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ABSTRACT

A major environmental problem in semi-arid landscapes of western North America is the 
invasion of native vegetation by cheatgrass (Bromus tectorum L.), an annual Eurasian 
grass that covers >40 million ha of range and woodland in the western US.  Cheatgrass 
can be especially problematic after fire—either prescribed fire or wildfire.  Although 
cheatgrass is known to generally thrive in regions of moderate temperatures, dry sum-
mers, and reliable winter precipitation, the spatial patterns of postfire cheatgrass invasion 
are not well characterized at finer spatial scales (e.g., within most individual landscapes).  
We used boosted regression trees to develop a spatial model of cheatgrass abundance 0 yr 
to 19 yr postfire in an 8000 km2 semiarid landscape centered on Dinosaur National Monu-
ment (Colorado and Utah, USA).  Elevation, a deterministic variable, was the strongest 
single predictor, with higher cheatgrass cover occurring below 1600 meters.  Two other 
contingent variables, fire severity and climatic conditions in the year after the fire, in-
creased the model’s predictive power.  The influence of fire severity differed with the scale 
of analysis.  Across the landscape as a whole (including extensive areas at moderate to 
high elevation), a greater likelihood of high postfire cheatgrass cover (≥10 %) was associ-
ated with lower fire severity.  Focusing only on low-elevation areas (<1600 m), higher fire 
severity was associated with greater likelihood of high cheatgrass cover.  Low precipita-
tion in the year after fire was associated with greater probability of high cheatgrass cover 
in all areas.  
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INTRODUCTION

Invasion of native vegetation by non-na-
tive plant species is a major environmental 
problem in semi-arid landscapes of western 
North America.  An invasive species of partic-
ular concern is cheatgrass (Bromus tectorum 
L.), an annual Eurasian grass that first ap-
peared in western North America in the late 
1800s (Morrow and Stahlman 1984) and has 
since spread over 40 million ha (Whisenant 
1990).  Cheatgrass is now the dominant plant 
species over much of the western US.  (Knapp 
1996, Bradley and Mustard 2005). 

Cheatgrass domination typically leads to 
several undesirable changes in biodiversity 
and community composition (Anderson and 
Inouye 2001, Ponzetti et al. 2007, Ostoja and 
Schupp 2009).  Water and nutrient cycling are 
altered when cheatgrass becomes a dominant 
ecosystem component (Evans et al. 2001), and 
cheatgrass is generally considered poorer for-
age for livestock than native grasses (Young et 
al. 1987, Ganskopp and Bohnert 2001; but see 
Young and Allen 1997).  Increased cover of 
dry cheatgrass creates a continuous “flashy” 
fuel that can carry fire over large areas, in-
creasing fire risk (Link 2006).  In areas of high 
cheatgrass cover, recent fire intervals have 
been much shorter than was typical before the 
arrival of cheatgrass (Billings 1990, Whisenant 
1990).  Many native plant species cannot toler-
ate such frequent fire and have become re-
duced in abundance or locally extirpated; in 
contrast, cheatgrass is well adapted to recur-
rent disturbance, and frequent fire promotes 
increasing cheatgrass dominance, which leads 
to more fire in a process of positive feedback 
(Melgoza and Nowack 1991, D’Antonio and 
Vitousek 1992).  

The cheatgrass threat generally is greatest 
in regions of moderate temperatures, dry sum-
mers, and reliable winter precipitation (Brad-
ford and Lauenroth 2006, Chambers et al. 
2007, Bradley 2009, Condon et al. 2011), con-
ditions that apply to much of the semi-arid 

shrublands and woodlands in western North 
America.  However, local postfire cheatgrass 
presence and abundance typically vary sub-
stantially within an individual landscape.  The 
spatial patterns of postfire cheatgrass invasion 
are not well characterized at the landscape 
scale, nor are the ecological factors controlling 
local invasion potential, especially after fire.  
Research to date indicates that a combination 
of local environmental characteristics, climate 
(before, after, and in the year of the fire), and 
propagule availability can influence the occur-
rence and magnitude of postfire cheatgrass in-
vasion, but results are limited and not always 
consistent (Rew and Johnson 2010).  On the 
Uncompahgre Plateau in western Colorado, 
USA, Shinneman and Baker (2009) reported 
higher postfire cheatgrass cover in sagebrush-
grassland than in piñon-juniper woodland, on 
sites having higher pre-fire cover of annual 
forbs and lower cover of biological soil crust, 
in burns occurring after a year of lower precip-
itation or followed by years of higher precipi-
tation, and with increasing time since fire.  
Slope, elevation, aspect, and geologic substrate 
were not significant predictors in that study, 
nor were distance to edge of burn or to roads 
(Shinneman and Baker 2009).  In contrast, oth-
er studies have indicated that vulnerability to 
cheatgrass invasion is greater on sites with 
higher solar radiation (e.g., on south-facing 
slopes) (Billings 1990, Condon et al. 2011), on 
sites located closer to paved roads (Gelbard 
and Belnap 2003, Anacker et al. 2010) or to 
the edge of a burned patch (Getz and Baker 
2008), and in places where perennial herba-
ceous cover is lower (Chambers et al. 2007, 
Condon et al. 2011). 

