple scattering 
of radiation as it interacts with the vegetation 
canopy and soil background.  Such interaction 
can be modeled assuming that the vegetation 
represents one or more homogenous layers.  
Other possibilities include the consideration of 
discontinuous canopies, such as row structure 
in crops or grid structure in tree plantations, 
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and higher levels of complexity such as the 
consideration of three-dimensional vegetation 
structure models (Pinty et al. 2004).  Although 
more complex models are closer to reality 
than those based on homogeneous canopies, 
they require a large number of input variables, 
making them harder to parameterize with real 
data.

Models can be used in forward and backward 
approaches (Liang 2004).  The former implies 
changing the input parameters to simulate the 
effects of those changes in the fi nal refl ectance.  
The latter inverts the given model, such that the 
input parameters that generated an observed 
refl ectance spectrum may be estimated.

Burn severity studies have made very little 
use of simulation models so far.  Roy et al. (2005, 
2002) used a RTM to simulate refl ectance from 
burned and unburned areas for different view 
and illumination angles of MODIS data.  Their 
goal was to obtain an automatic algorithm for 
mapping burned areas from multitemporal 
acquisitions of MODIS data.  Pereira et al. 
(2004) used a mixed geometrical-turbid 
medium model to simulate whether understory 
fi res could be detectable in the Miombo 
woodlands at different tree densities.  A forward 
RTM simulation for burn severity was recently 
proposed by Chuvieco et al. (2006) to identify 
the most sensitive wavelength regions for burn 
severity retrieval from remote sensing imagery.  
DeSantis and Chuvieco (2006) compared the 
results of inverting this simulation model with 
those obtained from an empirical model in the 
retrieval of burn severity values from Landsat-
TM images.  Results from this inversion showed 
a good agreement in the upper and lower part 
of the severity range, while more error occurred 
in the central values.

The objectives of this paper are twofold. 
First we tried to extend the RTM simulations 
previously published (Chuvieco et al. 2006) 
by including a wider range of scenarios and 
input conditions, with the goal of improving 
the middle range of the severity scale.  The 
second objective was to extend the estimations 

provided by model inversion (De Santis and 
Chuvieco, 2006) to other sensors, including 
both higher spatial resolution data: Landsat-
TM, SPOT-HRV and IRS-AWIFS; and lower: 
Envisat-MERIS and Terra-MODIS.

METHODS

Reference Burn Severity Measure

Among the different procedures to measure 
burn severity, we selected the Composite Burn 
Index (CBI) as the target estimation variable.  
The CBI was originally proposed by Key and 
Benson in 1999 (Key and Benson 2005) and was 
intended to provide a quantitative estimation 
of burn severity that could be derived from 
satellite data.  The index was developed within 
the FIREMON project and has been widely used 
by researchers using satellite data for mapping 
burn severity (Cocke et al. 2005, De Santis and 
Chuvieco 2006, Epting et al. 2005, Key 2005, 
Lentile et al. 2006, Parra and Chuvieco 2005)

The CBI provides a semi-quantitative index 
of severity instead of using qualitative ranges 
(high, medium, low) commonly adopted by 
other authors.  This numerical rating facilitates 
the statistical validation of the estimates derived 
from quantitative remotely sensed data.  The 
CBI is based on evaluating different variables 
associated with fi re effects in different strata of 
a fi eld plot.  The observations can be performed 
quickly and easily in the fi eld, therefore 
maximizing the number of plots that can be 
sampled with a fi xed fi eld effort.  Five strata 
are evaluated in the CBI: A: substrate (material 
lying on the fl oor); B: herbs, short shrubs and 
small trees (<1 m tall); C: tall shrub and sapling 
trees (<5 m tall); D: intermediate trees (5 m to 
20 m tall); and E: large trees (>20 m tall).  The 
fi rst three are used to compute the CBI value of 
the understory of the plot (A+B+C), while the 
last two form the overstory (D+E).  The fi nal 
CBI for each plot is the average of all strata, if 
they are present in that plot (A+B+C+D+E), or 
otherwise the average of the strata present.
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The CBI score of each stratum is estimated 
after visual inspection of the plot, considering 
several variables, including: % litter consumed, 
% foliage consumed, % living or resprouting 
species, % green or brown leaves, height of 
charring, % canopy mortality (Key and Benson 
2005).  A burn severity scale, adapted to each 
sampled variable, is used to quantify the impact 
from 0 (no effect) to 3 (highest effect). 

