Abatzoglou, J.T., and C.A. Kolden. 2013. Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire 22: 1003–1020 https://doi.org/10.1071/WF13019.
Article
Google Scholar
Alcaniz, M., L. Outeiro, M. Francos, and X. Ubeda. 2018. Effects of prescribed fires on soil properties: A review. The Science of the Total Environment 613: 944–957 https://doi.org/10.1016/j.scitotenv.2017.09.144.
Article
PubMed
Google Scholar
Allen, C.D. 2007. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 10: 797–808 https://doi.org/10.1007/s10021-007-9057-4.
Article
Google Scholar
Allen, E.B., R.J. Steers, and S.J. Dickens. 2011. Impacts of fire and invasive species on desert soil ecology. Rangeland Ecology & Management 64: 450–462 https://doi.org/10.2111/rem-d-09-00159.1.
Article
Google Scholar
Bestelmeyer, B.T., K. Moseley, P.L. Shaver, H. Sanchez, D.D. Briske, and M.E. Fernandez-Gimenez. 2010. Practical guidance for developing state-and-transition models. Rangelands 32: 23–30 https://doi.org/10.2111/RANGELANDS-D-10-00077.1.
Article
Google Scholar
Bistinas, I., D. Oom, A.C.L. Sá, S.P. Harrison, I.C. Prentice, and J.M.C. Pereira. 2013. Relationships between human population density and burned area at continental and global scales. PLoS One 8: e81188 https://doi.org/10.1371/journal.pone.0081188.
Article
PubMed
PubMed Central
Google Scholar
Brooks, M.L., and J.R. Matchett. 2006. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980−2004. Journal of Arid Environments 67: 148–164 https://doi.org/10.1016/j.jaridenv.2006.09.027.
Article
Google Scholar
Brown, D.R.N., M.T. Jorgenson, K. Kielland, D.L. Verbyla, A. Prakash, and J.C. Koch. 2016. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing. Remote Sensing 8: 22 https://doi.org/10.3390/rs8080654.
Google Scholar
Chaney, N.W., E.F. Wood, A.B. McBratney, J.W. Hempel, T.W. Nauman, C.W. Brungard, and N.P. Odgers. 2016. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 274: 54–67 https://doi.org/10.1016/j.geoderma.2016.03.025.
Article
CAS
Google Scholar
Chaparro, D., M. Piles, M. Vall-Llossera, and A. Camps. 2016. Surface moisture and temperature trends anticipate drought conditions linked to wildfire activity in the Iberian Peninsula. European Journal of Remote Sensing 49: 955–971 https://doi.org/10.5721/EuJRS20164950.
Article
Google Scholar
Coops, N.C., R.H. Waring, and T. Hilker. 2012. Prediction of soil properties using a process-based forest growth model to match satellite-derived estimates of leaf area index. Remote Sensing of Environment 126: 160–173 https://doi.org/10.1016/j.rse.2012.08.024.
Article
Google Scholar
Dilts, T.E., J.S. Sibold, and F. Biondi. 2009. A weights-of-evidence model for mapping the probability of fire occurrence in Lincoln County, Nevada. Annals of the Association of American Geographers 99: 712–727 https://doi.org/10.1080/00045600903066540.
Article
Google Scholar
Entekhabi, D., E.G. Njoku, P.E. O’Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J.K. Entin, S.D. Goodman, T.J. Jackson, J. Johnson, J. Kimball, J.R. Piepmeier, R.D. Koster, N. Martin, K.C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J.C. Shi, M.W. Spencer, S.W. Thurman, L. Tsang, and J. van Zyl. 2010. The soil moisture active passive (SMAP) mission. Proceedings of the IEEE 98: 704–716 https://doi.org/10.1109/jproc.2010.2043918.
Article
Google Scholar
Falk, D.A., E.K. Heyerdahl, P.M. Brown, C. Farris, P.Z. Fulé, D. McKenzie, T.W. Swetnam, A.H. Taylor, and M.L. Van Horne. 2011. Multi-scale controls of historical forest-fire regimes: New insights from fire-scar networks. Frontiers in Ecology and the Environment 9: 446–454 https://doi.org/10.1890/100052.