Prescribed fire is increasingly used as a 
management tool for wildlands.  However, if a 
cheatgrass seed bank is present, prescribed fire 
may increase cheatgrass cover, often to the 
detriment of the restoration objective (Keeley 
and McGinnis 2007).  Application of seed or 
mulch after wildfire can facilitate cheatgrass 
invasion if contaminated sources are used (Ro-
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bichaud et al. 2000, Beyers 2004, Keeley 
2006).  Therefore, a better understanding of 
the specific places in a landscape that are most 
vulnerable to postfire cheatgrass invasion 
would aid managers in planning prescribed 
burns and in setting priorities for seeding and 
other postfire rehabilitation treatments.

The objective of this study was to identify 
specific areas at greatest risk of postfire cheat-
grass invasion, as well as other variables that 
further influence cheatgrass invasion potential.  
The study area was centered on Dinosaur Na-
tional Monument (DINO) in northwestern 
Colorado, USA—a large, heterogeneous, semi-
arid landscape where numerous wildfires have 
occurred recently and where manager-ignited 
prescribed burning is being conducted.  

We used regression tree and boosted re-
gression tree methods (BRT) to develop a 
model of vulnerability to cheatgrass invasion 
in the DINO study area.  These techniques are 
relatively new statistical methods for drawing 
out meaningful ecological patterns from com-
plex and often nonlinear, interacting datasets, 
and then using these patterns to make predic-
tions (De’ath 2007, Elith et al. 2008).  Tradi-
tional regression tree modeling approaches de-
velop a single model, whereas BRT modeling 
uses boosting to facilitate the combination and 
assessment of large numbers of simple classifi-
cation trees in an iterative manner to optimize 
predictive performance (Elith et al. 2006, Elith 
et al. 2008).  Using a combination of classifi-
cation tree methods to make model groups and 
boosting techniques to test many combinations 
of models, BRT modeling is able to achieve 
both robust explanation and prediction (De’ath 
2007).  The BRT method and similar methods 
have been used recently to understand and pre-
dict a remarkably wide variety of spatial pat-
terns related to, for instance, the distribution of 
threatened bird species (Tanneberger et al. 
2010), periglacial features (Hjort et al. 2010), 
coral diseases (Williams et al. 2010), and mos-
quito malaria vectors (Sinka et al. 2010).  Of 
particular interest to our study, these methods 

have predicted places most vulnerable to inva-
sion by a non-native ant species (Roura-Pas-
cual et al. 2009) and by an estuarine crab 
(Compton et al. 2010).  Anacker et al. (2010) 
used BRT to identify specific locations in the 
Lake Tahoe basin that were most vulnerable to 
cheatgrass invasion under current and project-
ed climate conditions.  However, the Anacker 
et al. study did not focus on fire, as we have 
done in this study.

METHODS

Study Area

Dinosaur National Monument (DINO) is 
located in northwestern Colorado and adjacent 
northeastern Utah (Figure 1).  Dinosaur Na-
tional Monument is 850 km2 in size, and ranges 
in elevation from 1450 m to 2740 m; average 
annual precipitation ranges from 280 mm at 
the lowest elevations to 508 mm at the highest 
elevations; and average temperatures range 
from −18 °C to −1 °C in January, to 10 °C to 
38°C in July (Fertig 2009).  The geology is 
complex, with 23 major geologic formations 
(Precambrian through Holocene) exposed 
within the monument; topography is equally 
diverse, with deep canyons, cliffs, and rolling 
uplands.  Five major upland plant communities 
are found: (1) desert shrublands at low eleva-
tions; (2) piñon-juniper at middle elevations; 
(3) montane shrublands, also at middle eleva-
tions; (4) montane woodlands at the highest el-
evations; and (5) riparian vegetation along 
streams, springs, and seeps (Fertig 2009).

Historical fire regimes in the DINO land-
scape (before Euro-American settlement in the 
late nineteenth century) have not been charac-
terized locally, but probably were dominated 
by infrequent, high-severity fires occurring 
during dry summers (Baker 2009).  Fire rota-
tions probably were ≥400 yr in piñon-juniper 
woodlands (persistent woodland sensu Romme 
et al. 2009), 150 yr to 300 yr in higher-eleva-
tion shrublands with mountain big sagebrush 
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(Artemisia tridentata Nutt. ssp. vaseyana 
[Rydb.] Beetle), and 200 yr to >500 yr in low-
er-elevation shrublands with Wyoming big 
sagebrush (Artemisia tridentata Nutt. var. wyo-
mingensis Beetle & Young) (Baker 2009).  
Livestock grazing began in the late nineteenth 
century and has continued to be the major land 
use in all areas outside the national monument, 
which today are a mix of private lands and 
lands administered by the US Bureau of Land 
Management.  Dinosaur National Monument 
was established in 1915 and expanded to its 
present size in 1978 (Fertig 2009); recreation 
is now a major use within the monument.  

Because the topography, geology, climate, 
and vegetation of surrounding lands is gener-

ally similar to DINO, and because postfire 
cheatgrass invasion is also a major manage-
ment concern in these areas, we also created 
an expanded study area centered on DINO but 
encompassing a total area of ~8000 km2.  Our 
models predicting cheatgrass abundance were 
developed using data only from DINO (Coles 
et al. 2008), but the final maps were generated 
for the larger 8000 km2 study area.