RTM Model Selection

The selection of the RTM for our study 
was based on the input requirements of the 
burn severity estimation.  The model should be 
sensitive to burn severity variations in different 
vegetation layers, since CBI scores take into 
account fi ve strata.  From the available RTM in 
the literature, the Kuusk Markov Chain Canopy 
Refl ectance Model (MCRM) was selected 
(Kuusk 2001) bcause it allows consideration 
of two vegetation canopies.  It could therefore 
be used to model any scenario with variations 
of soil substrate and two vegetation layers.  
This would be the case when a tree canopy 
(with different levels of fi re effects) has shrubs 
below (also with various levels of fi re efects), 
as well as a mixture of soil and charcoal in the 
background.

The Kuusk model considers that the 
vegetation is homogeneously distributed for 
each layer and uses leaf optical properties 
derived from the PROSPECT model 
(Jacquemoud 1990).  The canopy directional 
refl ectance is generated based on the single-
scattering and diffuse fl uxes from each layer, 
using direct and diffuse solar irradiance. 

One alternative to the Kuusk model would 
have been to use an RTM that considers the three-
dimensional structure of the vegetation such 
as Forest Light Interaction model (FLIGHT) 
(North 1996), Discrete Anisotropic Radiative 
Transfer model (DART) (Gastellu-Etchegorry 
et al. 1996, Gastellu-Etchegorry et al. 2004) or 
Geometric Optical Radiative Transfer model 
(GORT) (Li et al. 1995, Ni et al. 1999).  Although 

these models can provide a more realistic 
characterization of heterogeneous vegetation 
canopies with individuals of various sizes and 
fi re severity levels, they are also much more 
complex to parameterize.  The more simplistic 
Kuusk model, on the other hand, is more 
easily parameterized due to its assumptions of 
homogenous canopies, while still providing 
suffi cient complexity through its inclusion of 
two vegetation layers with independent input 
conditions.  This model, therefore, it is well 
suited to the vertical stratifi cation of observed 
burn severity levels.

Input Conditions to Simulate CBI Values

To simulate CBI values with the Kuusk 
model, the four vegetation strata of the CBI 
approach were reduced to two (Figure 1): the 
B and C strata of the CBI were identifi ed with 
low vegetation (lower canopy of the Kuusk 
model) and D and E strata were assumed to 
be the upper canopy in the Kuusk model.  
The CBI A (substrate) was considered as the 
soil background of the Kuusk model.  Each 
simulation had a corresponding CBI value, 
following the original FIREMON criterion 
where the CBI of the plot is a simple average of 
the CBI for the fi ve strata (three in our case).

CBI is designed to measure burn severity 
from a set of variables that are critical in 
assessing fi re effects.  However, not all of them 
can be simulated with refl ectance models, and 
therefore a further simplifi cation of the CBI 
components was required for this study.  The 
variables that were taken into account for the 
simulations were: change in soil substrate, 
percentage of foliage altered, and percentage 
change in vegetative cover.  These variables 
were included in the Kuusk model as described 
by Chuvieco et al. (2006).  The input spectra 
for the simulations were either measured using 
a GER-2600 spectroradiometer (Geophysical 
& Environmental Research Corporation, 
Millbrook, NY) or taken from  LOPEX 
database (Hosgood et al. 1994).  The former 
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was the case for soil, ash, and charcoal spectra, 
while the latter was the case for the green and 
brown leaf spectra (Figure 2).  Variations in 
leaf color (PFA) and canopy cover (PCC) were 
simulated from the Kuusk model by assuming 
different proportions of green versus brown 
leaves and changing the Leaf Area Index 
(LAI), respectively (Chuvieco et al. 2006). 
LAI thresholds for full cover of vegetation 
were fi xed at 2 for the lower stratum and 3 for 
the upper one.  These values were based on 
LAI values for typical Mediterranean shrubs 
derived from the literature (Scurlock et al. 
2001) and from our own fi eld data.  CBI values 
for each stratum were computed using the 
thresholds defi ned in the FIREMON protocol, 
while intermediate values were obtained using 
linear interpolation. 

Simulation Scenarios

Several simulation scenarios were 
considered to account for the diversity of post-
fi re severity conditions and the complexity 
of potential pre- and post-fi re changes.  Four 
scenarios were considered: 

1.  Single post-fi re, assuming that fi re causes 
simultaneous leaf consumption and leaf 
browning. 

2. Extended post-fi re, supposing that fi re 
may either consume the leaves or brown 
them or both. 

3. Multitemporal, by modeling changes in 
leaf color and cover from fi xed pre-fi re 
conditions.

4. Supervised approach, by selecting the 
most commonly found combinations of 
input parameters from fi eld experience.

Figure 1.  Vegetation strata of the CBI (left) and photograph of an area recently burned (right) in 
the fi re used in this paper as study case.
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The fi rst scenario was the simplest, 
assuming that changes in leaf color and leaf 
cover occurred in parallel.  In other words, the 
larger the fi re effect, the browner the leaves and 
the lower the leaf area index were (Figure 3).  
To simulate this scenario, ten different cases 
for each stratum were considered, as indicated 
in Table 1.  From the 1,000 output cases, 
several fi lters were applied to avoid unrealistic 
combinations of CBI values for the different 
strata (high crown CBI and very low CBI 
underneath, for instance) following our fi eld 
observations (Chuvieco et al. 2006, De Santis 
and Chuvieco 2006)

