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abstract

Biomass burning has critical ecological and social impacts.  Recent changes in climate 
patterns and land use have involved alterations of traditional fire regimes, which have in-
creased the negative impacts of fire.  Live Fuel Moisture Content (LFMC) has proven to 
be one of the main factors related to fire risk, as it affects fire ignition and fire behavior, 
and therefore it is an essential indicator for fire risk assessment.  The aim of our research 
was to explore several methods to convert LFMC into Ignition Probability (IP) at a na-
tional scale, considering climate and vegetation functional types.  The project covers the 
Iberian Peninsula territory of Spain (492 175 km2), for a ten year period.  The LFMC data 
was estimated from NOAA-AVHRR imagery, whereas fire occurrence was based on the 
standard MODIS Thermal Anomalies product (MOD14).  Non-parametric significance 
tests, histograms and percentiles, classification trees, and logistic regression models were 
used for estimating the IP from five variables based on LFMC.  These modelling ap-
proaches were compared and Logistic Regression (LR) analysis was found to be most ad-
vantageous, since it uses several predictor variables to compute a continuous probability 
of IP.  The area under the ROC curve of the LR models for the Iberian Peninsula was 0.65 
for the Mediterranean region and >0.8 for the Eurosiberian region.  The LFMC from one 
week before the fire detection was the most influential variable in the statistical analysis 
and it was the main variable in the Mediterranean models.  In the Eurosiberian models, 
the LFMC decrement since spring was also important.  The LFMC one week before the 
fire detection and the difference between the LFMC one week and two weeks before the 
fire detection were included in the grassland model.  Shrubland is less susceptible to rapid 
moisture changes than grassland, so the LFMC from two weeks before the fire and the 
LFMC decrement since spring were more influential.
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introduction

Biomass burning has a great influence on 
vegetation disturbance and succession, as well 
as on worldwide greenhouse gas emissions 
(Goetz et al. 2006, van der Werf et al. 2006, 
Chuvieco 2008).  During recent years, severe 
fire seasons have been observed in several 
countries (Portugal, 2005; Greece, 2007; Aus-
tralia, 2009; Russia, 2010; and others), due to 
climatic factors, such as heat waves or precipi-
tation disturbances, and as a result of changes 
in land use derived from socio-economic 
trends (Martínez et al. 2009).  For this reason, 
there is a growing emphasis on improving fire 
risk assessment systems, which predict when 
and where a fire is more prone to ignite or 
where it may cause more negative impacts 
(Chuvieco et al. 2010).  Fire risk indices in-
clude different variables, such as weather con-
ditions, topography (mainly slope gradient), 
fuel amount and geometric characteristics, and 
socio-economic conditions (Preisler et al. 
2009).  One of the main factors required to im-
prove those fire risk indices is a more accurate 
estimate of the fuel moisture content (FMC), 
since this is closely related to fire ignition and 
fire propagation (Nelson 2001).  In Spain, 
96.1% of all fires are human caused (Área de 
Defensa contra Incendios Forestales 2006).  
Fires caused by lightning are also very relevant 
(Vilar et al. 2010) as such fires tend to burn 
large areas because of their isolated locations 
and difficult accessibilities, and because they 
are characterized by simultaneous multiple ig-
nitions (Wotton and Martell 2005).  Since 
plants constitute the main ignition material in 
a forest, their moisture content plays an impor-
tant role because it may serve to retard ignition 
or mitigate propagation of a fire.  Fuels with 
high moisture content need higher tempera-
tures or longer periods of heat exposure to ig-
nite, because the heat is required for evapora-
tion, leaving less energy available to initiate 
combustion (Dimitrakopoulos and Papaioan-
nou 2001).  In addition, fire propagates slower 

in wet fuels than in dry fuels as the evaporated 
fuel moisture inhibits combustion by diluting 
the flammable gases in the reaction zone and 
cooling the flames (Albini 1976, Shafizadeh et 
al. 1977).  For this reason, the FMC is a com-
mon component of fire danger assessments 
(Blackmarr and Flanner 1968, Fosberg and 
Schroeder 1971).

The FMC is commonly expressed as the 
amount of water per dry mass of the fuel (Law-
son and Hawkes 1989).  It is defined by the ex-
pression,

    ,              (1)

where Ww and Wd are the wet and dry weights 
of a sample unit.  The dry weight is usually ob-
tained after oven drying the sample at 60 °C 
for either 24 h or 48 h  (Viegas et al. 1992).

When considering FMC, a distinction be-
tween dead and live fuels should be made as 
their FMC varies according to different factors.  
Dead fuels are closely affected by weather and 
environmental conditions, while the live fuels 
are also influenced by soil moisture (which in 
turn is determined by weather variability) and 
the ecophysiological characteristics of each 
species (Camia et al. 2003).  Hence, since spe-
cies have diverse mechanisms to survive sum-
mer drought, each can have a different live 
FMC for the same weather conditions.

The FMC can be estimated from field 
work, but this process is laborious and costly.  
For this reason, most operational estimates of 
FMC, particularly for dead fuels, are based on 
meteorological indices (Simard 1968, Finney 
1998, Aguado et al. 2007).  These methods re-
quire spatial interpolation to obtain complete 
spatial coverage.  Due to the fact that live fuels 
are associated with more than weather condi-
tions, alternative methods based on satellite 
images have been used to estimate FMC of 
live fuels (LFMC).  These methods can be di-
vided in two large groups, depending on 
whether they use empirical or simulation mod-
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els.  The former rely on statistical fittings be-
tween satellite derived indices and field mea-
surements, and therefore are site-specific, but 
can be extended to areas with similar condi-
tions (Chuvieco et al. 2004b, García et al. 
2008).  The simulation models are based on ra-
diative transfer equations and try to account 
for the impact of water content on plant reflec-
tance at different wavelengths.  These methods 
can be generalized to larger areas although 
their parametrization is more complex than 
empirical fittings (Ceccato 2001, Yebra et al. 
2008a).

