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ABSTRACT

While fire and rangeland managers fre-
quently have different land manage-
ment roles and objectives, their data 
needs with regards to herbaceous bio-
mass (fuel loads and forage) often over-
lap, and can be served with a single 
sampling protocol for both rangeland 
and fuels management.  In this study, 
we examined how two herbaceous sam-
pling methods compare in measuring 
species richness, ground cover, and 
standing herbaceous biomass for range 
and forestry management using the 
Phytomass Growth Simulator (Phy-
grow).  Phygrow is an herbaceous veg-
etation growth model used to simulate 
rangeland plant production for herbivo-
ry, drought, and wildfire severity early 
warning systems.  The Point-frequency 
protocol has been used for 10 years to 

RESUMEN

Aunque los gestores de áreas naturales y aque-
llos involucrados en el manejo del fuego tie-
nen diferentes roles y objetivos, sus necesida-
des en cuanto a datos relacionados con la bio-
masa herbácea (carga de combustible o bio-
masa forrajera) frecuentemente se superponen 
y podrían ser usados, para su determinación, 
basados en un mismo protocolo de muestreo.  
En este estudio examinamos como dos méto-
dos de muestreo pueden compararse para me-
dir riqueza de especies, cobertura, y biomasa 
herbácea en pié para determinar tanto forrajes 
como carga de combustible, usando el simula-
dor Phytomass Growth Simulator (Phygrow).  
Phygrow es un modelo de crecimiento que si-
mula la producción de plantas para forraje, se-
quías, y un sistema de alerta temprana de se-
veridad de incendios.  El protocolo de puntos 
de frecuencia ha sido usado por 10 años para 
coleccionar parámetros de la comunidad para 
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collect plant community parameters for 
Phygrow.  The Common Non-Forested 
Vegetation Sampling Protocol (CN-
VSP) is a commonly used rangeland 
assessment protocol in the southwest-
ern United States.  Data from both 
methods were used to parameterize the 
Phygrow model to examine their simi-
larities and differences, and to see if 
data collected from the CNVSP meth-
odology could be used to model herba-
ceous fuel loads.  We determined that 
the data collected in the CNVSP proto-
col met the needs for Phygrow model 
validation of standing herbaceous fu-
els, but data was insufficient for model-
ing surface dead fuel loads.  

Phygrow.  El llamado Protocolo Común para 
Muestrear Vegetación de Áreas no Forestadas 
(Common Non-Forested Vegetation Sampling 
Protocol; CNVSP) es un protocolo de mues-
treo de vegetación comúnmente utilizado en el 
sudoeste de los EEUU.  Datos de ambos méto-
dos fueron usados para parametrizar el modelo 
Phygrow, para examinar sus similitudes y dife-
rencias, y ver si los datos colectados con la 
metodología del CNVSP pueden usarse para 
modelar cargas de combustible herbáceo.  
Determinamos que los datos colectados me-
diante el protocolo CNVSP cumplen con los 
requisitos para validar el modelo Phygrow 
para los combustibles herbáceos en pié, pero 
son insuficientes para modelar la carga de 
combustibles superficiales muertos.
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INTRODUCTION

The risk of wildfire ignition in grasslands, 
shrublands, and other non-forested areas is re-
lated to the spatial and temporal condition of 
weather and vegetation variables within an 
ecological community (Simard and Main 
1982).  When compared to fire modeling and 
mapping procedures in forested ecosystems, 
scientific knowledge in the characterization 
and interpretation of fine herbaceous and shrub 
land fuels is lacking (Russell and Tompkins 
2005, Stephan et al. 2010, Thaxton et al. 2012, 
Hummel et al. 2013, Overholt et al. 2014).  
Herbaceous fuel quantity and moisture content 
is quite dynamic and sensitive to growth rate, 
seasonality, weather, herbivory, and anthropo-
genic manipulation (Dale et al. 2001), and can 
be difficult to account for in fire behavior mod-
els.  Due to the high heat capacity of water, 
vegetation with high moisture content can act 
as a heat sink that impedes fire growth, while 