The second scenario assumed an 
independent variation of PFA and PCC, which 
implied that leaves could become brown and 
still remain on the tree, or that the LAI could be 
reduced while the remaining leaves maintained 
their green color (Figure 3).  Unlike in the 
fi rst scenario, the soil substrate in the second 

scenario included not only charcoal and soil, 
but ash as well.  Ash, which is the result of a 
full combustion process, is very important 
in the initial post-fi re spectral response, as 
several authors have pointed out (Pereira et
al. 1999, Trigg and Flasse 2000).  However, 
the ash signal is very ephemeral, because ash 
is commonly blown away by the wind within 
a few days following a fi re.  For the second 
scenario, 19 combinations of soil, ash and 
carbon were selected (Table 2).  For the PFA and 
PCC, seven combinations of each were chosen 
for each stratum.  Therefore, a total of 49 cases 
were considered in the two vegetation strata.  
The result of varying the substrate conditions 
plus the two vegetation strata created a total of 
45,619 output cases.  The same fi lters as in the 
fi rst scenario were applied, including an extra 
one to remove unrealistic combinations of PFA 
and PCC.  Cases with a high consumption of 
leaves (high PCC) are very unlikely to occur 

Figure 2. Input spectra used in the simulations.
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Figure 3.  Simulation strategies: top, PFA and PCC change simulteneously; bottom, PFA and PCC 
change independently.
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A B+C D+E

CBI % burned 
soil CBI % dry 

leaves 
LAI 
value CBI % dry 

leaves 
LAI 
value

0.00 0.0 0.00 0.0 2.00 0.00 0.0 3.00
0.33 3.3 0.50 5.0 1.85 0.50 5.0 2.78
0.67 6.7 1.00 10.0 1.70 1.00 10.0 2.55
1.00 10.0 1.33 24.9 1.34 1.33 24.9 2.01
1.33 19.9 1.67 40.2 0.96 1.67 40.2 1.44
1.67 30.1 2.00 55.0 0.60 2.00 55.0 0.9
2.00 40.0 2.25 72.5 0.40 2.25 72.5 0.60
2.33 53.2 2.50 90.0 0.20 2.50 90.0 0.30
2.67 66.8 2.75 95.0 0.11 2.75 95.0 0.16
3.00 80.0 3.00 100.0 0.01 3.00 100.0 0.01

Table 1.  Input parameters for the fi rst simulation scenario (Chuvieco et al. 2006).

Case % charoal % ash % soil
1 0.00 0.00 100.00
2 5.00 0.00 95.00
3 3.75 1.25 95.00
4 2.50 2.50 95.00
5 10.00 0.00 90.00
6 7.50 2.50 90.00
7 5.00 5.00 90.00
8 25.00 0.00 75.00
9 18.75 6.25 75.00

10 12.50 12.50 75.00
11 40.00 0.00 60.00
12 30.00 10.00 60.00
13 20.00 20.00 60.00
14 70.00 0.00 30.00
15 52.50 17.50 30.00
16 35.00 35.00 30.00
17 100.00 0.00 0.00
18 75.00 25.00 0.00
19 50.00 50.00 0.00

Table 2.  Variations of background for the 
second simulation scenario.

without any change in leaf color (low PFA). 
Linear regressions between PCCe and PFA in 
each stratum were derived from our fi eld data.  
These linear models were then applied to the 
simulation cases, and cases with high residuals 
eliminated.  These linear models were as 
follows:

PCCe = PFA*0.9188 + 0.2858 for the lower 
vegetation, and

PCCe = PFA*0.8912 – 0.0008 for the upper 
vegetation layer

Cases with higher or lower PCC than ± 
PCCe were eliminated.  A total of 4,100 cases 
remained after applying all these fi lters.  