To include LFMC information into fire risk 
assessment systems, one should translate the 
original scale of LFMC values (percentage of 
dry weight) into a risk scale that can be com-
bined with other factors of fire ignition or 
propagation.  The former is commonly ap-
proached by transforming LFMC values into 
ignition probability (IP; Chuvieco et al. 
2004a), defined as the likelihood that the fuel 
would ignite when exposed to a heat source.  
Several papers have presented methods to de-
rive IP from LFMC data.  They can be classi-
fied in two broad approaches: (1) studies based 
on biophysical parameters derived from exper-
iment results such as subjecting fresh foliage 
to flammability tests in order to investigate its 
ignitability; or (2) studies based on relating 
moisture values to historical fire occurrence.  
Within the first group, most of the studies have 
attempted to establish a critical LFMC thresh-
old below which the fire IP would increase sig-
nificantly.  A clear example of this approach is 
Rothermel’s (1972) concept of moisture of ex-
tinction (ME), defined as the moisture thresh-
old above which fire cannot be sustained.  Al-
bini (1976) estimated the ME for grassland at 
40%, and  Trabaud (1976) found a similar ig-
nition threshold for Mediterranean maquis at 
45%.  For several Mediterranean shrubs, this 
threshold was established at 105 % by  Dimi-
trakopoulos and Papaioannou (2001).  Using 
this critical ME threshold, Chuvieco et al. 
(2004a) estimated IP from LFMC, based on an 

inverse linear relation between ME and the ac-
tual LFMC value (the closer to the ME, the 
lower the IP).  The second approach to estab-
lish critical thresholds of LFMC to define IP 
has been based on analyzing statistical rela-
tions between LFMC and fire occurrence.  
Dennison et al. (2008) found for chaparral 
ecosystems (shrubland plant community in 
California), that large fires (>1000 ha) only oc-
curred when LFMC was less than 77 %, al-
though most of the large fires occurred when 
LFMC was below 71 %.  Afterwards, the same 
authors developed a new analysis by increas-
ing the sample size and including antecedent 
precipitation patterns.  Their conclusion was 
that 79 % LFMC was the threshold strongly re-
lated to large fires (Dennison and Moritz 
2009).  This result was similar to that obtained 
by Schoenberg et al. (2003), who found that 
chaparral burned area increased below an 
LFMC threshold of 90 %.  Pellizzaro et al. 
(2007) observed that most of the fires in sever-
al Mediterranean shrublands of Italy occurred 
with LFMC values below 100 %.  Other au-
thors propose using a gradual scale that corre-
lates the IP increment to the LFMC decrement.  
For example, Green (1981) established three 
fire intensity classes in chaparral ecosystems, 
with the highest intensity occurring below 
60% LFMC.  Weise et al. (1998) considered 
four fire danger classes in which fire danger 
was also extreme below 60 % LFMC.  Conse-
quently, IP is defined by a statistical tool like 
histograms and percentiles.  More recently, lo-
gistic regression (LR) models were used to es-
timate IP in Mediterranean grasses and shrubs 
(Chuvieco et al. 2009), while Dimitrakopoulos 
et al. (2010) have used classification trees to 
explore multiple factors associated with IP.

Since these empirical approaches were 
based on local historical fire data, they are dif-
ficult to extrapolate to other areas.  This paper 
follows an empirical method, but tries to ex-
tend the models to a larger territory, which in-
cludes a variety of climatic and vegetation 
conditions.  Our aim is to present the results of 
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generating IP values based on LFMC estimates 
using a variety of modelling methods.

MetHods

Input Data Description

This study covers the whole Iberian Penin-
sula territory (492 175 km2), which is one of 
the most fire-affected areas in Europe (Mar-
tínez et al. 2009).  The time series under analy-
sis spans from 2001 to 2007.  To obtain statis-
tical models between fire occurrence and 
LFMC, two sets of data were derived: the 
LFMC was based on empirical models applied 
to satellite images, while the fire occurrence 
was estimated from the MODIS Thermal 
Anomalies product (MOD14).  

The LFMC data was produced by García 
et al. (2008) and it has been calculated from 
1998 to 2012 using empirical models based on 
extensive field measurements of LFMC.  The 
product is based on 8-day composites per-
formed with 8 daily NOAA Advanced Very 
High Resolution Radiometer (AVHRR) imag-
es, at 1 km2 spatial resolution.  Due to the 
physiological differences between grasslands 
and shrubs, a different model for each vegeta-
tion type was fitted using multivariate linear 
regression.  The models were based on three 
input variables: the Normalized Difference 
Vegetation Index (an estimator of vegetation 
chlorophyll activity); surface temperature data 
(which is associated with evapotranspiration); 
and a harmonic function of the day of the year 
(accounting for seasonal trends).  The first two 
variables were derived from 8-day maximum 
brightness temperature value composites.  In 
order to include the interannual variations in 
LFMC seasonal trends, the third input variable 
was adjusted depending on whether the fire 
year was dry or wet at the beginning of the 
spring season.  This consideration took into ac-
count the Cumulative Water Balance Index 
(CWBI) for measuring regional drought stress 
(Dennison and Roberts 2003) and an estimate 

of the soil water reservoir (Gandullo 1994).  
The years with negative values of CWBI and 
no soil water reservoir were classified as dry 
years.  Consequently, a different function of 
the day of the year was fitted for each type of 
year (dry or wet) and for each vegetation type 
(grassland and shrubland).  The resulting mod-
els provided a mean error of 42.1 % for grass-
lands and 14.2 % for shrublands.  More infor-
mation about this product is described in Gar-
cía et al. (2008).  We include here an example 
of a LFMC 8-day composite (Figure 1).