vegetation with low moisture content may ac-
celerate fire propagation and intensity (Schro-
eder and Buck 1970, Pyne et al.1996).  Pres-
ently, the dynamic nature of the Standard Fire 
Behavior Fuel Models (Scott and Burgan 2005) 
allows for changes in fuel availability based on 
fuel moistures.  However, the choice of a fuel 
model or the development of a custom fuel 
model can be difficult given seasonal and daily 
fuel quantity and moisture fluctuations.  Fur-
thermore, data to support analyses of fire ef-
fects on herbaceous systems is insufficient.  
Models such as the Forest Vegetation Simula-
tor (FVS; Dixon 2010) and the Fire and Fuels 
Extension of FVS (FFE-FVS; Rebain 2013) 
are capable of simulating total surface fuel 
loads.  However, Hummel et al. (2013) found 
that the FFE-FVS model performed poorly for 
estimating fine fuels.  The need to accurately 
evaluate and model understory fuels is increas-
ing as expectations for quantitative risk assess-
ments grow, and the infrastructure, habitat, rec-
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reational, and other values on these lands are 
increasingly recognized.

In non-forest areas such as rangelands and 
shrublands, and within forested understories, 
near real-time estimations of herbaceous fuel 
composition, loads, and moisture are neces-
sary for better planning, implementation, and 
improvement of prescribed fire and wildfire 
management.  The excessive accumulation of 
fuels and extreme weather conditions in recent 
years have been the key contributors to ex-
treme wildfires (USDA Forest Service 2000, 
Schoennagel et al. 2004, and Westerling et al. 
2006).  With growing demands from the gen-
eral public regarding safety and management 
of fires on public lands, especially near wild-
land-urban interfaces, methodologies to accu-
rately monitor and estimate dynamic fuel char-
acteristics and effects are vitally important.

The need to accurately evaluate and model 
understory fuels has increased interest in the 
use of rangeland simulation models that have 
historically been used to estimate forage pro-
duction for livestock, but could be modified 
for estimating fine fuels.  Simulation models 
on rangelands, shrublands, and non-forested 
areas can be useful for simulating hydrology, 
soil erosion, plant growth, or combinations 
thereof (Bouraoui and Wolfe 1990).  Models 
that have the ability to predict plant biomass 
on rangelands include the Simulation of Pro-
duction and Utilization of Rangelands (SPUR) 
model (Wight and Skiles 1987, Carlson and 
Thurow 1992, Carlson and Thurow 1996), 
Ekalaka Rangeland Hydrology and Yield 
Model (ERHYM-II) (Wight and Neff 1983), 
Water Erosion Prediction Project (WEPP) 
(Flanagan and Nearing 1995), Agricultural 
Land Management Alternatives with Numeri-
cal Assessment Criteria (ALMANAC) (Kiniry 
et al. 2002), Ecological Dynamics Simulation 
Model (EDYS) (Childress et al. 2002), and the 
Phytomass Growth Simulator Model (Phy-
grow; Stuth et al. 2003b)

The Phygrow model estimates abo-
veground plant growth (fuel addition), forage 
consumption (fuel reduction) by livestock or 

wildlife, and hydrologic processes on a daily 
time-step basis (Stuth et al. 2003b).  Phygrow 
has been used as part of bioeconomic studies 
for climate change (Butt et al. 2005), optimal 
grazing management strategies (Souza-Neto et 
al. 2001), brush control investment and hy-
drology policy analysis (Lee et al. 2001, Lem-
berg et al. 2002), and forage forecasting (Al-
hamad et al. 2007), and has been the founda-
tion of drought early warning systems on 
rangelands in East Africa (Stuth et al. 2003a, 
Ryan 2005, Stuth et al. 2005), Mongolia (An-
gerer 2008, 2012), and Afghanistan (GLEWS 
2013).  In recent studies, it has been used to 
estimate fine fuel loads on the Fort Hood Mili-
tary installation in Texas (CNRIT 2013a), and 
on the Lincoln, Coronado, Prescott, and Co-
conino national forests in New Mexico and 
Arizona, USA (CNRIT 2013b).  When proper-
ly calibrated, Phygrow can provide daily esti-
mations of total herbaceous biomass, live and 
standing dead herbaceous biomass, and live-
dead fuel moisture.

In order to represent plant growth correctly 
in the model, the rangeland model needs to be 
parameterized with field-collected data on the 
proportional composition of plant species 
within the plant community being modeled.  
For Phygrow, a field sampling protocol has 
been developed to collect this data for model 
parameterization (Ryan 2005; Angerer 2008, 
2012) that is a modification of the Point fre-
quency method (Levy and Madden 1933).  
However, many natural resource management 
agencies already have data collection proto-
cols in place that may or may not be similar to 
the Phygrow method.  Therefore, an evalua-
tion of whether current data collection proto-
cols used by natural resource management 
agencies could be extended for use in parame-
terizing simulations models to predict fine fuel 
loads could provide a dual application of the 
field monitoring data to fulfill both the land 
management and fire management objectives. 