In both of the two fi rst scenarios, it was 
assumed that before the fi re the understory 
and the overstory had the maximum LAI 
values (2 and 3, respectively).  In other words, 
we modeled the fi re effects in a high-density 
forest area.  Therefore, lower LAI values were 
assumed to be caused by higher burn severity 
(leaf losses as a result of the fi re) and not by 
lower leaf density before the fi re.  This may not 
be realistic in those forested areas where recent 
fi res or forestry clearing have occurred.
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A third simulation scenario considered the 
changes in spectral refl ectance from before 
to after the fi re.  While the same number of 
simulation cases was used for the post-fi re 
condition as in the second scenario, only four 
pre-fi re cases with medium to high LAI values 
and full green leaves were considered in both 
the lower and upper vegetation strata.  This was 
done to avoid a large number of combinations 
derived from very different pre-fi re conditions.  
Changes in PFA and PCC from those four pre-
fi re conditions were modeled by substracting 
simulated post-fi re refl ectances of the second 
scenario from the four pre-fi re simulated 
refl ectance spectra (Tables 3a, 3b and 3c).  
Likewise, the image that was inverted was a 
pre-fi re minus post-fi re image.  In this scenario, 
any changes in LAI are more soundly related 
to changes in canopy cover as a result of fi re 
consumption than when using a single post-fi re 
scenario.

All simulations consider a wide range of 
combinations of the input parameters, which 
could cause confusion in the model inversion, 
because similar refl ectance properties could be 
derived from different combinations of input 
parameters.  As a result, similar refl ectance 
patterns would correspond to different CBI 
values.  This situation has been observed in 
other applications of RTM inversion (Combal 
et al. 2002).  For this reason, we considered 
a fourth simulation scenario that was named 
post-fi re “supervised approach,” in which we 
selected only those input conditions that are the 
most common in Mediterranean fi res, according 
to our fi eld experience.  In other words, instead 
of using the full range of variation for the 
input variables, only a limited number of cases 
were selected.  This small set of spectra was 
extracted from the modeled spectra obtained in 
the second simulation scenario.  It should be 
stressed that these spectra are derived from the 
simulations and not from the image, so they 
are independent of image conditions.  Table 4 
includes the simulation cases that were selected 
for our supervised model. 

Forward and Backward Simulation

Forward simulation was based on the input 
parameters described above.  All simulations 
were performed for the spectral range of 400 nm 
to 2,400 nm, at 10 nm intervals giving a total of 
201 spectral bands per modeled spectrum.  To 
reduce model complexity, some variables were 
kept fi xed through all simulations: leaf angle 
distribution = plagiophile, leaf shape = ellipse 
form (eccentricity = 0.95), sun zenith angle = 
30º, nadir angle = 0, azimuth angle = 0.  Forward 
simulations are useful to analyze the effect of 

Table 3a.  Pre-fi re and post-fi re conditions 
for 18 combinations of charcoal, ash, and 
soil substrates used to simulate multitemporal 
changes of fi re severity.  Simulations were 
conducted by subtracting each post-fi re 
condition from the corresponding pre-fi re 
condition. 

Charcoal Ash Soil
Pre-fi re conditions (%)

0 0 100
Post-fi re conditions (%)

5.00 0.00 95.00
3.75 1.25 95.00
2.50 2.50 95.00

10.00 0.00 90.00
7.50 2.50 90.00
5.00 5.00 90.00

25.00 0.00 75.00
18.75 6.25 75.00
12.50 12.50 75.00
40.00 0.00 60.00
30.00 10.00 60.00
20.00 20.00 60.00
70.00 0.00 30.00
52.50 17.50 30.00
35.00 35.00 30.00

100.00 0.00 0.00
75.00 25.00 0.00
50.00 50.00 0.00
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input parameters in the simulated refl ectance 
to better understand their importance in the 
fi nal output, as well as to identify which bands 
are more sensitive to each input parameter.  In 
our case, we were interested in determining 
which bands or band combinations were more 
sensitive to variations in soil substrate, leaf 
color or leaf cover, as they are combined in the 
CBI computation.

The simulations generated in the different 
scenarios can then be related to refl ectance 
values as extracted from satellite data.  The 

most similar spectra between each observed 
spectrum and the whole range of simulated 
spectra should provide an estimation of the 
input parameters that generated that particular 
spectrum.  This is the basis for the inversion of 
RTM, which is based on minimizing the merit 
function:

      

where χ is the difference between the observed 
refl ectance (ρ) and the modeled refl ectance 
(M(Θ, X), for a certain set of input parameters 

Lower vegetation Upper vegetation
Pre-fi re conditions (LAI) Pre-fi re conditions (LAI)

2.00 1.85 1.70 1.15 3.00 2.78 2.55 1.73
Post-fi re conditions Post-fi re conditions (LAI)

1.85 1.71 1.57 1.06 2.775 2.57 2.36 1.60
1.70 1.57 1.45 0.98 2.55 2.36 2.17 1.47
1.15 1.06 0.98 0.66 1.725 1.60 1.47 0.99
0.60 0.56 0.51 0.35 0.9 0.83 0.77 0.52
0.20 0.19 0.17 0.12 0.3 0.28 0.26 0.17
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 3b.  Pre-fi re and post-fi re conditions for six combinations of LAI values (PCC) for lower and 
upper vegetation layers.  Pre-fi re conditions ranged from medium to low for each layer.  Simulations 
were conducted by subtracting each post-fi re condition from the corresponding pre-fi re condition.