Data Sources

The vegetation map of DINO, developed 
from 727 sampling plots distributed in a strati-
fied random manner (Coles et al. 2008), was 
the source of vegetation data for this study.  
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Figure 1.  Study area, Dinosaur National Monument in northwestern Colorado and northeastern Utah.  
Vegetation plots that were coincident with fire polygons are depicted, along with the year of the fire.  The 
larger 8000 km2 landscape that was modeled extends beyond the edges of this map; see Figure 5 for its full 
extent.
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Plot sizes were 100 m2 (herbaceous vegetation) 
or 400 m2 (forest, woodland, and shrubland).  
Percent cover of all vascular plant species (in-
cluding cheatgrass) was estimated in each plot 
in 2003 to 2005.   Fire events since 1943 were 
obtained from the DINO GIS fire database, 
which consists of fire polygons digitized from 
DINO hard copy fire atlas maps.  All vegeta-
tion plots sampled by Coles et al. (2008) that 
fell within areas burned after 1984 were used 
in our analysis; the 1984 cutoff reflected the 
earliest availability of Landsat imagery, which 
was used to derive explanatory variables in the 
model.  This resulted in the selection of 354 
vegetation plot samples, which were spatially 
coincident with 33 fire events.  These 354 veg-
etation plots were sampled by Coles et al. 
(2008) from 0 yr to 19 yr after the most recent 
fire at that site. 

We identified five groups of potential ex-
planatory variables for abundance (Table 1), 
based on the literature and our experience, and 
each was mapped using GIS and numerous 
geospatial data sources.  Biogeophysical vari-
ables were related to soil characteristics and 
topographic position.  Soil characteristics were 
derived from Natural Resources Conservation 
Service (NRCS 2010) Soil Survey Geographic 
Databases (SSURGO) for areas outside of 
DINO, and from National Park Service (NPS) 
SSURGO (2009) data for areas within DINO.  
We used a Digital Elevation Model (USGS 
2010) with a 10 m spatial resolution to derive 
elevation, slope and topographic position.  We 
derived topographic position using the Land-
scape Connectivity and Pattern tools for Arc-
GIS, Topographic Position Index tool (Theo-
bald 2007).

Disturbance history and propagule source 
variables represented proximity to potential 
cheatgrass seed sources, notably distance from 
previously burned areas and roads.  The road 
network was obtained from the local DINO 
GIS roads database.  Climatic variables includ-
ed local maximum and minimum temperature 
and mean precipitation, and weather condi-

tions in the first year after the fire.  Tempera-
ture and precipitation variables were obtained 
from PRISM (Parameter-elevation Regressions 
on Independent Slopes Model) climatic data, 
which have a 4 km spatial resolution.  To at-
tain postfire (next growing season) measures 
of soil moisture availability, tasseled cap index 
(Crist and Cicone 1984), brightness, green-
ness, and wetness mean values around a 150 m 
buffer per fire were derived from Landsat im-
agery.  We evaluated one fire variable, the fire 
severity index dNBR (differenced Normalized 
Burn Ratio, Eidenshink et. al. 2007), which 
was obtained from Landsat imagery one year 
prior and one year after a fire event (Appendix 
1).  Lastly, data quality variables included 
years since last fire at the time the plot was 
sampled, and winter and summer precipitation 
in the year before the vegetation survey was 
conducted (from PRISM data).

Statistical Analyses

Two primary analyses were performed.  
The first entailed using traditional classifica-
tion tree analysis to classify cheatgrass cover 
in a variable reduction manner to identify sig-
nificant explanatory variables to be used in 
subsequent analysis.  Using the resulting sig-
nificant explanatory variables from five cate-
gories, we performed Boosted Regression Tree 
(BRT) modeling to facilitate interpretation of 
postfire cheatgrass dynamics and subsequent 
spatial modeling scenarios of postfire cheat-
grass susceptibility. 

Step 1: Variable Reduction—Classification 
Trees.  A perusal of the plot data revealed that 
cheatgrass was present in three quarters of the 
plots used in our analysis, but often in only 
trace amounts.  Although this widespread oc-
currence is noteworthy, managers are particu-
larly concerned about identifying places where 
cheatgrass is abundant enough to strongly in-
fluence vegetation structure and dynamics.  We 
selected 10 % cheatgrass cover as a threshold 
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Model group - Variable description
Biogeophysical

Percent silt, clay, and sand 1 cm to 100 cm weighted average - NRCS and NPS soil surveys
Available water capacity 1 cm to 100 cm weighted average - NRCS and NPS soil surveys
Soil pH 1 cm to 60 cm weighted average - NRCS SSURGO and NPS soil surveys
Cation-exchange capacity 1 cm to 100 cm weighted average - NRCS and NPS soil surveys
**Elevation (10 m) - National Elevation Dataset
Slope (degrees) (10 m) - Derived from National Elevation Dataset
Topographic Position Index (10 m) - Derived from National Elevation Dataset  

Disturbance history - cheatgrass propagule sources
Fire by decade, 1940s to 2000s (10 m) - DINO fire and roads database
Distance to roads (10 m) - DINO roads database
Distance to polygon fire boundary (within fire) (10 m) - DINO fire database
Distance to all fire disturbances across all years (10 m) - DINO fire database
*Distance to fire disturbance by decade: 1940s, 1950s, 1960s*, 1970s*, 1980s*, 1990s, 2000s (10 m)    