The LFMC greatly varies between species 
depending on their physiological strategies to 
regulate water content (Pellizaro et al. 2007).  
Further, these strategies are highly related to 
local climate conditions.  Therefore, we built 
our models based on vegetation functional 
types and climate strata.  The selected LFMC 
product was developed just for grassland and 
shrubland so these were the two vegetation 
groups we analyzed (Figure 2).  The vegeta-
tion types were derived from the Corine Land 
Cover 2000 map (http://www.eea.europa.eu/
data-and-maps/data#c12=corine+land+cover+
version+13, last accessed November 2011) but 
the woodland category was not included in our 
analysis.  The climate regions considered were 
Eurosiberian or Mediterranean biomes (Figure 
3), which were extracted from a biogeographi-
cal classification developed by Rivas Martínez 
(1983).  In order to distinguish between the re-
gions, the Rivas Martínez (1983) classification 
system was based on the potential evapotrans-
piration of the summer months and also on the 
average precipitation for the same period of 
time.  In general terms, the Mediterranean re-
gion included the areas where the evapotrans-
piration was higher than the precipitation.  
Further, the Mediterranean areas show more 
contrast between maximum and minimum 
temperatures and less precipitation than the 
Eurosiberian areas, so the Mediterranean areas 
are distinguished by a marked drought in sum-
mer.  Ecophysiological studies have investi-
gated how the climate may have contributed to 
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Figure 2.  Vegetation stratification according to the 
Corine Land Cover 2000 reclassification.  

Figure 3.  Biogeographical stratification according 
to Rivas Martínez (1983).  

Figure 1.  Example of a LFMC map from 5 to 12 of August 2007.  The product was computed from 8 daily 
NOAA-AVHRR images at 1 km2 spatial resolution.  Empirical models for grassland and shrubland were 
developed by García et al. (2008).
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shape vegetation distribution (Moreno et al.
1990).  In this sense, in the Mediterranean re-
gion, vegetation is well adapted to summer 
drought but highly dependent on the availabil-
ity of water and nutrients during spring and 
autumn in order to compensate for the reduc-
tion in photosynthesis activity caused by the 
greater summer stress (Tenhunen et al. 1987).  
Typical vegetation from this region is: Quer-
cus ilex L., Cistus ladanifer L., Rosmarinus of-
ficinalis L., Erica australis L. and Phillyrea 
angustifolia L. (Rivas Martínez 1987).  The 
vegetation encountered in the Eurosiberian re-
gion is more sensitive to the climate of the dry 
period and to temperature in the coldest season 
(Moreno et al. 1990) and as representative ex-
amples we find Quercus robur L. and Fagus 
sylvatica L. as deciduous trees, and also Betula 
celtibérica Rothm. & Vasc. and Buxus semper-
virens L. (Rivas Martinez 1982).  Plant no-
menclature follows Lopez-Gonzalez (1994). 

In summary, the stratification groups that 
were tested for the statistical modelling of IP 
from LFMC data were: (1) fire and non-fire 
pixels in grasslands and shrublands, and (2) 
fire and non-fire pixels in four climate-vegeta-
tion models: Mediterranean grasslands (MG), 
Eurosiberian grasslands (EG), Mediterranean 
shrublands (MS), and Eurosiberian shrublands 
(ES).  An additional stratification was per-
formed for the descriptive analysis based on 
the seasonality of moisture conditions.  In 
Mediterranean climates, LFMC typically 
reaches its highest value at the end of spring 
and then decreases during summer and autumn 
until precipitation returns in late autumn or 
winter (Chuvieco et al. 2004b).  Therefore, we 
considered three temporal stages: grasslands 
and shrublands in spring (30 March to 17
June), grasslands and shrublands in early sum-
mer (18 June to 28 August) and grasslands and 
shrublands in late summer (29 August to 31 
October).

Regarding fire occurrence, we tried to use 
official fire statistics for Spain, but they do not 
have precise UTM (Universal Transverse Mer-

cator) coordinates of ignition points.  The fires 
are georeferenced to a 10 km × 10 km UTM 
grid net (http://www.marm.es/es/biodivers-
idad/temas/defensa-contra-incendios-fores-
tales/estadisticas-de-incendios-forestales/de-
fault.aspx, last accessed February 2012).  Since 
the LFMC data has a 1 km2 resolution, we con-
sidered that the official fire statistics may be 
affected by spatial interpolation methods, and 
decided to use MODIS Thermal Anomalies 
product (MOD14) as a surrogate of fire occur-
rence.  Previous studies have shown that 
MOD14 correlates well to fire occurrence 
(Hawbaker et al. 2008), especially for large 
fires ( Oliva et al. 2008, Morato 2009).  There-
fore, fire occurrence was selected from the 
MOD14 product.  The detection algorithm 
identifies pixels, at 1 km2 spatial resolution, in 
which one or more fires are actively burning at 
the time of the satellite overpass (Giglio et al. 
2003).  The results are hotspots shown as the 
centroids of the pixels.  Our temporal series of 
analysis started in 2001 because it was the year 
in which MOD14 was available.  Data were 
downloaded from the University of Maryland’s 
fire research group (http://maps.geog.umd.edu, 
last accessed February 2012).  Only those hot-
spots with a confidence level higher than 80 % 
were selected for this analysis to avoid com-
mission errors related to agricultural burns, 
high temperature soils, and specular surfaces.  
We had a total of 3874 and 2305 fire pixels for 
grassland and shrubland, respectively.