Dry/green 
leaves
(%)

Optical 
thickness 
(unitless)

Chlorophyll 
content(

%)

Brown 
pigment

(%)

Water 
content(

%)
Dry matter

(%)

Pre-fi re conditions
0.0 1.4 42 30 0.0075 0.006

Post-fi re conditions
12.5 1.6 39 34 0.0056 0.006
25.0 1.8 39 42 0.0050 0.006
43.2 1.9 34 60 0.0031 0.006
80.0 2.5 28 91 0.0013 0.006
95.0 2.9 28 102 0.0006 0.006

100.0 3.0 28 106 0.0006 0.006

Table 3c.  Pre-fi re and post-fi re conditions for six combinations of for leaf color (PFA) for % dry/
green leaves, optical thickness, chlorophyll content, brown pigment content, water content, and 
dry matter content.  Simulations were conducted by subtracting each post-fi re condition from the 
corresponding pre-fi re condition.

2

1

2
n

i
i X (1)
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(Θ, X), with X being the value to be estimated, 
and n the spectral wavelengths of the input 
image.

There are several alternatives for model 
inversion in the literature: iterative processes, 
neural networks, statistical fi tting and previous 
generation of a look up table (LUT) (Liang 
2004).  The last one was used in this paper 
because it is quicker and provides a control 
scenario for searching for the input parameters.  
The LUT includes the output from running the 
RTM for the different simulation scenarios 
(M(Θ, X) as stated in equation 1), so the 

inversion process does not need to run the 
model again, but rather it focuses on fi nding 
which observed refl ectance spectrum is the 
most similar to the modeled one. 

For the merit function of “similarity,” 
several strategies are used, the most common of 
which was the minimum quadratic distance (as 
formulated in equation 1).  In this paper, several 
methods were explored based on hyperspectral 
methods of classifi cation.  The most robust for 
our purposes was the spectral angle mapper 
(Kruse et al. 1993), which calculates the angle 
between two spectral vectors with the same 

Average
CBI 

Lower vegetation Upper vegetation Substrate
% Dry leaves LAI % Dry leaves LAI CBI A Type

0.00 0 0 0 0 0 Soil
0.00 0 0 0 0 0 Soil
0.00 25 0 25 0 0 Soil
0.40 25 1.2 0 0 0 Charcoal 10%
0.50 25 1.2 25 0 0 Charcoal 10%
0.70 43 0.6 25 2.78 1 Soil
1.00 25 0.01 25 1.8 1.5 Charcoal 100%
1.50 43 1.2 43 1.8 1 Charcoal 10%
1.50 100 1.7 100 2.55 1.5 Charcoal 100%
1.60 95 0.01 25 0.5 0 Charcoal 12.5%+Ash 12.5%
1.70 80 0.2 25 2.55 3 Charcoal 25%
1.90 80 0.6 80 0.9 3 Charcoal 100%
1.90 2.5 0.6 25 1.8 1.5 Charcoal 25%
2.00 100 0 0 0.9 3 Charcoal 100%
2.00 100 1.2 100 2.55 1.5 Charcoal 25%
2.00 95 0.6 43 1.8 3 Charcoal 100%
2.10 80 0.2 95 1.8 3 Charcoal 100%
2.30 95 0.6 80 0.9 3 Charcoal 100%
2.30 100 0 80 0.01 3 Charcoal 100%
2.50 95 0.01 95 0.3 1.5 Charcoal 25%
2.70 100 0.2 100 0.3 3 Charcoal 100%
2.80 100 0.01 100 0.01 3 Charcoal 100%
3.00 100 0.01 100 0.01 3 Charcoal 100%
3.00 100 0.01 100 0.01 3 Charcoal 100%
3.00 0 0 0 0 3 Charcoal 75/Ash 25%

Table 4:  Input conditions for the supervised simulation scenario.  The CBI value of each stratum may 
be different regarding leaf conditions (PFA) and canopy cover (PCC) as in the second simulation.
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origin and selects, for each pixel in the image, 
the reference spectrum with the lowest spectral 
angle.  In this case, the reference spectra were 
produced by the simulations and stored in the 
LUT along with their CBI value.  Once the 
reference spectrum with the minimum spectral 
angle was selected, the image pixel was labeled 
with the CBI value of the reference spectrum.