In June of 2008, a workshop was organized 
at the University of Arizona’s V Bar V Ranch 
on the Coconino National Forest.  The work-
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shop was attended by managers, scientists, and 
administrators from the University of Arizona, 
Texas A&M AgriLife Research, and USDA 
Forest Service (USFS) Southwestern Region 
to demonstrate the Phygrow model and to 
evaluate current USFS vegetation data collec-
tion methods to determine if they could be 
used for Phygrow model parameterization, or 
if modifications would need to be made to the 
existing protocol to gather the required param-
eterization data.  One result of the meeting was 
the development of the Common Non-Forest-
ed Vegetation Sampling Protocol (CNVSP) 
that used existing USFS sampling procedures 
and the addition of biomass data and ground 
basal cover measurements (USDA Forest Ser-
vice 2013a).  This protocol would integrate 
field sampling procedures into a single meth-
odology that would provide the USFS with 
rangeland and fire monitoring data while also 
delivering Phygrow data input.  Adoption of 
methods in use by, and familiar to, USFS per-
sonnel was important for continuity with his-
torical data sets, management goals, and train-
ing procedures.

The purpose of our study was to compare 
the CNVSP to the Point-frequency procedure 
traditionally used to gather the field data used 
to parameterize plant communities in the Phy-
grow model.  Our hypothesis was that the CN-
VSP method would provide acceptable data in 
order to calibrate the Phygrow model, thus pro-
viding the USFS with value-added enhance-
ments to improve fine fuel monitoring.

METHODS

Study Area

Field data collection occurred in central 
Arizona on the Coconino National Forest, 
USA.  The Coconino National Forest was es-
tablished in 1908 and encompasses over 
730000 ha of both forested and non-forested 
areas, varying from 800 m to 3850 m in eleva-
tion.  The forest includes an assortment of 
grassland, desert shrubland, pinyon-juniper 

(Pinus edulis Engelm, Juniperus osteosperma 
[Torr.] Little, and J. deppeana Steud.), and 
ponderosa pine (Pinus ponderosa Lawson and 
C. Lawson) dominated plant communities 
(USDA Forest Service 2013b).  Mean yearly 
precipitation across all study sites was 47.44 
cm in 2008, 19.42 cm in 2009, and 52.11 cm 
in 2010 (NOAA 2013).

Phygrow Model

The Phygrow model estimates plant 
growth based on the species proportion in the 
plant community (as estimated from the CN-
VSP and PF [Point-frequency; Ryan 2005] 
methods) and soil water availability (Stuth et 
al. 2003a, Angerer 2008).  Water balance is 
calculated from the interaction of four main 
components: climate, soil, vegetative growth, 
and herbivory (Stuth et al. 2003b).  The soil 
profile acts as a water repository that is replen-
ished by precipitation and depleted by vegeta-
tion transpiration and evaporation.  Soil pa-
rameters include depth of each horizon, per-
cent rock, saturated hydraulic conductivity, 
bulk density, infiltration, and water holding 
capacities.  Plant communities may be param-
eterized in the model as individual species, or 
lumped into functional groups.  Plant commu-
nity composition parameters include initial 
standing crop, basal cover of grasses, frequen-
cy of forbs, and canopy cover of woody and 
succulent plants.  Individual plant species are 
characterized with up to 27 parameters.  The 
basic required parameters are minimum, opti-
mum, and maximum plant growth tempera-
tures; leaf area index; dry matter to radiation 
ratio (radiation use efficiency); leaf and wood 
turnover (i.e., proportion of biomass that trans-
fers from standing green to standing dead to 
surface litter); leaf and wood decomposition 
rate; and plant rooting depth (Angerer 2008).

Field Sampling Protocol

Site selection.  We chose 14 locations on 
or near previously established USFS range-
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land monitoring transects.  Sites were chosen 
based on the availability of USDA Natural 
Resources Conservation Service (NRCS) Soil 
Survey Geographic (SSURGO) data (USDA 
NRCS 2013).  SSURGO-level soil data is 
commonly used in hydrologic and agricultural 
models to simulate soil water retention and 
runoff (Drohan et al. 2003, Wang and Melesse 
2006, Mednick 2010), allowing us to quickly 
identify basic soil characteristics for model 
parameterization.  