Selection of Non-Fire Pixels

The statistical models of LFMC and fire 
occurrence required defining a sample of areas 
not affected by fires.  Those areas were select-
ed from cells surrounding hotspots.  For that, 
the semivariogram geostatistical technique was 
computed for each spatial and temporal strati-
fication unit to find out the threshold distance 
at which the spatial autocorrelation in LFMC 
was significantly reduced (known as the sill).  
The outputs of the semivariogram study 
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showed that the sill was reached at approxi-
mately 10 km.  Then, a first buffer around each 
fire pixel was established at this distance, to 
avoid selecting non-fire pixels contaminated 
by actual burns.  The width of the sampling 
area was established at 10 km in order to keep 
the same ecological characteristics of the veg-
etation of the areas affected by fires, especially 
for the Mediterranean region, which can be 
very heterogeneous.  Then, 700 non-fire pixels 
were extracted for each stratification unit from 
inside both circular rings (Figure 4).  This 
number was determined according to Fink 
(1995) and  Bartlett et al. (2001) to get a repre-
sentative number of samples for the models.  
Sample sizes of 69 198 and 36 945 non-fire 
pixels were selected for grassland and shru-
bland, respectively.  This approach facilitated 
enough variability outside of the fire pixels, 
while keeping similar ecological conditions to 
those pixels affected by the fire.  As shown in 
Figure 5, some buffers were incomplete since 
only shrublands and grasslands were consid-
ered in our analysis.  In addition, in order to 
ensure that any fire pixel was not selected as a 
non-fire pixel, the area in a 1 km buffer was 
removed around hotspots with all confidence 
levels 

Statistical analyses

The predictive potential of LFMC to esti-
mate fire occurrence was tested by selecting 
LFMC values from several 8-day periods (Ta-
ble 1) before the fire detection as independent 
variables (LFMCt-n, where n = 1 to 5).  Using 
non-parametric statistics, only LFMC values 
from one and two periods before the fire 
(LFMCt-1 and LFMCt-2) were found significant 
(P < 0.001) to discriminate fire and non-fire 
pixels.  The 8-day period including the date of 
the fire (LFMCt) was not considered for the 
statistical analysis, as we tried to obtain a pre-
dictive model.

In addition to the mentioned two variables, 
the following temporal indices were tested as 
explanatory variables:

Difference = LFMCt-1 – LFMCt-2            (2)

(3)

Figure 5.  MODIS hotspots for the year 2007.  
Shown are the centroids of pixels where thermal 
anomalies were detected at 1 km2 spatial resolution, 
with a detection confidence that estimates its qual-
ity (low-confidence fire, medium-confidence fire, 
or high-confidence fire).  For the present analysis, 
only those hotspots with a high-confidence level 
(>80 %) were selected.  Also represented are the 
buffers where the non-fire spots were selected. 
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where LFMCmax spring is the maximum LFMC 
found in the spring season in the year of analy-
sis, and tLFMCt-1 and tLFMCmax spring are the 
dates of the LFMCt-1 composite and of the 
LFMCmax spring composite, respectively.
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where meanLFMCt-1 is the average LFMCt-1
value computed for the same pixel and date as 
LFMCt-1 in all the years considered in the anal-
ysis, not including the actual year of analysis. 

The non-parametric U-Mann-Whitney test 
for differences was used to test whether the ex-
planatory variables showed statistical signifi-
cance between fire and non-fire pixels, as a 
first test to select the most significant variables 
for the predictive models.  To build these mod-
els, three methodologies were used: (1) histo-
gram thresholding based on percentiles; (2) 
classification trees; and (3) logistic regression 
analysis. 

The histogram thresholding is a simple 
method based on the frequency distribution of 

a selected variable.  In this case, we computed 
the proportion of fire pixels that occurred at 
certain LFMC percentiles.  Then, an IP to each 
percentile was assigned and the ninetieth and 
tenth percentiles were selected as critical 
thresholds to extract the lowest and highest IP, 
respectively.  This criterion to set up relevant 
thresholds for IP determination was used by 
other authors to determine fire danger levels 
(Andrews et al. 2003).  De Groot et al. (2005) 
used a similar approach to analyze the relation-
ship between the Fine Fuel Moisture Code 
(FFMC) of the Canadian Fire Weather Index 
System and MODIS hotspots in Africa. 

The classification tree analysis was per-
formed with the CART algorithm  (Breiman et 
al. 1984).  This algorithm recursively splits the 
input database (fire or non-fire samples) using 
binary rules described by optimal cut-offs, 
which should be highly correlated to the binary 
output.  The tree growing process is carried out 
in a recursive way until a large tree structure is 
obtained.  Then, an automated optimal pruning 
of such structure is carried out by removing 
uninformative branches to avoid overfitting.  
The resulting model is a tradeoff between pre-

Variable Description Rationale

LFMCt-1

LFMC corresponding to the 8-day 
period prior to the period including the 
fire date.