Study Site

The effi ciency of model inversion from the 
different simulation scenarios was tested using a 
large forest fi re that recently occurred in central 
Spain (Figure 4).  The fi re occurred in the 
middle of July 2005 and was caused by human 
carelessness under very dry weather conditions: 
maximum temperature 35 ºC; relative humidity 
22%; 30 days since the last rainfall event; wind 
speed 10-23 Km/h.  The fi re lasted four days 
and burned approximately 13,000 ha in an 
area dominated by pine trees (Pinus pinaster 

L.) mixed with semi-deciduous oaks (Quercus 
faginea Lam. and Quercus pyrenaica Willd.) 
and a marginal sector covered mostly by 
Mediterranean shrubs (Cistus ladanifer L., 
Cistus albidus L., Rosmarinus offi cinalis L., 
Juniperus oxycedrus L., Rosa canina L., Cytisus
scoparius L., and Lavandula pedunculata L.). 
Eleven fi refi ghters died while supressing the 
fi re, which caused a great impact in the national 
media.  The topography of the area is rugged 
and the altitudes range from 1,100 m to 1,400 
m.  Rainfall in the region averages 600 mm to 
800 mm per year.  Maximum and minimum 
precipitation are recorded in November to 
December, and in July to August, respectively.  
The average annual temperature is 12 ºC. 

A fi eld campaign to obtain CBI values for the 
burn area was undertaken between August and 
September, a few weeks after the fi re.  Therefore, 
the measured CBI values refl ect the short-term 
burn severity, using Key’s terminology (Key 
2005).  A total of 110 plots were sampled in the 

Figure 4.  Location of the study case.
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fi eld using the CBI protocol.  Plot coordinates 
were registered with a Garmin GPS system 
(GARMIN GPS 12, http://www.garmin.com), 
with an average precision of ± 10 m.  Most of 
the burn area presented high CBI values.  Only 
18 out of 110 plots had CBI values lower than 
2, and 31 had CBI higher than 2.9.  In spite 
of being a large fi re, the severity values did 
not cover the whole spectrum of possible CBI 
values, and intermediate levels (CBI between 
1 and 2) were uncommon.  This imposed a 
challenge for verifying the performance of the 
inversion results, as will be discussed later.

Image Processing

Sensors with different spectral and spatial 
resolution were used for testing the robustness 
of the model inversion results.  Table 5 shows 
the spatial and spectral characteristics of the 
images used.  In spite of the large differences 

in spectral and spatial resolution, all images 
showed a clear and similar pattern in their 
portayal of the burn area (Figure 5).  They 
were acquired between 15 to 30 days post-fi re, 
except for SPOT-HRV, that was collected 60 
days post-fi re.

The images were geometrically corrected 
using reference data extracted from a 
previously ortho-rectifi ed Landsat image.  The 
SPOT-HRV, Landsat-TM and AWIFS images 
were converted to radiance using calibration 
coeffi cients included in the image header.  
Atmospheric correction was based on the dark-
object method proposed by Chavez (1996).  
They were also corrected for topographic shade 
using a variation of the Teillet’s C correction 
method (Riaño et al. 2003).  MERIS and MODIS 
images were obtained from the FR2P-level 02 
product and the standard MOD09 refl ectance 
product respectively, which include radiometric 
calibration and atmospheric correction.

Band

Sensor

SPOT-HRV LANDSAT-
TM2 IRS-AWIFS ENVISAT-

MERIS
TERRA-
MODIS

Spatial resolution (m)
10 / 20 30 60 300 500

·················································· μm ··················································
1 0.545 0.487 0.555 0.413 0.469
2 0.645 0.571 0.650 0.442 0.555
3 0.835 0.661 0.815 0.490 0.645
4 1.6751 0.837 1.625 0.510 0.857
5 1.677 0.560 1.240
6 Thermal2 0.620 1.640
7 2.215 0.665 2.130
8 0.681
9 0.709

10 0.754
11 0.778
12 0.865
13 0.885

Table 5.  Spatial resolution (m) and center wavelength (μm) of the sensors used for this study.

1HRV 1.675 μm band has 20 m resolution.  2Landsat-TM thermal band was not considered.  
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Figure 5.   Images used for the model inversion: a) SPOT-HRV, b) Landsat-TM, c) IRS-AWIFS, 
d) ENVISAT-MERIS, e) TERRA-MODIS.

 RESULTS

Comparison of Simulated and Actual 
Refl ectances

To simplify the comments, comparison 
of simulated and observed refl ectances will 
be based on Landsat-TM images because 
it provides the best compromise between 
spatial and spectral resolution from our image 
dataset. 