(Includes both polygon and points) - DINO fire database
Number of fires (polygons and points) - DINO fire database

Climatic
Mean minimum annual temperature 30 yr means (4 km) - PRISM
*Mean maximum annual temperature 30 yr means (4 km) - PRISM
Mean annual precipitation 30 yr means (4 km) - PRISM
Mean maximum and minimum annual temperature 1 yr postfire (4 km) - PRISM
Mean annual precipitation 1 yr postfire fire (4 km) - PRISM group data
Mean minimum winter temperature 1 yr postfire (Dec, Jan, Feb) (4 km) - PRISM
Mean maximum winter temperature 1 yr postfire (Dec, Jan, Feb) (4 km) - PRISM
Mean spring precipitation (Mar, Apr, May) 1 yr postfire (4 km) - PRISM
Mean summer precipitation (Jun, Jul, Aug, Sep) 1 yr postfire (4 km) - PRISM
TasselCap brightness by 1 yr postfire 150 meter mean buffer values (30 m) - Landsat
TasselCap greenness by 1 yr postfire 150 meter mean buffer values (30 m) - Landsat
**TasselCap wetness by 1 yr postfire 150 meter mean buffer values (30 m) - Landsat 

Fire properties
**Fire severity – differenced Normalized Burn Ratio per fire (dNBR = NBR postfire – NBR prefire).  

Increased dNBR = increased fire severity (30 m) - Landsat

Data quality
**Years since last fire at the time of vegetation sampling (polygon)
**Winter precipitation (Dec to Apr) year of vegetation survey (2002, 2003, 2005) (4 km) - PRISM
Winter precipitation (Dec to Apr) year before vegetation survey (2001, 2002, 2004) (4 km) - PRISM
*Summer precipitation (Jun to Oct) year of vegetation survey (2002, 2003, 2005) (4 km) - PRISM
Summer precipitation (Jun to Oct) year before vegetation survey (2001, 2002, 2004 ) (4 km) - PRISM

Table 1.  Initial potential explanatory variables by regression group and data sources.  Single asterisks (*) 
indicate explanatory variables retained after classification tree variable reduction.  Double asterisks (**) 
indicate variables also retained for subsequent BRT and spatial modeling.  
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of ecologically significant cheatgrass abun-
dance because we had adequate sample sizes 
of plots with ≥10 % and <10 % cheatgrass cov-
er, and because a local population with ≥10 % 
cover is visually conspicuous and likely has 
the potential to increase rapidly under favor-
able conditions.  Thus, we performed the vari-
able reduction analyses using models that dis-
tinguish between ≥10 % and <10 % cheatgrass 
cover. 

We used classification trees to identify sig-
nificant variables in each explanatory group 
(Table 1) as determined by the final pruned 
classification tree.  To avoid over-fitting the 
classification trees, we used the cross valida-
tion cv.tree function (http://www.r-project.org; 
Ripley 2010).  The cv.tree function identifies 
the pruned tree size and associated explanatory 
variables that minimize cross-validation devi-
ance in the classification tree.  The variables 
retained (i.e., not pruned) in the final pruned 
tree were considered significant.  We used R 
statistical software (to perform variable reduc-
tion classification tree analyses using the tree 
package).

Significant variables within an individual 
predictor group can be highly correlated with 
one or more variables from a different predic-
tor group, a problem that is not automatically 
accounted for in the individual classification 
trees.  We computed Pearson’s correlation co-
efficient among all of the significant variables 
resulting from the initial variable reduction 
procedure.  Highly correlated variables (r > 
0.7) were evaluated and excluded in order to 
avoid inclusion of highly correlated variables 
in the final BRT analysis.

Step 2: Boosted Regression Tree (BRT) 
Modeling.  We performed BRT analysis in R 
using the Generalized Boosted Regression 
Models (GBM) package (Ridgeway 2010) and 
the gbm.step function in the BRT script func-
tions in the online tutorial appendix of Elith et 
al. (2008).  Categorical cheatgrass abundance 
was modeled in a Bernoulli (binary) fashion: 

cheatgrass cover ≥10 % vs. <10 % (referred to 
hereafter as the 10 % model).  BRT modeling 
was performed using the significant variables 
identified in the classification tree variable re-
duction process (summarized in Table 1).  The 
BRT model training was performed using 254 
randomly selected vegetation plots, with the 
remaining 100 plots set aside for accuracy as-
sessment of the developed BRT models.  Three 
different randomly selected sets of training and 
accuracy assessment plots were modeled to 
test for any influence of random plot selection 
on model performance.

When working with small data sets in BRT 
modeling, it is optimal to set the learning rate 
(lr) and tree complexity parameters (tc) in an 
iterative manner until one achieves ~1000 trees 
(Elith et al. 2008).  The lr is the shrinkage pa-
rameter and determines the contribution of 
each tree to the growing model, while tc con-
trols whether interactions are fitted.  In gener-
al, decreasing tc yields an increase in the num-
ber of trees.  The BRT modeling was per-
formed using a tc value of 3, and an lr value of 
0.004, which achieved a tree size of 850.