The lower the LFMC is one or two 
weeks before the fire detection, the 
higher IP is expected. 

LFMCt-2
LFMC corresponding to the 8-day 
period prior to LFMCt-1.

Difference Moisture variation between two 
previous periods to the fire date.

The more the moisture decreases before 
the fire detection, the higher IP is 
expected. 

Slope
Moisture gradient between the 
maximum LFMC value and the period 
before the fire date. 

The larger the moisture decrease is with 
respect to the maximum LFMC spring 
record for the same temporal and spatial 
placement, the higher IP is expected.

Anomaly 
Departure of LFMC values before the 
fire date from the average value of that 
period during the time series. 

The lower LFMC is recorded before the 
fire detection comparing to the mean 
recorded for the rest of the years, the 
higher IP is expected. 

Table 1.  Description of the independent variables used to predict fire occurrence.  LFMC =  Live Fuel 
Moisture Content and IP = Ignition Probability.
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dictive accuracy and tree complexity.  The 
splits can be obtained using impurity mea-
sures, such as Gini, entropy, towing, etc., 
which provide criteria to determine the optimal 
selection.  Each branch is created to maximize 
the homogeneity of the descendant nodes (the 
maximum heterogeneity would be a branch 
with the same number of fire and non-fire pix-
els).  The CART decision tree models provide 
rich information for estimating the IP at the 
terminal nodes of the trees.  Such estimates 
can be obtained from the Bayes rule that gives 
the posterior probabilities of fire and non-fire 
at a terminal node t by:

                                   

 ,  (5)

with                                                      ,        (6)

where P(1\t) and P(2\t) are the posterior prob-
abilities of non-fire or fire, N1 and N2 are the 
number of non-fires and fires in the dataset and 
N1(t) and N2(t) are the number of non-fire and 
fire pixels at the terminal node t of the tree.  In 
addition, π1 and π2 are the prior probabilities 
for both categories of the outcome variable.  
Further theoretical details concerning the 
CART algorithm are described in Breiman et 
al. (1984).

For this study, all the trees were grown us-
ing optimal parameters provided by the CART 
algorithm, and the input data were divided in 
two subsets with 60 % for learning and 40 % 
for testing the tree models.  The Gini splitting 
rule was selected for all of the spatial units un-
der study.  In addition, we carried out several 
trials that showed that a parameterization with 
π1 = π2 = 0.5 was the best choice.  The resulting 
classification tree models were assessed using 
the Area Under the Curve (AUC) obtained by 
the Receiver Operating Characteristic (ROC) 
plot method (Fielding and Bell 1997). 

The third method for modelling IP in this 
study was logistic regression (LR).  In order to 
test the consistency of the explanatory vari-
ables and to select the most relevant ones, we 
chose the Forward Wald method.  Then, the in-
dependent variables were entered in the model 
in an additive way, resulting in a linear equa-
tion (Equation 7).  This equation is included in 
the computation of P (Equation 8), which 
stands for the probability of fire. 

(7)

      
 (8)

The equation coefficients were calculated 
via the maximum likelihood method, and the 
IP for each record in the database can be esti-
mated by means of Equation 8.  In addition, 
LR also provides significance levels for testing 
the null hypothesis βi = 0, where i = 0, 1, ... r, 
which are useful to quantify the importance of 
each independent variable in the model.  The 
results were also assessed using the AUC of 
the ROC.  All the statistical tests were per-
formed with SPSS v15.0 (SPSS 2006).

results

Testing for Differences

Significant differences between fire and 
non-fire pixels were observed for most of the 
independent LFMC variables at the majority 
of the spatial and temporal units, with LFMCt-1
and LFMCt-2 being the most significant vari-
ables (Figure 6).  The LFMCt-1 showed the 
highest significance in all scenarios, with the 
exception of early summer where LFMCt-2 be-
came more relevant.  Anomaly was significant 
for grassland, especially in the Eurosiberian 
region where drier periods would lead to a 
considerable LFMC decrease.  Slope was not 
found to be significant in spring for shrubland, 
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but it showed high z values on grassland in late 
summer when this vegetation type exhibits 
lower LFMC values.  It is worth noting that 
there are fewer significant variables for the 
spring time period than in summer.  

Histograms and Percentiles

We selected LFMCt-1 for this analysis as it 
showed the highest significance in the U-
Mann-Whitney test.  For fires occurring on 
shrubland, most of the hotspots had a LFMCt-1 
lower than 100 %, with a peak close to 80 % 
(Figure 7).  Above LFMCt-1 of 140 %, few hot-
spots were observed (9.53 %).  For grassland, 
most fire pixels had LFMCt-1 values below 
40%.  However, some anomalously high 

LFMCt-1 values were found for some fire pix-
els (>120 %). 

Non-fire pixels and fire pixels exhibited 
different distributions across the LFMCt-1 in-
tervals (Figure 8).  Non-fire pixels were repre-
sented proportional to the occurrence of 
LFMCt-1 intervals but the curve for fire pixels 
displayed a sharp fall, which indicated more 
fires at low values of LFMCt-1. 