Figure 6 shows the spectral refl ectance of 
simulated and actual spectra for a set of sample 
ranges of CBI values from the supervised 
post-fi re simulation.  The image spectra were 
extracted from the post-fi re Landsat-TM image.  
It is noticeable that the observed refl ectance for 
the lower values of CBI is signifi cantly lower 
than the simulated refl ectance, which may be 
caused by our RTM assumptions, as will be 
discussed later on.  This discrepancy in absolute 
refl ectance values between the modeled and 

the observed refl ectance supports the use of the 
SAM as the most appropriate strategy for model 
inversion because SAM relies on directions of 
spectral vectors and not on absolute values.  The 
higher CBI values show a closer fi t between 
observed and simulated refl ectance.

Performance of Simulation Models for 
Retrieval of CBI

Table 6 presents the results for the estimation 
of CBI using the inversion of simulated values 
for the Landsat-TM images.  All Pearson r values 
are highly signifi cant and provide coherent 
trends.  Slope is close to 1 for the post-fi re 
scenarios (single, extended, and supervised), 
while it is lower for the multitemporal 
simulation.  The multi-temporal scenario also 
has the lowest r value, which is mainly caused 
by the small sensitivity of the model to low CBI 
values.  The slope values of less than 1 indicate 
that underestimations occurred frequently 
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Figure 6.  Comparison of simulated spectra and actual TM data for several ranges of CBI values.
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Scenario Pearson 
r Intercept Slope Standard 

Error
Min 

Residual
Max 

Residual Signifi cance

First 
(single post-fi re) 0.709 -0.004 0.951 0.550 -1.867 1.189 p < 0.001

Second 
(extended post-fi re) 0.639 0.165 0.949 0.599 -2.443 0.966 p < 0.001

Third 
(multitemporal) 0.486 1.335 0.588 0.683 -2.746 1.018 p < 0.001

Fourth 
(supervised) 0.793 0.279 0.858 0.474 -1.771 1.075 p < 0.001

Table 6.  Correlation and regression values for the inversion of CBI values in the different 
simulation scenarios.

Figure 7.  Estimation of CBI values for the study area from the inversion of the fourth simulation 
scenario (supervised) with Landsat-TM images.

for all scenarios.  The standard errors of the 
estimation are in the range of 0.47 to 0.68.  This 
is about one sixth of the total CBI range, which 
implies that CBI values can be estimated with 
fairly good accuracy.  The best results were 
obtained in the fourth (supervised) scenario, 
where only a selected set of substrate, PFA 
and PCC combinations, were extracted.  This 
scenario is by far the simplest one because it 

only requires 25 reference spectra and performs 
better than others, especially when considering 
the total correlation, standard error, and average 
extreme residuals.  Figure 7 shows a map of 
the study case with the spatial variation of CBI 
values for this fourth simulation scenario.  The 
spatial patterns show a good agreement with 
fi eld-observed severities, especially for the 
upper part of the CBI scale.
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Comparison of Sensors

Using the LUT generated for the supervised 
simulation scenario, inversion techniques were 
applied to the other images of our study case.  
The spectral library created for the LUT was 
convolved to the center wavelengths of the 
SPOT-HRV, IRS-AWIFS, ENVISAT-MERIS 
and TERRA-MODIS sensors.  The results 
are included in Figure 8, which shows the 
scattergraph betweeen observed and predicted 
CBI values for the different sensors.  The 
higher accuracy was obtained by the Landsat-
TM refl ectance data, which has the best 
compromise between spectral and spatial 
resolution of all images used.  The second best 
result was obtained from AWIFS data, instead 
of the SPOT-HRV, as we had hypothesized.  In 
spite of having the same spectral resolution, 
the fi ner pixel size of SPOT-HRV apparently 
tends to create more spatial variability, which 
confounds estimation problems.

The coarser resolution data perform 
generally well, with r2 values in the range of 
0.5.  MERIS offers a greater sensitivity than 
MODIS, which is likely caused by both greater 
spectral and spatial resolution.  In general, all 
sensors analyzed tend to underestimate the CBI 
value, with regression intercepts between 0.7 
and 2.2.

DISCUSSION

This paper has presented several approaches 
to the use of RTM simulation for burn severity 
estimation using different satellite images.  
The study has shown the common advantages 
and disadvantages of simulation models in the 
interpretation of remotely sensed images. 