Article
Google Scholar
Fu, X. 2004. A physical model of dry ravel movement. Pullman: Thesis, Washington State University.
Google Scholar
Gray, M.E., B.G. Dickson, and L.J. Zachmann. 2014. Modelling and mapping dynamic variability in large fire probability in the lower Sonoran Desert of South-Western Arizona. International Journal of Wildland Fire 23: 1108–1118 https://doi.org/10.1071/wf13115.
Article
Google Scholar
Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152: 195–207 https://doi.org/10.1016/j.geoderma.2009.06.003.
Article
Google Scholar
Grunwald, S., J.A. Thompson, and J.L. Boettinger. 2011. Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Science Society of America Journal 75: 1201–1213 https://doi.org/10.2136/sssaj2011.0025.
Article
Google Scholar
Harden, J.W., R. Meier, C. Silapaswan, D.K. Swanson, and A.D. McGuire. 2001. Soil drainage and its potential for influencing wildfires in Alaska. In Studies by the US geological survey in Alaska, 2001, ed. J. Galloway, 139–144. Menlo Park: US Geological Survey Professional Paper 1678.
Google Scholar
Hawbaker, T.J., V.C. Radeloff, S.I. Stewart, R.B. Hammer, N.S. Keuler, and M.K. Clayton. 2013. Human and biophysical influences on fire occurrence in the United States. Ecological Applications 23: 565–582 https://doi.org/10.1890/12-1816.1.
Article
PubMed
Google Scholar
Hengl, T., J. Mendes de Jesus, G.B.M. Heuvelink, M. Ruiperez Gonzalez, M. Kilibarda, A. Blagotić, W. Shangguan, M.N. Wright, X. Geng, B. Bauer-Marschallinger, M.A. Guevara, R. Vargas, R.A. MacMillan, N.H. Batjes, J.G.B. Leenaars, E. Ribeiro, I. Wheeler, S. Mantel, and B. Kempen. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12: e0169748 https://doi.org/10.1371/journal.pone.0169748.
Article
PubMed
PubMed Central
Google Scholar
Homer, C.G., J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J. Wickham, and K. Megown. 2015. Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81: 345–354.
Google Scholar
Hyde, K., M.B. Dickinson, G. Bohrer, D. Calkin, L. Evers, J. Gilbertson-Day, T. Nicolet, K. Ryan, and C. Tague. 2013. Research and development supporting risk-based wildfire effects prediction for fuels and fire management: Status and needs. International Journal of Wildland Fire 22: 37–50 https://doi.org/10.1071/wf11143.
Article
Google Scholar
ISRIC [International Soil Reference and Information Centre]. 2018. Explore ISRIC. <https://www.isric.org/explore>. Accessed 4 Sept 2018.
Jensen, D., J.T. Reager, B. Zajic, N. Rousseau, M. Rodell, and E. Hinkley. 2018. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environmental Research Letters 13: 014021 https://doi.org/10.1088/1748-9326/aa9853.
Article
PubMed
Google Scholar
Joyce, L. 1989. An analysis of the range forage situation in the United States: 1989–2040. A technical document supporting the 1989 US Department of Agriculture, Forest Service RPA assessment, USDA Forest Service general technical report RM-GTR-180. Rocky Mountain Forest and Range Experimental Station: Fort Collins.
Google Scholar
Krawchuk, M.A., and M.A. Moritz. 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92: 121–132 https://doi.org/10.1890/09-1843.1.
Article
PubMed
Google Scholar
Krueger, E.S., T.E. Ochsner, D.M. Engle, J.D. Carlson, D. Twidwell, and S.D. Fuhlendorf. 2015. Soil moisture affects growing-season wildfire size in the southern Great Plains. Soil Science Society of America Journal 79: 1567–1576 https://doi.org/10.2136/sssaj2015.01.0041.
Article
CAS
Google Scholar
Krueger, E.S., T.E. Ochsner, S.M. Quiring, D.M. Engle, J.D. Carlson, D. Twidwell, and S.D. Fuhlendorf. 2017. Measured soil moisture is a better predictor of large growing-season wildfires than the Keetch–Byram drought index. Soil Science Society of America Journal 81: 490–502 https://doi.org/10.2136/sssaj2017.01.0003.