Eight of the sites had a juniper overstory 
with an understory composed primarily of 
side-oats grama (Bouteloua curtipendula 
[Michx.] Torr.), blue grama (B. gracilis [Willd. 
ex Kunth] Lag. ex Griffiths), threeawns (Aristi-
da sp. L.), and broom snakeweed (Gutierrezia 
sarothrae [Pursh] Britton and Rusby).  Five 
sites were dominated by a ponderosa pine 
overstory, with blue grama, junegrass (Koele-
ria macrantha [Ledeb.] Schult.), western 
wheatgrass (Pascopyrum smithii [Rydb.] A. 
Love), and broom snakeweed as the predomi-
nant understory species.  One site was a grass-
land site dominated by tobosagrass (Pleuraphis 
mutica Buckley), with no woody overstory.

General site attributes collected were date 
of collection, latitude and longitude coordi-
nates, aspect, transect bearing, and slope.  We 
chose transect bearings that were perpendicu-
lar to the slope and stayed within the soil 
boundary.  Two transects, one for each sam-
pling protocol, were established parallel to 
each other at a distance of 10 m apart at each 
site location.  Basal ground cover and quadrat 
frequency data were collected in the summers 
of 2008 and 2009 (Table 1).  Standing herba-

ceous biomass was collected in the summers 
of 2008 and 2010 (Table 1).

Point-frequency protocol.  The Phygrow 
model is usually parameterized via data col-
lected from a one-meter wide Point-frequency 
(PF) frame (Ryan 2005; Angerer 2008, 2012) 
(Figure 1A).  The PF frame consists of five 
pins spaced equidistant that are used to mea-
sure basal ground cover characteristics: bare 
ground, rock, surface fuel (identified as 1-hr 
herbaceous and woody surface fuels, or 10-hr, 
100-hr, and 1000-hr dead surface fuels [Fos-
berg 1970, Pyne et al. 1996]), and perennial 
grass.  Centered on each of the five pins is a 5 
cm × 5 cm quadrat used to record annual grass, 
perennial forb, and annual forb rooted fre-
quency.  Woody plant cover is measured by 
laying a small mirror with a point in the center 
on each quadrat.  If the point is intercepted by 
a woody plant canopy, a hit is recorded.  In the 
case of multiple overlapping canopies, the spe-
cies of the first canopy encountered is record-
ed.  The PF frame is placed once every five 
footsteps along a linear transect for a total of 
50 times, yielding a total of 250 possible pins 
and frequency quadrats per transect.

Common Non-Forested Vegetation Sam-
pling Protocol.  The CNVSP frame consists of 
a 40 cm × 40 cm quadrat, with a 10 cm × 10 
cm nested quadrat (Figure 1B).  In order to 
capture ground basal cover needed for fuels 
monitoring and Phygrow simulation, three 
basal hit pins were added to the perimeter of 
the larger quadrat at the 1, 6, and 11 o’clock 
positions.  Bare ground, rock, surface fuel, and 
perennial grass basal cover were observed 
with pin hits at these positions.  For this study, 
we only used forb and annual grass frequency 
within the 10 cm × 10 cm quadrat, given that 
the 40 cm × 40 cm quadrat would result in 
much higher forb and annual grass frequency 
estimates, which would inflate the proportions 
of these species in the Phygrow model param-
eterization.  Data collected in the 40 cm × 40 
cm quadrat was collected and retained for oth-
er USFS purposes.  Woody plant hits were re-

Year CNVSP PF Biomass
2008: Jul X X X
2009: Aug X X
2010: Jul to Sept X

Table 1.  Summary of data collection dates for the 
Common Non-Forested Vegetation Sampling Pro-
tocol (CNVSP), and the Point-frequency protocol 
(PF).
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corded if the canopy intersected a hypothetical 
vertical extension of the 10 cm × 10 cm quad-
rat, counting only the first species’ canopy that 
was encountered.  The CNVSP frame was 
placed every two footsteps, 100 times, for a to-
tal of 300 possible pin hits and 100 quadrats 
per transect. 