Accuracy Assessment and 
Model Performance

Output from the gbm.step function when 
using a Bernoulli model is the probability of a 
positive value (i.e., 1) per modeled point.  
Rather than use a traditional split of 0.5 (i.e., 
≥0.50 = 1 and <0.50 = 0), we performed a 
cross validation procedure to find the probabil-
ity threshold that gave the highest number of 
correctly predicted values in the training set.  
This identified threshold value was subse-
quently applied to the accuracy assessment 
values when evaluating model predictive abili-
ty.  After model development and identification 
of the optimal threshold value, the predictive 
ability of the model sets was tested using the 
predict.gbm function (GBM) on the 100 ran-
dom vegetation plots that were set aside from 
model training.
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Variable Trends

Relationships between the explanatory 
variables and cheatgrass response within the 
BRT model were evaluated using three diag-
nostic tools: 

Relative influence (Friedman and 
Meulman 2003) of explanatory vari-
ables across all BRT models was mea-
sured using Ridgeway’s (http://www.r-
project.org) summary function.  
Partial dependence functions (gbm.
plot; http://www.r-project.org, G. 
Ridgeway 2010) were used to plot the 
effect of the explanatory variable on 
the response variable.  Partial depen-
dence functions show the effect of a 
variable on the response after account-
ing for effects from the other explana-
tory variables in the model (Elith et al. 
2008).  
Three-dimensional plots (gbm.perspec; 
Elith et al. 2008 appendix) of cheat-
grass abundance were developed and 
interpreted.

RESULTS

Variable Reduction—Classification Trees

Elevation was the most significant biogeo-
physical explanatory variable.  Cheatgrass 
cover was significantly greater at lower eleva-
tions (ANOVA, F1, 353), with mean cover of 
25.7% below 1600 m vs. 2.5 % above 1600 m.  
Soil characteristics including texture, water-
holding capacity, pH, and cation exchange ca-
pacity did not add significant explanatory pow-
er.  Distance to fires in the 1960s, 1970s, and 
1980s was also significant.  Both 30 yr mean 
maximum temperature and moisture condi-
tions for the first postfire year were significant 
climatic variables.  Fire severity, winter and 
summer precipitation for the year of the vege-
tation survey, and years since last fire were 
also significant variables (Table 1).

1)

2)

3)

Examination of Pearson’s correlation val-
ues between the variables identified as signifi-
cant (asterisked in Table 1) revealed that 30 yr 
mean maximum temperature and summer pre-
cipitation for the year of the vegetation survey 
were both highly (r > 0.7) and significantly 
correlated with elevation (−0.976 and 0.726, P 
< 0.05, respectively); thus, they were removed 
from subsequent analysis.  None of the other 
variables identified in the initial classification 
trees were highly and significantly correlated 
(Appendix 2), so they were retained for pre-
liminary BRT analyses.

A different kind of problem emerged after 
preliminary classification tree analyses.  The 
disturbance variables (distance to nearest pre-
vious burn in the 1960s, 1970s, and 1980s) 
gave results that did not make sense ecologi-
cally: at some regression splits, greater dis-
tances to burned areas were modeled to have 
higher likelihood of high cheatgrass cover 
(≥10 %), not lower cover, as would be expect-
ed if the previously burned areas were func-
tioning as seed sources.  The reason for these 
results are not obvious, but probably reflect the 
non-random spatial pattern of previous fires in 
DINO, and the fact that at least some cheat-
grass is present almost everywhere in DINO.  
We determined that inclusion of these distur-
bance variables in the final BRT models would 
obscure rather than enhance the actual patterns 
of postfire cheatgrass dynamics, and so they 
were deleted before the final BRT runs.

BRT Training Model Performance

The optimal probability threshold value for 
the 10 % model was 0.565.  Error matrices 
were used to test the predictive performance of 
the BRT models, with calculation of overall 
accuracy, Cohen’s Kappa, and users and pro-
ducers accuracies (Table 2).  Overall predictive 
accuracy for the three 10 % models ranged 
from a low of 0.88 to a high of 0.89, with Co-
hen’s Kappa values ranging from 0.58 to 0.68.  
Users accuracy values ranged from 0.50 to 
0.71 for the ≥10 % class, and from 0.95 to 0.97 
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for the <10 % class.  Comparable producer ac-
curacies ranged from 0.81 to 0.92 for the 
≥10 % class, and from 0.88 to 0.91 for the 
<10 % class.

The best randomly drawn 10 % model had 
a cross validation deviance value of 0.59 using 
the final set of potential explanatory variables 
(summarized in Table 1).  Estimated probabili-
ty values and density plots for the best 10 % 
model are shown in Figure 2.  Each model’s 
respective class (e.g., ≥10 % vs. <10 %) has 
differing density signatures indicative of the 
model’s ability to distinguish between classes.

Variable Trends

The biophysical variable elevation was 
most influential, with a relative influence value 
of 60.5.  The partial dependence function 
graphs (Figure 3) show elevation as the best 
predictor of cheatgrass abundance.  Cheatgrass 
cover ≥10 % was most likely to be seen at ele-
vations below 1600 m.  Soil moisture in the 
first year postfire and fire severity were the 
second and third most influential variables, 
with relative influences of 12.9 and 11.3, re-
spectively.  The probability of ≥10 % cheat-
grass cover was reduced somewhat where time 
since fire at the time of sampling was longer 
than about 8 years.  Winter precipitation in the 
year of sampling showed little relationship 
with the cheatgrass response.