Article
CAS
Google Scholar
Laflen, J., W. Elliot, D. Flanagan, C. Meyer, and M. Nearing. 1997. WEPP—Predicting water erosion using a process-based model. Journal of Soil and Water Conservation 52: 96–102.
Google Scholar
Levi, M.R. 2017. Neighborhood size of training data influences soil map disaggregation. Soil Science Society of America Journal 81: 354–368 https://doi.org/10.2136/sssaj2016.08.0258.
Article
CAS
Google Scholar
Levi, M.R., and B.T. Bestelmeyer. 2016. Biophysical influences on the spatial distribution of fire in the desert grassland region of the southwestern USA. Landscape Ecology 31 (9): 2079–2095 https://doi.org/10.1007/s10980-016-0383-9.
Article
Google Scholar
Littell, J.S., D. McKenzie, D.L. Peterson, and A.L. Westerling. 2009. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications 19: 1003–1021 https://doi.org/10.1890/07-1183.1.
Article
PubMed
Google Scholar
Massman, W.J., J.M. Frank, and S.J. Mooney. 2010. Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecology 6: 36–54 https://doi.org/10.4996/fireecology.0601036.
Article
Google Scholar
McBratney, A.B., M.L.M. Santos, and B. Minasny. 2003. On digital soil mapping. Geoderma 117: 3–52 https://doi.org/10.1016/S0016-7061(03)00223-4.
Article
Google Scholar
McWethy, D.B., P.E. Higuera, C. Whitlock, T.T. Veblen, D.M.J.S. Bowman, G.J. Cary, S.G. Haberle, R.E. Keane, B.D. Maxwell, M.S. McGlone, G.L.W. Perry, J.M. Wilmshurst, A. Holz, and A.J. Tepley. 2013. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Global Ecology and Biogeography 22: 900–912 https://doi.org/10.1111/geb.12038.
Article
Google Scholar
Miller, M.E., W.J. Elliot, M. Billmire, P.R. Robichaud, and K.A. Endsley. 2016. Rapid-response tools and datasets for post-fire remediation: Linking remote sensing and process-based hydrological models. International Journal of Wildland Fire 25: 1061–1073 https://doi.org/10.1071/WF15162.
Article
Google Scholar
Moody, J.A., R.A. Shakesby, P.R. Robichaud, S.H. Cannon, and D.A. Martin. 2013. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews 122: 10–37 https://doi.org/10.1016/j.earscirev.2013.03.004.
Article
Google Scholar
Moseley, K., P.L. Shaver, H. Sanchez, and B.T. Bestelmeyer. 2010. Ecological site development: A gentle introduction. Rangelands 32: 16–22 https://doi.org/10.2111/RANGELANDS-D-10-00087.1.
Article
Google Scholar
Nauman, T.W., and M.C. Duniway. 2016. The automated reference toolset: A soil-geomorphic ecological potential matching algorithm. Soil Science Society of America Journal 80: 1317–1328 https://doi.org/10.2136/sssaj2016.05.0151.
Article
CAS
Google Scholar
Nauman, T.W., M.C. Duniway, M.L. Villarreal, and T.B. Poitras. 2017. Disturbance automated reference toolset (DART): Assessing patterns in ecological recovery from energy development on the Colorado plateau. The Science of the Total Environment 584: 476–488 https://doi.org/10.1016/j.scitotenv.2017.01.034.
Article
PubMed
Google Scholar
NIFC [National Interagency Fire Center]. 2018. Wildland fire statistics. <http://www.nifc.gov/fireInfo/fireInfo_statistics.html>. Accessed 6 Apr 2018.
Google Scholar
NRCS [Natural Resources Conservation Service]. 2018. Digital Soil Mapping (DSM). <https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=stelprdb1254424>. Accessed 4 Sept 2018.
Google Scholar
Ochsner, T.E., M.H. Cosh, R.H. Cuenca, W.A. Dorigo, C.S. Draper, Y. Hagimoto, Y.H. Kerr, E.G. Njoku, E.E. Small, M. Zreda, and K.M. Larson. 2013. State of the art in large-scale soil moisture monitoring. Soil Science Society of America Journal 77: 1888–1919 https://doi.org/10.2136/sssaj2013.03.0093.