Cover and frequency.  For each sampling 
protocol in this study, cover was defined as 
percent ground basal cover as measured from 
the tip of a pin.  If the pin tip contacted the 
base of a plant, a hit for that species was re-
corded.  If no plant was hit, then the hit was 
recorded as bare ground, rock, or surface fuel.  
Frequency for both protocols was simply a bi-
nary absence or presence measure of each 
rooted species (forbs and annual grasses) with-
in a quadrat.  Cover and frequency were then 
calculated as a function of observed hits divid-
ed by the maximum possible hits from each 
transect.

Woody species characterization.  In at-
tempting to model herbaceous fuel production, 
it was important that we parameterized the 
woody plant components within each plant 
community to properly account for competi-
tion and soil water use by woody plants.  As 
the Phygrow model is driven by hydrological 
processes (precipitation, infiltration, runoff, 

evaporation, and plant water use), the structur-
al dimensions of an average specimen of each 
woody species was recorded for each transect 
location.  Parameters recorded include total 
plant height, maximum crown width, height at 
maximum crown width, crown base width, and 
crown base height (Figure 2).  This informa-
tion was recorded at each of the 14 sites and 
was used in Phygrow simulations for both 
methodologies.

Herbaceous biomass.  In order for us to 
calibrate the plant growth parameters within 
the Phygrow model, for fine fuel biomass esti-
mation, herbaceous biomass data was also col-
lected.  This involved the harvest of live her-
baceous vegetation and standing dead bio-
mass, drying for 48 hr at 70 °C, weighing, and 
converting into kg ha-1.  The PF sampling pro-
tocol utilized 10 circular 0.25 m2 quadrats in 
which herbaceous biomass was clipped from 
the quadrat (leaving 1 cm stubble).  The clip-
ping quadrat was placed at every fifth reading 
of the point frame along the transect.  For the 
CNVSP protocol, we clipped herbaceous bio-
mass from the 40 cm × 40 cm (0.16 m2) frame 
after every tenth reading of the frame, for a to-
tal of 10 clippings per transect.  Herbaceous 
surface fuels (i.e., detached plant fragments 
not part of standing biomass) and 1-hr woody 
surface fuels (woody material <0.62 cm) were 

40 cm

10 cm
25 cm 50 cm

5 cm

5 cm

A

B

Figure 1.  Vegetation sampling frames used in this study.  The Point-frequency frame (A) has been the 
standard for the Phygrow model.  The Common Non-Forested Vegetation Sampling Protocol (B) is part of 
the USFS Southwest Region’s monitoring methodology.
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also collected at the second and eighth clip-
ping station on each transect.  As we did not 
have data on livestock numbers and rotations 
for every monitoring location, we visually es-
timated the percent grazing use of each frame 
before clipping (Smith et al. 2012), thus al-
lowing us to estimate total potential produc-
tion with the Phygrow model.  Biomass data 
were collected in the summers of 2008 and 
2010 (Table 1) in order to provide two tempo-
rally spaced biomass data records for model 
calibration adjustments (Angerer 2012).

Model input.  Following field data collec-
tion, the Phygrow model was parameterized 
for each site and sampling protocol using the 
plant community data collected in 2008.  For 
site-specific soil parameters, we used the Map 
Unit User File (MUUF) tool to perform pedo-
transfer regressions on the SSURGO data to 
obtain hydraulic conductivity and water hold-
ing variables (Rawls et al. 2001).  The model 
was then calibrated using the 2008 and 2010 
herbaceous biomass data.  Phygrow calibra-
tion requires temporally spaced biomass mea-
surements (here 2008 and 2010) in order to 
model production across multiple points in 
time.  Calibration proceeds by adjusting plant 
growth curves, growth, and turnover rates un-
til the output falls within one standard error of 
the field observed biomass.

Statistics

Field data comparison.  We estimated the 
relationship between basal ground cover (bare 
ground, surface fuels, rock, and perennial 
grass; Table 2), species richness (total and by 
functional group; Table 3), and biomass from 
the PF and CNVSP protocols using Pearson’s 
correlation coefficient (Galton 1888, Pearson 
1896, Zou et al. 2003).  Also known as Pear-
son’s r, it is used to test for linear correlation 
between two values.  Pearson’s r is defined by

                                                   ,         (1)

where    and    are the sample of means of Xi 
and Yi sample values, and n is the number of 
data pairs.

Pearson’s r ranges from −1 to +1, where 
+1 is complete correlation, and −1 represents 
total inverse correlation.  Where r is equal to 
zero, then there is no correlation.  Each r sta-
tistic has a corresponding P value expressing 
the significance of the correlation. 