The most important disadvantages refer to 
the complexity of selecting and parametrizing 
the RTM so it can provide a similar pattern 
to observed refl ectance.  As it was shown in 
Figure 6, the actual refl ectance values clearly 
differ from modeled values in the lower part 
of the CBI scale, which is when vegetation is 

greener and more dense.  This problem may be 
associated to the Kuusk model assumptions.  
Kuusk’s is a canopy model, and therefore, when 
simulated and pixel refl ectances are compared, 
it is assumed that each pixel is fully covered 
by a canopy.  In the case of forested areas, this 
assumption implies that shade and soil are only 
affecting the canopy but not the areas outside the 
canopy.  Typically, a Landsat-TM pixel would 
be a combination of vegetation canopies (one 
or several, depending on vertical structure, but 
this is taken into account in the Kuusk model), 
soil background, and shadows.  When the 
canopy cover is close to 100%, this assumption 
may be valid.  However, in other cases where 
the canopy is sparse such as in our area, the 
assumption is not as valid.  Consequently, the 
use of landscape scale or geometric models 
(such as Geosail, GORT, DART) that account 
for discontinuous canopies would be more 
desirable.  However, these models do not 
provide simulation for vertical stratifi cation, 
which is very important in burn severity 
determination, and was one of the reasons for 
our selection of the Kuusk model.  

In any case, regardless of the canopy versus 
landscape approach, our simulations perform 
well in modeling spectral shape across all the 
bands.  In this respect, tendencies between 
simulated and observed spectral shape are more 
similar than absolute refl ectance values, which 
supports the use of the Kuusk model as a fi rst 
approximation to burn severity simulation. 

As far as parameterization is concerned, this 
paper has explored the use of four simulation 
scenarios, testing a wide range of assumptions 
regarding burn conditions.  It has been shown that 
extending the range of input conditions does not 
necessarily improve the results of inversion, but 
rather it decreases them.  The ill-posed problem 
(Combal et al. 2002) of model inversion may 
be behind this lack of improvement because 
very similar refl ectance patterns can be derived 
from different CBI values and that introduces 
noise into the inversion process.  Therefore, 
additional efforts are required to obtain models 
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and simulation scenarios that can be more 
confi dent in providing consistent refl ectance 
signatures for specifi c burn severities.  As 
far as multitemporal change is concerned, 
the reduction of accuracy with respect to the 
supervised post-fi re simulation scenario is 
probably caused by the multiplying effect of 
potential noises introduced by radiometric 
correction in pre-fi re and post-fi re images. 

In spite of all these diffi culties, it has been 
demonstrated that model inversion is a quick 
and universal mechanism to estimate CBI 
values because it is sensor and site independent.  
The same simulation scenario was applied with 
consistent results with different sensors.  Only 
one study case has been presented here, but 
the physical basis of our simulation should be 
applicable to other fi res with similar ecosystem 
characteristicas: ie., Mediterranean fi res.  In 
any case, it is important to emphasize that 
model inversion does not require any fi eld 
data, assuming of course that the model is 
properly parameterized and validated.  In other 
words, the relations are not dependent on the 
specifi c burn conditions, but are associated 
to ecophysiological changes caused by fi re 
(changes in soil background, leaf color or leaf 
cover proportion).

As far as accuracy concerns, the supervised 
scenario provided similar results to other study 
cases based on empirical equations with an r2 

close to 0.65.  For instance, Cocke et al. (2005) 
obtained 73% to 75% agreement to estimates 
CBI from Landsat multitemporal images using 
an empirical model with the Normalized Burn 
Ratio (NBR) in Arizona.  Similarly, Epting et
al. (2005) found r2 correlations between 0.63 

and 0.9 again using the CBI and the NBR in 
Alaska boreal forest, while van Wagtendonk 
et al. (2004) found r2 values of 0.83 in the 
Yosemite National Park, although they used a 
polynomial model to relate CBI and changes in 
NBR.  In this context, the simulation scenarios 
provide a good alternative to derive CBI 
estimations from empirical models as the fi eld 
measurements can be focused on validating the 
results.

Future improvements of this simulation 
approach should include new models that take 
into better account the shade and soil variation 
to be expected in forested areas within a pixel.  
Geometrical and hybrid models should be 
tested in this regard.  Additional effort is also 
needed to parameterize the input variables to 
reduce factors of noise that have been observed 
in our full range simulations.

In summary, this paper has shown that 
simulation models have a great potential in 
burn severity estimation.  First, because they 
provide a physical explanation for relations 
observed empirically, they make it possible 
to generalize local fi ndings.  Secondly, they 
reduce the amount of fi eld work required 
to extract severity information from remote 
sensing images because the interpretation is 
not based on statistical fi tting.  Finally, they 
provide a much wider range of conditions than 
those that are commonly observed in a single 
fi re, regardless of fi re behavior patterns, since 
the output conditions can be simulated for a 
wide range of scenarios.  The main drawbacks 
of simulation models are the complexity of 
their formulation and calibration. 
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