Article
CAS
Google Scholar
Parks, S.A., M.-A. Parisien, and C. Miller. 2012. Spatial bottom-up controls on fire likelihood vary across western North America. Ecosphere 3: art12 https://doi.org/10.1890/ES11-00298.1.
Article
Google Scholar
Parsons, A., P.R. Robichaud, S.A. Lewis, C. Napper, and J.T. Clark. 2010. Field guide for mapping post-fire soil burn severity. USDA Forest Service general technical report RMRS-GTR-243. Fort Collins: Rocky Mountain Research Station https://doi.org/10.2737/RMRS-GTR-243.
Book
Google Scholar
Qi, Y., P.E. Dennison, J. Spencer, and D. Riano. 2012. Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecology 8: 71–87 https://doi.org/10.4996/fireecology.0803071.
Article
Google Scholar
Quiring, S.M., T.W. Ford, J.K. Wang, A. Khong, E. Harris, T. Lindgren, D.W. Goldberg, and Z. Li. 2016. The north American soil moisture database: Development and applications. Bulletin of the American Meteorological Society 97: 1441–1459 https://doi.org/10.1175/bams-d-13-00263.1.
Article
Google Scholar
Ramcharan, A., T. Hengl, T. Nauman, C. Brungard, S. Waltman, S. Wills, and J. Thompson. 2018. Soil property and class maps of the conterminous United States at 100-meter spatial resolution. Soil Science Society of America Journal 82: 186–201 https://doi.org/10.2136/sssaj2017.04.0122.
Article
CAS
Google Scholar
Rangeland Fire Task Force. 2015. An integrated rangeland fire management strategy final report to the secretary of the interior. <https://www.forestsandrangelands.gov/documents/rangeland/IntegratedRangelandFireManagementStrategy_FinalReportMay2015.pdf>. Accessed 31 Aug 2017.
Google Scholar
Reeves, M.C., and J.E. Mitchell. 2011. Extent of coterminous US rangelands: Quantifying implications of differing agency perspectives. Rangeland Ecology & Management 64: 585–597 https://doi.org/10.2111/REM-D-11-00035.1.
Article
Google Scholar
Renschler, C. 2003. Designing geospatial interfaces to scale process models: The GeoWEPP approach. Hydrological Processes 17: 1005–1017 https://doi.org/10.1002/hyp.1177.
Article
Google Scholar
Robichaud, P., W. Elliot, F. Pierson, D. Hall, and C. Moffet. 2007. Predicting post-fire erosion and mitigation effectiveness with a web-based probabilistic erosion model. Catena 71: 229–241 https://doi.org/10.1016/j.catena.2007.03.003.
Article
Google Scholar
Sankey, J.B., M.J. Germino, T.T. Sankey, and A.N. Hoover. 2012a. Fire effects on the spatial patterning of soil properties in sagebrush steppe, USA: A meta-analysis. International Journal of Wildland Fire 21: 545–556 https://doi.org/10.1071/wf11092.
Article
Google Scholar
Sankey, J.B., S. Ravi, C.S.A. Wallace, R.H. Webb, and T.E. Huxman. 2012b. Quantifying soil surface change in degraded drylands: Shrub encroachment and effects of fire and vegetation removal in a desert grassland. Journal of Geophysical Research – Biogeosciences 117: G02025 https://doi.org/10.1029/2012jg002002.
Article
Google Scholar
Scull, P., J. Franklin, O.A. Chadwick, and D. McArthur. 2003. Predictive soil mapping: A review. Progress in Physical Geography 27: 171–197 https://doi.org/10.1191/0309133303pp366ra.
Article
Google Scholar
Smith, R.J., S.R. Abella, and L.R. Stark. 2014. Post-fire recovery of desert bryophyte communities: Effects of fires and propagule soil banks. Journal of Vegetation Science 25: 447–456 https://doi.org/10.1111/jvs.12094.
Article
Google Scholar
Soil Science Division Staff. 2017. Soil survey manual. In USDA Handbook 18, ed. C. Ditzler, K. Scheffe, and H.C. Monger. Washington, D.C.: Government Printing Office.