To further explore cheatgrass invasion po-
tential at lower elevations, where cheatgrass 
tends to be more abundant regardless of other 
factors, the results of the 10 % models were 
plotted as functions of burn severity and mois-
ture conditions the first year postfire at an ele-
vation of 1460 m (an elevation at which all of 
the BRT models predicted the highest proba-
bilities of cheatgrass cover) at 1 yr, 2 yr, 5 yr, 
and 10 yr postfire.  The resulting surfaces (Fig-
ure 4) revealed a positive relationship of cheat-
grass cover with burn severity, and a negative 
relationship with moisture conditions the first 
year postfire.  Overall, at an elevation of 1460 
m, probability of ≥10 % cheatgrass cover was 
greatest in more severely burned areas in 
which the first year postfire was dry.  The plot-
ted surfaces changed slightly with increasing 

Model/Set Observed Total Users Overall accuracy Cohen’s accuracy

Pr
ed

ic
te

d Set 2 0 (<10 %) 1 (≥10 %)
0 (<10 %) 72 4 76 0.95 0.89 0.681 (≥10 %) 7 17 24 0.71
Total 79 21
Producers 0.91 0.81    

Table 2.  Error matrix for the accuracy assessment plots for the best predictive cheatgrass model out of three 
that were developed for the Dinosaur National Monument landscape.

0 < 10 %
1 ≥ 10 %

Figure 2.  Estimated probability values and den-
sity plots by categorical class (>10 % vs. <10 % 
cover) for a postfire cheatgrass spatial model based 
on three variables: elevation, fire severity, and soil 
moisture in the year after fire.  
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Figure 3.  Partial dependence functions for >10 % vs. <10 % cheatgrass cover with relative influence values 
for the variables elevation, fire severity, soil moisture in the year after fire, and years since last fire at the 
time of sampling.

Probability Cheatgrass ≥  10 % 10 year postfireProbability Cheatgrass ≥ 10 % 2 year postfire

Probability Cheatgrass ≥ 10 % 1 year postfire Probability Cheatgrass ≥ 10 % 5 year postfire

Figure 4.  Three-dimensional partial dependence plots of fire severity and one year postfire precipitation for 
the 10 % models at an elevation of 1460 m, at 1 yr, 2 yr, 5 yr, and 10 yr postfire.

Years since (8.4 %)Fire severity (11.3 %)Elevation (60.5 %) Wetness yr1 (12.9 %)
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time since fire, but the overall patterns re-
mained constant for at least 10 yr postfire (Fig-
ure 4). 

Fire Severity and Precipitation Scenarios 
across the Landscape

The BRT modeling identified elevation, 
fire severity, and moisture conditions the first 
year postfire as the most important controls on 
cheatgrass invasion of burned areas in DINO.  
To display these interacting influences, we ap-
plied the 10 % model across the 8000 km2

DINO landscape in a GIS environment, using 
true elevation values, 10 % (low severity) and 
90% (high severity) values for the fire severity
variable, 10 % (dry) and 90 % (wet) moisture 
conditions for the first year postfire variable, a 
constant 50 % value for the PRISM winter pre-
cipitation variable, and a constant 1 yr postfire 

value for the years since last fire variable.  This 
yielded four fire severity and postfire moisture 
scenarios: (1) high fire severity/dry postfire 
year (high/dry), (2) high fire severity/wet post-
fire year (high/wet), (3) low fire severity/dry 
postfire year (low/dry), and (4) low fire severi-
ty/wet postfire year (low/wet).

In the resulting spatial models, lower fire 
severity and drier postfire conditions generally 
were associated with the highest probabilities 
for cheatgrass cover ≥10 % across the DINO 
landscape as a whole (Figure 5).  The same 
kinds of models were also developed for just 
the low-elevation (<1600 m) portion of the 
landscape (not shown).  Patterns were very 
similar to those for the entire landscape, except 
that the highest probabilities of postfire cheat-
grass cover ≥10 % at low elevations were as-
sociated with higher fire severity and drier 
postfire conditions.

Figure 5.  Modeled probability values of >10 % vs. <10 % cheatgrass cover for four fire severity and post-
fire precipitation scenarios: (1) high fire severity/dry postfire (high/dry) (upper left), (2) high fire severity/
wet postfire (high/wet) (upper right), (3) low fire severity/dry postfire (low/dry) (lower left), and (4) low fire 
severity/wet postfire (low/wet) (lower right).  The cheatgrass suitability arrow in the scenario diagram starts 
at the least likely (blue) and progresses sequentially in order of likelihood to the most likely (red arrowhead) 
set of conditions for postfire cheatgrass cover >10 % across the Dinosaur National Monument landscape.   



Fire Ecology Volume 8, Issue 2, 2012
doi: 10.4996/fireecology.0802038

Sherrill and Romme: Spatial Variation in Postfire Cheatgrass
Page 49

DISCUSSION

Three predictor variables—elevation, fire 
severity, and one-year postfire soil moisture—
were the most important determinants of cheat-
grass invasion of burned areas across the 
DINO landscape.  The first and most influen-
tial predictor was elevation: lower elevations 
(<1600 m) had the highest probability of cheat-
grass cover ≥10 % after fire.  The mechanism 
driving this pattern is not elevation per se, of 
course, but the other climatic and biophysical 
variables that are highly correlated with eleva-
tion and thereby subsumed in the model under 
the variable elevation, notably mean maximum 
temperature (Pearson’s r = −0.976).  Previous 
studies have consistently reported greater 
cheatgrass abundance in areas of lower eleva-
tion and higher temperatures, except where in-
adequate moisture availability limits cheat-
grass (Bradford and Lauenroth 2006, Cham-
bers et al. 2007, Bradley 2009, Anacker et al. 
2010, Banks and Baker 2011). 