According to the results provided by the 
percentiles (Figure 9), 50 % of fires occur 
when LFMCt-1 was below 25.76 % for grass-
land and below 79.95 % for shrubland.  The 
LFMCt-1 critical value for 90 % of fire occur-
rence was 127.12 % for grassland and 105.51 % 
for shrubland.  These values were 1.35 % and 
57.79 %, respectively, for the tenth percentile 

Figure 6.  z values using U-Mann-Whitney test for the variables that show significant differences between 
fire and non-fire areas (α = 0.01).  Most of the independent LFMC variables showed significant differences 
between fire and non-fire pixels, the LFMCt-1 and LFMCt-2 being the most significant.
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of fire occurrence.  An IP was assigned to each 
percentile, with the highest IPs corresponding 
to the lowest percentiles, and vice versa.  Note 
that a conservative value of 10 % was estab-
lished as the lowest IP.

Classification Tree Modelling

The CART models generated after stratify-
ing by vegetation groups alone did not show 

significant information, so this analysis com-
bined climate zones and vegetation types in 
four sampling units: MG, EG, MS, and ES 
(Figure 10).  The tree structures provided by 
the figure correspond to the data of the sam-
pled pixels.  

Note that in all cases, the first splitting 
variable was LFMCt-1, which confirmed the 
importance of this variable to estimate fire oc-
currence.  Additionally, the slope variable was 
found relevant to estimating fire occurrence in 
the ES and MG models. 
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The IP was relatively high at terminal node 
1 for all tree models (Figure 10).  For instance, 
in the ES tree, the estimated IP at node 1 was 
77%.  It has an interesting pattern defined as 
the pixels with LFMCt-1 and slope below 
111.04 % and −0.40, respectively.  Taking into 
account that we have obtained three terminal 
nodes for ES, the resulting IP map would in-
clude just three IP categories: high IP, 77 %; 
medium IP, 34.1 %; and low IP, 15.4 %.  In the 
case of the MS tree model, the IP map would 
also define three categories, whereas the EG 
tree model has only two categories: high and 
low.  Finally, although the MG tree includes 
four terminal nodes, the cut-off at node 3 was 
for an LFMCt-1 of 16.28 %.  It is an anoma-
lously low value in our data set.  Therefore, the 
tree could be pruned at this split, ending up 
with two IP levels described by the first split.

The performance of the aforementioned 
models was assessed by means of the AUCs 
obtained from the ROCs for the test samples.  
Figure 11 contains the plots of the ROCs for 
all of the models.  The ROCs given by the tree 
models provide good results; for example, the 
ES model captured nearly 80 % of fires, with 
20% false positives.  We also observed (Figure 
11), following the AUC, that the Eurosiberian 
region models perform better than the Medi-
terranean ones. 

Logistic Regression Modelling

The logistic regression results indicated 
that, for the vegetation models, the AUC was 
0.62 for grassland and 0.67 for shrubland 
(Tables 2 and 3).  When we also considered 
climate, an improvement occurs, especially 
in the Eurosiberian region where the AUC 
was 0.87 and 0.81 for grassland and shru-
bland, respectively. 

As previously obtained in the different 
methods, the LFMCt-1 was the most relevant 
variable.  It was included in all grassland mod-
els as well as in the Mediterranean shrubland 
model.  The LFMCt-2 was also found relevant 
in the Eurosiberian shrubland and in shrubland 
models as a whole.  In addition, difference was 
included in the grassland model while slope 
was included in the shrubland model.  The 
anomaly was included in some equations in 
order to account for atypically low moistures 
in relation to the historical records of the pre-
vious years.  This is the case in ES, where the 
coefficient was sufficiently high to influence 
the results.  However, it was found irrelevant 
in other models, as it was included with a very 
low coefficient. 
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Figure 10.  CART models and the estimated IPs at the terminal nodes given by the Bayes rule.  The gray 
bars denote the amount of non-fire pixels; the black bars denote the amount of fire pixels.  The first splitting 
variable was LFMCt-1 and the IP was relatively high at terminal node 1 for all tree models.



Fire Ecology Volume 8, Issue 1, 2012
doi: 10.4996/fireecology.0801077

Jurdao et al.: Modelling Fire Ignition Probability
Page 90

discussion

LFMC and Fire Pixels

The data showed an increasing IP trend as 
LFMC decreased.  Lower LFMC values were 
associated with higher numbers of fire pixels, 

as it can be clearly observed in histograms and 
percentiles (Figures 7 and 9).  This finding was 
also observed by de Groot et al. (2007), who 
concluded that as more local areas became dry 
enough to burn, there is a parallel increase in 
the number of hotspots.  However, for both 
vegetation types, we found fires for high 
LFMCt-1 values.  It is possible to have high 
moisture one or two weeks before the fire, but 
just before the fire it can drop because of harsh 
meteorological changes or also due to moisture 
evaporation when vegetation is exposed to the 
heat of a nearby fire.  That is one of the handi-
caps of not having a daily LFMC product. 

Variables Selected in the Stratification Groups

In the most critical period for fires in Spain, 
grasslands usually have LFMC values much 
lower than shrublands (Figure 9), since they 
are severely affected by high temperatures and 
low precipitation in the summer months (Gar-
cía et al. 2008).  Shrubs have more developed 
mechanisms to resist summer drought, such as 
leaf area reduction and non-photosynthetic 
material increment (Valladares 2004).  Addi-
tionally, they have a greater capacity to extract 
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Figure 11.  ROCs given by classification tree mod-
els with AUCs: MG = 0.65; EG = 0.79; MS = 0.7; 
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the ROC of a random model (AUC= 0.5).