Google Scholar
Soil Survey Staff (2018a) Natural Resources Conservation Service, United States Department of Agriculture. Gridded soil survey geographic (gSSURGO) database for the conterminous United States. <https://gdg.sc.egov.usda.gov/>. Accessed 4 July 2018.
Soil Survey Staff (2018b) Natural Resources Conservation Service, United States Department of Agriculture. Soil survey geographic database (SSURGO). <https://gdg.sc.egov.usda.gov/>. Accessed 4 July 2018.
Soil Survey Staff (2018c) Natural Resources Conservation Service, United States Department of Agriculture. US general soil map (STATSGO2). <https://gdg.sc.egov.usda.gov/>. Accessed 4 July 2018.
Stephan, K., M. Miller, and M.B. Dickinson. 2010. First-order fire effects on herbs and shrubs: Present knowledge and process modeling needs. Fire Ecology 6: 95–114 https://doi.org/10.4996/fireecology.0601095.
Article
Google Scholar
Stoof, C.R., D. Moore, P.M. Fernandes, J.J. Stoorvogel, R.E.S. Fernandes, A.J.D. Ferreira, and C.J. Ritsema. 2013. Hot fire, cool soil. Geophysical Research Letters 40: 1534–1539 https://doi.org/10.1002/grl.50299.
Article
Google Scholar
Stringham, T.K., P. Novak-Echenique, D.K. Snyder, S. Peterson, and K.A. Snyder. 2016. Disturbance response grouping of ecological sites increases utility of ecological sites and state-and-transition models for landscape scale planning in the Great Basin. Rangelands 38: 371–378 https://doi.org/10.1016/j.rala.2016.10.006.
Article
Google Scholar
Sturtevant, B.R., and D.T. Cleland. 2007. Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. International Journal of Wildland Fire 16: 398–413 https://doi.org/10.1071/wf06023.
Article
Google Scholar
US National Park Service. 2006. Interagency burned area emergency response guidebook. <www.nps.gov/archeology/npsGuide/fire/docs/18%20Interagency%20BAER%20Handbook.pdf >. Accessed 23 Nov 2018.
van der Werf, G.R., J.T. Randerson, L. Giglio, T.T. van Leeuwen, Y. Chen, B.M. Rogers, M. Mu, M.J.E. van Marle, D.C. Morton, G.J. Collatz, R.J. Yokelson, and P.S. Kasibhatla. 2017. Global fire emissions estimates during 1997–2015. Earth System Science Data 9: 697–720 https://doi.org/10.5194/essd-2016-62.
Article
Google Scholar
Waring, R.H., and N.C. Coops. 2016. Predicting large wildfires across western North America by modeling seasonal variation in soil water balance. Climatic Change 135: 325–339 https://doi.org/10.1007/s10584-015-1569-x.
Article
PubMed
Google Scholar
Whitman, E., E. Batllori, M.-A. Parisien, C. Miller, J.D. Coop, M.A. Krawchuk, G.W. Chong, and S.L. Haire. 2015. The climate space of fire regimes in North-Western North America. Journal of Biogeography 42: 1736–1749 https://doi.org/10.1111/jbi.12533.
Article
Google Scholar
Wieder, W.R., J. Boehnert, G.B. Bonan, and M. Langseth. 2014. Regridded harmonized world soil database v1.2. Oak Ridge: Oak Ridge National Laboratory Distributed Active Archive Center https://doi.org/10.3334/ornldaac/1247. Accessed 31 Aug 2017.
Google Scholar
Williams, C.J., F.B. Pierson, P.R. Robichaud, and J. Boll. 2014. Hydrologic and erosion responses to wildfire along the rangeland-xeric forest continuum in the western US: A review and model of hydrologic vulnerability. International Journal of Wildland Fire 23: 155–172 https://doi.org/10.1071/wf12161.
Article
Google Scholar
Yang, J., P.J. Weisberg, T.E. Dilts, E.L. Loudermilk, R.M. Scheller, A. Stanton, and C. Skinner. 2015. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: A case study in the Lake Tahoe Basin, USA. International Journal of Wildland Fire 24: 380–390 https://doi.org/10.1071/WF14001.
Article
Google Scholar