After accounting for elevation, a determin-
istic variable that does not vary with individual 
fire events, predictive ability was increased by 
adding fire severity and postfire moisture con-
ditions—contingent variables that do vary with 
individual fire events.  Drier conditions the 
year after a fire were consistently associated 
with a greater probability of cheatgrass cover 
≥10 %.  However, the direction of the fire se-
verity effect was different depending on the 
scale of analysis.  When modeled over the en-
tire study area (DINO plus the surrounding 
landscape, including extensive areas at moder-
ate to high elevation), lower fire severity was 
associated with greater likelihood of cheat-
grass cover ≥10 %.  However, when looking 
only at the lower elevations (<1600 m), where 
cheatgrass is most likely to be abundant after 
fire regardless of the two contingent variables, 
higher fire severity was associated with greater 
likelihood of postfire cheatgrass cover ≥10 %.  
These opposing influences of fire severity sug-
gest that different ecological mechanisms are 

operating at lower vs. higher elevations.  It was 
beyond the scope of this statistical study to 
evaluate those mechanisms, but we have sug-
gested possible explanations.

The greater likelihood of high cheatgrass 
cover following high-severity fire at lower ele-
vations (<1600 m) may be primarily a reflec-
tion of competition between cheatgrass and 
native perennial plants.  Cheatgrass can have a 
large soil seed bank that is poised to germinate 
and grow rapidly after fire (Mack and Pyke 
1983), whereas soil seed banks of the native 
perennial herbaceous species tend to be rela-
tively small (Chambers et al. 2007).  Thus, 
postfire cheatgrass seedlings would be subject-
ed to less competition from the native flora af-
ter high-severity fire than after low-severity 
fire.  An experimental study in the Great Basin 
(Chambers et al. 2007) found that removal of 
perennial herbaceous species, even without as-
sociated burning, led to a two- to three-fold in-
crease in cheatgrass biomass and seed produc-
tion, with even greater increases following a 
combination of removal and burning.  Surveys 
of recently burned areas also have reported a 
negative relationship between cover of cheat-
grass and native perennials (e.g., Condon et al. 
2011).  Dry conditions in the year after a fire 
also may have a stronger negative effect on 
growth of native seedlings and surviving pe-
rennials than on cheatgrass.  Cheatgrass begins 
taking up soil moisture very early in the sea-
son, and may deplete the soil moisture accu-
mulated over the winter before the native spe-
cies have begun to grow, especially in a dry 
year (Chambers et al. 2007).  

The opposite pattern is seen for the DINO 
landscape as a whole, where a greater likeli-
hood of postfire cheatgrass cover ≥10 % is as-
sociated with low-severity fire.  Because most 
of the study area is above 1600 m elevation, 
this pattern apparently reflects environmental 
conditions and processes at higher elevations, 
which result in a different response of cheat-
grass to fire severity than is observed at lower 
elevations.  At higher elevations, where cheat-



Fire Ecology Volume 8, Issue 2, 2012
doi: 10.4996/fireecology.0802038

Sherrill and Romme: Spatial Variation in Postfire Cheatgrass
Page 50

grass is less abundant overall and its soil seed 
banks probably are smaller than at lower ele-
vations, fire-caused mortality in the cheatgrass 
soil seed bank may lead to substantially lower 
cheatgrass density and cover after a high-se-
verity fire than after a low-severity fire.  Getz 
and Baker (2008), in a relatively high-eleva-
tion landscape in western Colorado (1900 m to 
2300 m), reported lower cheatgrass cover in 
the centers of burned patches and higher cheat-
grass cover near the edges of patches where 
the fire was about to go out and heat release 
was presumably reduced. 

A spatial model of the kind developed here, 
which predicts the locations and conditions 
most likely to be associated with postfire 
cheatgrass invasion, can be useful to managers 
planning prescribed burns and developing 
postfire rehabilitation plans after wildfires in 
DINO or similar landscapes.  Of the three most 
influential variables documented in DINO, el-
evation is likely most useful to managers be-
cause it is deterministic (unvarying) and is 
readily available in almost any GIS database.  
Fire severity and one-year postfire soil mois-
ture variables may be more difficult to use for 
planning purposes because of their inherent 
unpredictability until the fire actually occurs.  
Nevertheless, the patterns associated with 
these variables can also be useful.  For exam-
ple, fire severity can be largely controlled in 
prescribed burning by igniting the fire during 
appropriate weather and fuel moisture condi-
tions.  If burning is to be done at a lower eleva-
tion, a relatively low-severity burn may be 
preferable, since high-severity burns are asso-
ciated with a greater likelihood of high postfire 
cheatgrass cover at lower elevations.  At high-
er elevations, however, a high-severity burn (e.
g., to reduce fuels or to remove expanding 
trees or shrubs), might be less worrisome.  This 
is because postfire cheatgrass tends to be less 
abundant at higher elevations in DINO regard-
less of fire severity or moisture conditions, and 
our model predicts that cheatgrass cover actu-
ally may be less after a high-severity burn at 