Variables in the equation AUC
Grassland (−0.006*LFMCt-1) + (−0.006*Difference) − 2.553 0.62
Mediterranean grassland (−0.009*LFMCt-1) + (0.001*Anomaly) − 2.696 0.63
Eurosiberian grassland (−0.019*LFMCt-1) + (−0.159*Slope) + (−0.004*Anomaly) − 0.004 0.87

Table 2.  Logistic regression results for grassland.  LFMCt-1 was the most relevant variable.  The Eurosiberi-
an grassland model showed the best performance with an Area Under the ROC curve of 0.87.  The variables’ 
coefficients considered in all of the models were found to be significant (P  < 0.001).

Table 3.  Logistic regression results for shrubland.  LFMCt-2 and slope were the most relevant variables.  The 
Eurosiberian shrubland model showed the best performance with an Area Under the ROC curve of 0.81.  The 
variables’ coefficients considered in all of the models were found to be significant (P < 0.001).

Variables in the equation AUC
Shrubland (−0.379*Slope) + (−0.017*LFMCt-2) − 1.479 0.67
Mediterranean shrubland (−0.023*LFMCt-1) + (0.003*Anomaly) − 1.394 0.68
Eurosiberian shrubland (−0.882*Slope) + (0.023*Anomaly) + (−0.039*LFMCt-2) − 0.875 0.81
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water from the soil than grasses (García et al. 
2008).  Hence, shrubs are less dependent on 
weather conditions so their moisture decreases 
much more slowly, whereas grasses are more 
susceptible to rapid moisture changes.  These 
factors help to explain why LFMCt-1 and dif-
ference were included in the logistic regression 
grassland models (Table 2), while LFMCt-2 and 
slope were included in the shrubland models 
(Table 3).  Slope also appears as important in 
both vegetation types of the Eurosiberian re-
gion due to the higher moisture decline occur-
ring in this area, with abundant spring rains 
and hot summers.  In spring, variables exhibit 
fewer significant differences than in the other 
seasons (Figure 6).  This is likely due to the 
higher soil water reserve in this season and, 
therefore, to the lower dependence of LFMC 
on meteorological variations. 

Comparing Our Results with Previous Studies

Following previous studies, the ME was 
established at 105 % for shrubs (Burgan 1979, 
Dimitrakopoulos and Papaioannou 2001).  Our 
analyses showed that this LFMC corresponded 
to the ninetieth percentile, indicating that 90 % 
of the shrubland fires in our study burned when 
LFMC conditions before the fire were at this 
value or lower (Figure 9).  Additionally, this 
value appeared close to the first splitting val-
ues in the corresponding CART models (Fig-
ure 10).  On the other hand, Dennison and 
Moritz (2009) developed a study on shrublands 
located in southern California, and found that 
large wildfires (>1000 ha) did not occur above 
a LFMC of 79 %.  In our case, the shrubland 
histogram has a peak at an LFMCt-1 close to 
80% (Figure 7).  However, we also found a 
considerable number of fires above this value 
since we did not discriminate by fire sizes.  

For grasslands (Figure 9), more than half 
of the fires occurred under the ME value of 
40% (Albini 1976), but a significant number 
occurred above that threshold.  This effect may 
be due to   the impact of fires in agricultural ar-

eas (where fires are intentionally caused) or 
overestimations of the selected LFMC product, 
as there is an estimated mean LFMC error of 
42.1% for this vegetation type (García et al. 
2008).  Therefore, the ninetieth percentile and 
the cut-off given by the first split in the grass-
land classification tree models reach higher 
values (close to 130 %).  

Many studies focused their interest on pre-
dicting fire risk based on antecedent weather 
or climate variables (Cohen and Deeming 
1985, Renwick et al. 2007) highly related to 
fire occurrence.  However, most of them based 
their predictions on meteorological variables.  
Hence, our findings are novel as they relate fire 
occurrence to the LFMC levels observed in 
one or two 8-day periods before the fire, as 
well as seasonal and annual trends of LFMC 
variation.  In addition, our results are extreme-
ly useful since they offer the possibility of pre-
dicting fires one or two weeks before the be-
ginning of the event, allowing fire managers to 
have more time to plan their strategies. 

Comparing Methods

In regard to the methods used in this paper 
(Table 4), the first one, based on histograms 
and percentiles, offers a simple computation 
and interpretation, although it cannot deal with 
variable interactions since it conveys a univari-
ate analysis.  The CART and LR are more 
complex modelling tools and they have the ad-
vantage of handling multiple variables simul-
taneously.  The CART   provides simple pro-
files that are easy to interpret.  However, the IP 
values at each node represent only the best de-
scription of the available data and may have 
limited predictive value.  The number of nodes, 
and hence the number of IP levels, also differs 
among ecoregions.  Unlike classification trees, 
LR modelling gives a continuous function, 
which makes the generation of IP from LFMC 
values easier and simpler.  The ROC results 
obtained by LR are very similar to those ob-
tained by CART (the AUCs were for MG ≈ 
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0.65, for MS ≈ 0.7, and for ES ≈ 0.8) although 
the former present slight improvements in the 
Eurosiberian grasslands (the AUCs obtained 
by LR and CART were 0.87 and 0.79, respec-
tively).  Since LR is additive in nature, it has 
the disadvantage of being unable to identify 
automatically multivariate LFMC factors high-
ly correlated to fire occurrence; such complex 
LFMC patterns are easier to detect by CART. 