Frequency was not directly compared be-
tween sampling methods as it is a function of 

A

B

C
DE

Figure 2.  Woody plant characteristics collected 
for the Phygrow model include: total height (A), 
maximum crown width (B), height at maximum 
crown width (C), crown base width (D), and crown 
base height (E).  All measurements are entered in 
the Phygrow model in centimeters. � � ∑ ��� � ���������� � ���

�∑ ��� � ���� ∑ ��� � ������������
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quadrat size relative to species density and dis-
persion (Mosley et al. 1989).  Due to each fre-
quency protocol having differing quadrat siz-
es, spatial placement, and number of quadrats, 
direct comparisons of frequency were not 
practical.  Rather, we relied on model calibra-
tion as a metric of sampling effectiveness.

Phygrow calibration.  We plotted the sim-
ulated and observed means of herbaceous bio-
mass in a linear regression to inspect predic-
tive strength of the Phygrow model (r2) (Carl-
son and Thurow 1996).  However, r2 values 
alone are not sufficient in the assessment of 

model goodness of fit, as it is extremely sensi-
tive to outliers and variability in magnitude 
(Willmott 1981, Willmott et al. 1985, Kessler 
and Neas 1994, Legates and Davis 1997).  
Therefore, to further explore model perfor-
mance, we also relied upon root mean square 
difference and index of agreement (Angerer 
2008).

Root mean square difference (RMSD; also 
referred to as root mean square error) mea-
sures model performance by describing the av-
erage magnitude of the difference between 
field observations and model outputs.  RMSD 
is much more sensitive to extreme values in 

CNVSP PF
Mean SE Mean SE Pearson’s r P

Perennial grass 5.31 0.71 4.63 0.79 0.74 <0.001
1-hr fuel 45.40 2.76 47.87 2.37 0.81 <0.001
10-hr fuel 0.86 0.17 0.88 0.18 0.43 0.02
100-hr fuel 0.33 0.07 0.26 0.10 0.48 0.01
1000-hr fuel 0.23 0.08 0.31 0.12 0.22 0.25
Combined fuel 46.82 2.65 49.32 2.32 0.79 <0.001
Bare ground 26.19 3.48 25.06 3.13 0.92 <0.001
Rock 21.68 2.64 20.99 2.64 0.96 <0.001

Table 2.  Pearson’s r correlation coefficients for ground cover characteristics measured using the Point-fre-
quency (PF) protocols versus the Common Non-Forested Vegetation Sampling Protocol (CNVSP), and 
their associated significance values (P).

CNVSP PF
Mean SE Mean SE Pearson’s r P

Perennial grass 2.32 0.98 2.29 1.21 0.54 0.003
Annual grass 0.50 0.79 0.50 0.96 0.68 <0.001
Perennial forb 5.29 2.52 4.36 2.75 0.65 <0.001
Annual forb 2.50 1.82 2.57 2.11 0.57 0.002
Woody 2.32 1.76 2.11 1.42 0.13 0.500
Succulent 0.25 0.44 0.14 0.36 0.00 1.000
Total richness 13.18 5.03 11.96 5.04 0.59 0.001

Table 3.  Mean species richness by plant functional group and standard error (SE) for Common Non-For-
ested Vegetation Sampling Protocol (CNVSP) and Point-frequency (PF) sampling protocols with Pear-
son’s r correlation coefficient and significance values (P).
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the data, and is used to complement r2 values 
(Willmott 1981, 1982; Legates and McCabe Jr. 
1999).  It is calculated as

,             (2)

where Pi is the ith predicted value, and Oi is the 
ith observed value, and n is the number of data 
pairs (Willmott 1981).

Finally, we complemented the r2 and 
RMSD with the index of agreement (d; also 
known as Willmott’s d), which is a measure of 
the tightness perceived between observed and 
simulated values (Willmott 1981, 1982; An-
dales et al. 2005).  It is used to test the degree 
to which a model’s simulations are error free, 
and is calculated as

.   (3)

Values of d vary from 0 to 1, with higher num-
bers representing more agreement between ob-
served and simulated outcomes.

RESULTS

Field Sampling

Perennial grass, 1-hr surface fuel, total sur-
face fuel, bare ground, and rock were all 
strongly correlated between ground cover 
sampling methods (P < 0.05; Table 2).  Two 

fuel classes, 10-hr and 100-hr ground cover, 
displayed a weak correlation between sam-
pling methods, and 1000-hr fuels were poorly 
correlated.  