higher elevations.  In the aftermath of a wild-
fire, a high-severity burn at lower elevations 
may require more vigorous mitigation treat-
ments against cheatgrass than a low-severity 
burn in the same area or a burn of any fire se-
verity at higher elevations.  As for postfire 
moisture conditions, long-range weather fore-
casts can provide a manager with at least a 
general idea of what to expect the year after a 
fire.  If the forecast is for above-average pre-
cipitation, then the current year might be a 
good time for a prescribed burn, since the risk 
of high cheatgrass cover is reduced in wet 
postfire years; but if the forecast calls for be-
low-average precipitation, then it may be wise 
to postpone the burn until a year of average or 
wet conditions.  Of course, numerous other 
considerations come into play in planning a 
prescribed fire or responding to a wildfire—
fuel conditions, threats to life and infrastruc-
ture, fire management capacity, etc.—but post-
fire cheatgrass risk often is one of the elements 
incorporated in planning.

The spatial patterns and contingent influ-
ences we documented in this study provide a 
baseline model of late twentieth century cheat-
grass invasion potential in the DINO land-
scape.  However, climate models predict 
warmer average temperatures, longer fire sea-
sons, and increased fire frequency and fire size 
in coming decades (IPCC 2007, Flannigan et 
al. 2009, Westerling et al. 2011).  These chang-
es could permit cheatgrass to become more 
abundant after fires at higher elevations than 
we documented in this study because cheat-
grass appears to be limited by low tempera-
tures (Bradford and Lauenroth 2006, Cham-
bers et al. 2007, Bradley 2009, Anacker et al. 
2010, Banks and Baker 2011).  If effective pre-
cipitation decreases and native plants are un-
able to compensate for moisture deficits via 
enhanced water use efficiency or other mecha-
nisms, then competition between cheatgrass 
and native species may become more intense 
and may facilitate greater expansion of cheat-
grass into higher elevations.  Comparing the 
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Fire name Fire year Prefire dNBR Postfire dNBR / Tasseled Cap
Finally 1986 14 June 1985 4 June 1987
West Cactus 1986 17 June 1986 4 June 1987
Long/Pocket 1986 14 June 1985 4 June 1987
Triple C 1986 17 June 1986 4 June 1987
East Cactus 1987 4 June 1987 22 June 1988
Tank 1987 4 June 1987 22 June 1988
1988 1988 22 June 1988 13 August 1989
Bower 2 1988 22 June 1988 13 August 1989
Bogan 1988 4 June 1987 13 August 1989
Gr Slope 1988 22 June 1988 13 August 1989
Placer 1988 22 June 1988 13 August 1989
Zenobia 1988 22 June 1988 13 August 1989
Pearl Park 1989 22 June 1988 13 August 1989
Split 1990 27 May 1990 15 June 1991
Dinosaur 1995 12 July 1995 14 July 1996
Ironspring #3 1995 12 July 1995 14 July 1996
L.D. Falls 1996 12 July 1995 1 July 1997
Zenobia 2 1996 12 July 1995 1 July 1997
Persistent 1996 14 July 1996 1 July 1997
Chewbasin 1997 1 July 1997 20 July 1998
Rainbow 1998 1 July 1997 7 July 1999
Johnson 1998 1 July 1997 7 July 1999
Ironspring 1998 1 July 1997 7 July 1999
Red Rock 1999 20 July 1998 23 June 2000
Rupleranch 1999 20 July 1998 23 June 2000
Busterflat 2000 23 June 2000 10 June 2001
Split #2 2001 23 June 2000 15 July 2002
Jack Springs 2001 10 June 2001 15 July 2002
Ecklund 2001 23 June 2000 15 July 2002
Pearl Park 2001 10 June 2001 15 July 2002
Bear 2002 10 June 2001 2 July 2003
Disappointment 2003 15 July 2002 6 September 2004
Pearl Park 2004 2 July 2003 7 July 2005

Appendix 1.  By fire event, Landsat imagery dates for prefire dNBR, postfire dNBR and Tasseled Cap 
index.
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Pearson’s ELEV
DIST

60
DIST

70
DIST

80
TMAX_

MN
WET_
YR1

dNBR_
CONT

WPPT_
YR0

SUMPPT_
YR0

YEARS
SINCE

ELEV 1.00
DIST60 0.04 1.00
DIST70 –0.23* –0.04 1.00
DIST80 –0.34* –0.16 0.22 1.00
MN_TMAX –0.98* 0.04 0.19 0.33 1.00
WET_YR1 –0.04 0.05 –0.37 0.13 0.07 1.00
dNBR_CONT –0.55* –0.22 0.28 0.29 0.53 0.01 1.00
WPPT_YR0 0.25* 0.14* –0.07 0.00 –0.26* 0.09 –0.27* 1.00
SUMPPT_YR0 0.73* 0.05 –0.09 –0.20* –0.73* –0.09 –0.44* 0.55* 1.00
YEARSSINCE 0.31* 0.00 –0.13* –0.71* –0.34* –0.17* –0.35* 0.21* 0.30* 1.00

Appendix 2.  Pearson’s correlation values and significance for the variables identified in first classification 
tree analysis step as significant by explanatory group.

* P < 0.05