As obtained from CART and LR analyses, 
the ROCs show a better performance for the 
Eurosiberian region models.  This region has a 
great ecological diversity but is a smaller area 
in comparison to the Mediterranean region.  
The Eurosiberian region  had 23.34 % of total 
fire detections but occupies only 15.57 % of 
the total Iberian Peninsula territory of Spain.  
Hence, the combination of smaller area and 
relatively more fires resulted in less variability 
and more accurate models.  In contrast, in the 
vast Mediterranean region (it represents the 
84.42% of the total Iberian Peninsula territory 
of Spain) where the 76.65 % of the fire detec-
tions occurred, many factors are involved in 
fire ignition, which in turn gives less accurate 
models.  Consequently, a more finely scaled 
ecoregionalization may improve these models.

Integrating LFMC Ignition Potential with Fire 
Risk Assessment

Fire risk indices are composed of human, 
climatic, ecological, and biophysical variables 
(Vidal et al. 1994).  One of the key biophysical 
variables is the LFMC.  Thus, thorough knowl-
edge about its behaviour, both in the different 

regions and in the selected vegetation types, is 
of great importance.  The methodologies em-
ployed in this work to obtain IP from a LFMC 
product were satisfactorily applied.  However, 
the general philosophy involved in the con-
struction of the specific fire risk index must be 
considered in order to choose the best index.  
In our case, the fire risk index within which 
this study has been developed (Chuvieco et al. 
2010) includes the physical probability that a 
fire starts (IP) or propagates, and the potential 
damages that it may cause.  Specifically, IP 
from LFMC is combined with the IP derived 
from dead fuel moisture content, as well as fire 
ignition data from lightning and human causes.  
To integrate IP from LFMC with the other fac-
tors, we have previously relied on a linear in-
verse function between actual LFMC and ME 
thresholds (105 % for shrubs and 40 % for her-
baceous species (Chuvieco et al. 2004a).  
However, the results obtained in this study 
show the usefulness of the methodologies we 
have explored and how they can help to pro-
vide a more realistic IP model.  These models 
could be specifically applied to the Mediterra-
nean and Eurosiberian regions of the Iberian 
Peninsula territory. 

Suggested Improvements

Our results should be contrasted with other 
study sites and probably longer time periods.  
Additionally, it should be pointed out that both 
our LFMC and fire occurrence data were esti-
mated from external sources (AVHRR and 
MOD14, respectively), and therefore they in-

Histograms and percentiles CART trees Logistic regression
Low complexity High complexity High complexity
Univariate analysis Multivariate analysis Multivariate analysis
Do not uncover variables 
interacting patterns automatically

It uncovers variables interacting 
patterns automatically

Does not uncover variables 
interacting patterns automatically

IP classes defined by the 
percentiles IP classes defined by the nodes IP defined by a continuous function

Table 4.  Characteristics of the modelling methods used. 
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clude errors, which may affect the strength of 
the observed relationships.  The water content 
estimates could be improved by the use of 
MODIS images as they have better spatial res-
olution (500 m).  Yebra et al. (2008b) estimat-
ed LFMC from MODIS images comparing 
empirical methods and simulation approaches 
based on the inversion of radiative transfer 
models.  The authors determined that the latter 
offered high accuracy (r2 = 0.894 for grasslands 
and r2 = 0.842 for shrublands) and greater ro-
bustness as empirical models.  Hence, LFMC 
data derived from MODIS images based on 
simulation approaches would be the next step 
to improve the IP.  Besides, we did not consid-
er woodland in our analysis, so the study of the 
IP of this vegetation type would complement 
this research.  In regard to the fire occurrence 
data, the official fire statistics in Spain started 
to include some UTM coordinates of ignition 
points in 2008, so their inclusion in IP models 
should be the next task.  Then, with the men-
tioned improvements on the models, their ap-
plicability to other areas with similar charac-
teristics is highly promising.

conclusions

The present study showed several method-
ologies to estimate IP from LFMC.  An impor-
tant trait of this research was the design of the 
explanatory variables of fire occurrence, since 
an IP index with a wide range of high predict-
ability was considered advantageous.  There-
fore, the selected variables were based on the 
LFMC one or two weeks before a fire, as well 
as on its seasonal and annual trends.  As the 
variables’ levels of importance varied for each 

spatial unit, the usefulness of developing spe-
cific models was demonstrated.  The three 
methods investigated here were applied to con-
vert the LFMC maps into an IP index, and 
were shown to be valuable tools for predicting 
fires.  The first method was based on a study 
that included the most relevant variable for 
discriminating the fire and non-fire categories, 
the LFMCt-1.  In the second method, classifica-
tion trees were utilized to classify fires accord-
ing to a threshold of a variable related to the 
dependent variable, or to discover interacting 
patterns of variables (Dennison and Moritz 
2009, Dimitrakopoulos et al. 2010), with the 
innovation of using the Bayes rule to assign an 
IP to each terminal node.  Finally, several LR 
models were developed, obtaining an area un-
der the ROC curve of around 0.65 for the Med-
iterranean region and above 0.8 for the Eurosi-
berian region.  Since LR offers a specific IP for 
each pixel, it was considered an appropriate 
methodology highly convenient for our aim.  
Due to the specific strengths and weaknesses 
of CART and LR, future research efforts 
should incorporate a hybrid approach that 
combines both technologies. 

The MODIS images (500 m of spatial res-
olution) are proposed to improve the LFMC 
data, and the inclusion of woodland is planned 
for future studies.  Additionally, the applicabil-
ity of the models to other areas will also be 
pursued.  Finally, we should emphasize that 
LFMC is only one of the variables that is re-
lated to fire occurrence, and therefore the im-
portance of other factors should also be con-
sidered for comprehensive characterization of 
fire risk conditions.
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