Species richness was moderately correlat-
ed between sampling protocols for perennial 
grass, annual grass, perennial forbs, annual 
forbs, and total combined richness (Table 3).  
Woody plant species richness was poorly cor-
related (r = 0.13), with the CNVSP capturing 
slightly more woody plants, while succulent 
richness showed no correlation between the 
two sampling protocols.

We found that herbaceous standing crop 
was positively correlated between the two 
sampling methods for both sampling periods 
(Table 4).  Surface fuels biomass, however, 
was very poorly correlated between sampling 
protocols (Table 4).

Phygrow Model Calibration

We were able to satisfactorily calibrate the 
model with herbaceous standing crop data 
from each sampling protocol.  In 2008, we cal-
ibrated 100 % of the sites within one standard 
error.  With the addition of the 2010 data, we 
were able to maintain calibration on 85.71 % 
of the CNVSP model runs, and 92.85 % of the 
PF runs.  Of the three model runs that we were 
not able to calibrate in 2010 (two CNVSP and 
one PF), all were within two standard errors of 
calibration.
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2008
CNVSP PF

Mean SE Mean SE Pearson’s r P
Herbaceous standing crop 801.39 214.18 840.52 224.64 0.56 0.047
1-hr surface fuel crop 704.24 115.58 1496.45 855.91 0.05 0.874

2010
Herbaceous standing crop 1227.79 328.13 1127.99 301.47 0.86 <0.001
1-hr surface fuel crop 1299.87 264.02 867.14 187.13 0.18 0.540

Table 4.  Pearson’s r correlation coefficient and significance level (P) for herbaceous standing crop and 
1-hr fuel.
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As evidenced by r2 and index of agreement 
(d) values, our herbaceous model simulations 
provided a good fit with low error (Table 5).  
When using data collected with the CNVSP, 
the Phygrow model, on average, over-predict-
ed standing crop by 69 kg ha-1 and 1-hr surface 
fuels by 43 kg ha-1 during 2008, but under-pre-
dicted these variables by 206 kg ha-1 and 590 
kg ha-1, respectively, in 2010 (Table 5).  Using 
data from the PF method, the Phygrow model 
under-predicted standing crop and 1-hr surface 
fuels by 10 kg ha-1 and 4 kg ha-1, respectively, 
in 2008.  In 2010, the model under-predicted 
standing crop by 107 kg ha-1 and over-predict-
ed 1-hr surface fuels by 665 kg ha-1 with the 
PF inputs (Table 5).

Model performance for 1-hr surface fuels 
in 2010 was poor for both the CNVSP and PF 
methods (Table 5).  The large RMSD for 1-hr 
surface fuels in both methods indicates a large 
degree of variability in model predictions and 
field data, and is further evidenced by poor r2

and d values (Table 5).

DISCUSSION

Our ability to sufficiently model herba-
ceous production gives us confidence to fur-
ther explore the Phygrow application for fuel 
and standing crop modeling in southwestern 
US ecosystems.  Output from the Phygrow 
model is spatially and temporally explicit and 

2008
Standing crop 1-hr surface fuel

CNVSP PF CNVSP PF
Observed mean 801.39 840.52 704.24 1496.45
Observed SD 481.47 400.14 432.45 2961.67
Simulated mean 870.67 830.42 747.36 1492.33
Simulated SD 492.11 402.37 435.02 2948.95
RMSD 122.29 157.61 107.97 42.23
r2 0.96 0.84 0.95 0.99
Index of agreement (d) 0.98 0.96 0.98 0.99
Sample size (n) 14 14 14 14

2010
Observed mean 1227.79 1128.00 1299.87 867.14
Observed SD 590.99 727.12 987.86 700.16
Simulated mean 1022.12 1020.77 709.28 1532.31
Simulated SD 665.38 570.55 521.14 3202.54
RMSD 417.01 194.77 1372.91 3342.29
r2 0.68 0.99 0.16 0.03
Index of agreement (d) 0.88 0.98 0.02 –0.03
Sample size (n) 14 14 14 14

Table 5.  Observed and simulated results for standing crop and 1-hr fuel (herbaceous and woody) for each 
sampling method by year.  Pearson’s r correlation coefficient, significance values (P), and goodness of fit 
measures (r2 and index of agreement, d) are provided for the observed versus simulated results.  Means, 
standard deviation (SD), and root mean square difference (RMSD) are all reported in kg ha-1.



Fire Ecology Volume 10, Issue 2, 2014
doi: 10.4996/fireecology.1002076

Rhodes et al.:  Modeling Herbaceous Fuel Loads
Page 86

can be entered into fire behavior and spread 
models to provide early warning and informa-
tion for risk management.  The success of the 
herbaceous model calibration leads us to be-
lieve that the frequency measurements from 
the CNVSP are compatible with current Phy-
grow data needs.

When parameterizing the plant communi-
ties in the Phygrow model, we chose to use 
only the 2008 transect data.  We did this in part 
due to it being a more representative year 
weather-wise, and because we did not have 
corresponding herbaceous biomass data for 
2009 (Table 1).  More research is needed on 
the effects of using plant community data from 
a drought year versus a wet year in herbaceous 
fuels modeling.

Our inability to match 1-hr surface fuel 
production in Phygrow is most likely an issue 
with sampling protocol and quadrat quantity.  
During the workshop at which the CNVSP 
was written, there was much concern over 
time constraints for field crews if data collec-
tion for model parameters became too exten-
sive.  Retaining 10 vegetation and 10 1-hr sur-
face fuels samples for every site that would re-
quire drying and weighing later could place a 
substantial work load on crews that are already 
required to collect large amounts of data at 
each site.  A compromise was made to only 
collect two 1-hr surface fuels samples per lo-
cation, which, through the analyses presented 
here, appears to be insufficient for model cali-
bration.  In the future, a more rapid estimation 
of 1-hr surface fuels, such as the comparative 
yield method (Haydock and Shaw 1975) or a 
modified double sampling technique (USDA 
NRCS 2003), could possibly be utilized in or-
der to obtain a larger sample size without sub-
stantially increasing work load. 

Additionally, there was a poor to moderate 
correlation between large surface fuels cover 
(10-hr, 100-hr, and 1000-hr fuels) for the two 
methods.  Woody plant overstory on our study 
sites was light to moderate, allowing us to 
move freely through the sites without obstruc-

tion.  These larger fuels tend to make up a 
small, and non-uniform, portion of the total 
fuel load in non-forested and moderately for-
ested areas (<1 % average cover across all 
study sites and dates).  It is possible that this is 
due to transects being parallel to each other, 
and random placement along a line that is 
measured in footsteps that can vary from one 
individual to the next.

The Phygrow model includes an optional 
herbivory simulation that was not used in this 
study.  When herbivore species’ daily intake 
and plant preferences are known, then daily 
herbage removal estimates are possible.  The 
ability to model wildlife and livestock reduc-
tion of fuel loads through consumption of bio-
mass by herbivory may prove useful for map-
ping dynamic fuel fluctuations and warrants 
further exploration.

Overall, the data provided by the CNVSP 
was sufficient for model parameterization and 
demonstrated that the CNVSP can be used for 
modeling herbaceous plant growth, and there-
fore fine fuel production, in the Phygrow mod-
el.  The addition of the basal cover assessment 
to the USFS protocol provides us with the data 
necessary for building simulation modeling 
scenarios, and gives land managers additional 
descriptive information about fuel and herbage 
cover.  Ground cover characteristics can be a 
good indicator of site hydrologic function, soil 
stability, and general health of a landscape 
(Pellant et al. 2000, Pyke et al. 2002), while 
species richness can be used to relate to niche 
differentiation and is instrumental to under-
standing and preventing exotic species inva-
sion (Tilman et al. 1997, 2001).

Knowledge of field conditions is of para-
mount importance for rangeland and fire man-
agement planning.  Whether a land manager is 
viewing the herbaceous biomass from a graz-
ing or a fuels standpoint, the fact remains that, 
in order to make an informed decision, one 
must have data on the structure, use, and 
trends present in the field.  Time and resources 
are often limited, which makes the use of com-
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puter model simulations more appealing.  
With the aid of nearest neighbor interpolation 
methods (Lister et al. 2004, Crookston and 
Finley 2008) and geographical information 
systems (GIS), model simulated plant growth 
can provide near real-time maps of fuel and 
forage conditions over a much broader area.  

Moving forward, long term model simulation 
validation studies using the CNVSP are of pri-
mary concern, as well as exploration of other 
1-hr surface fuels sampling protocols, fuel 
moisture validation, and GIS applications 
such as wildfire behavior modeling to improve 
risk management decision making.
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