Abiven, S., P. Hengartner, M.P. Schneider, N. Singh, and M.W. Schmidt. 2011. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biology and Biochemistry 43: 1615–1617. https://doi.org/10.1016/j.soilbio.2011.03.027.
Article
CAS
Google Scholar
Abney, R., and A.A. Berhe. 2018. Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in the soil system. Frontiers in Earth Science 6: 26. https://doi.org/10.3389/feart.2018.00026.
Book
Google Scholar
Abney, R.B., J. Sanderman, D. Johnson, M.L. Fogel, and A.A. Berhe. 2017. Post-wildfire erosion in mountainous terrain leads to rapid and major redistribution of soil organic carbon. Frontiers in Earth Science 5: 99. https://doi.org/10.3389/feart.2017.00099.
Article
Google Scholar
Adkins, J., J. Sanderman, and J. Miesel. 2019. Soil carbon pools and fluxes vary across a burn severity gradient three years after wildfire in Sierra Nevada mixed-conifer forest. Geoderma 333: 10–22. https://doi.org/10.1016/j.geoderma.2018.07.009.
Article
CAS
Google Scholar
Ahearn, D.S., R.W. Sheibley, R.A. Dahlgren, M. Anderson, J. Johnson, and K.W. Tate. 2005. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology 313: 234–247. https://doi.org/10.1016/j.jhydrol.2005.02.038.
Article
CAS
Google Scholar
Almendros, G., H. Knicker, and F.J. Gonzalez-Vila. 2003. Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Organic Geochemistry 34: 1559–1568. https://doi.org/10.1016/S0146-6380(03)00152-9.
Article
CAS
Google Scholar
Araya, S.N., M.L. Fogel, and A.A. Berhe. 2017. Thermal alteration of soil organic matter properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. SOIL 3: 31–44. https://doi.org/10.5194/soil-3-31-2017.
Article
CAS
Google Scholar
Araya, S.N., S.M. Meding, and A.A. Berhe. 2016. Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. SOIL 2: 351–366. https://doi.org/10.5194/soil-5192-5351-2016.
Article
CAS
Google Scholar
Balcarczyk, K.L., J.B. Jones, R. Jaffé, and N. Maie. 2009. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry 94: 255–270. https://doi.org/10.1007/s10533-009-9324-x.
Article
CAS
Google Scholar
Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Bêche, L.A., S.L. Stephens, and V.H. Resh. 2005. Effects of prescribed fire on a Sierra Nevada (California, USA) stream and its riparian zone. Forest Ecology and Management 218: 37–59. https://doi.org/10.1016/j.foreco.2005.06.010.
Article
Google Scholar
Berggren, M., H. Laudon, M. Haei, L. Ström, and M. Jansson. 2010. Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. The ISME Journal 4: 408. https://doi.org/10.1038/ismej.2009.120.
Article
CAS
PubMed
Google Scholar
Betts, E.F., and J.B. Jones. 2009. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska. Arctic, Antarctic, and Alpine Research 41: 407–417. https://doi.org/10.1657/1938-4246-41.4.407.
Article
Google Scholar
Bianchi, T.S., T. Filley, K. Dria, and P.G. Hatcher. 2004. Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochimica et Cosmochimica Acta 68: 959–967. https://doi.org/10.1016/j.gca.2003.07.011.
Article
CAS
Google Scholar
Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1–10. https://doi.org/10.1007/s00442-004-1788-8.
Article
PubMed
Google Scholar
Chorover, J., P.M. Vitousek, D.A. Everson, A.M. Esperanza, and D. Turner. 1994. Solution chemistry profiles of mixed-conifer forests before and after fire. Biogeochemistry 26: 115–144. https://doi.org/10.1007/BF02182882.
Article
CAS
Google Scholar
Clow, D.W., and J.K. Sueker. 2000. Relations between basin characteristics and stream water chemistry in alpine/subalpine basins in Rocky Mountain National Park, Colorado. Water Resources Research 36: 49–61. https://doi.org/10.1029/1999WR900294.
Article
CAS
Google Scholar
Cory, R.M., C.P. Ward, B.C. Crump, and G.W. Kling. 2014. Sunlight controls water column processing of carbon in Arctic fresh waters. Science 345: 925–928. https://doi.org/10.1126/science.1253119.
Article
CAS
PubMed
Google Scholar
Cotrufo, M.F., C.M. Boot, S. Kampf, P.A. Nelson, D.J. Brogan, T. Covino, M.L. Haddix, L.H. MacDonald, S. Rathburn, and S. Ryan-Bukett. 2016. Redistribution of pyrogenic carbon from hillslopes to stream corridors following a large montane wildfire. Global Biogeochemical Cycles 30: 1348–1355. https://doi.org/10.1002/2016GB005467.
Article
CAS
Google Scholar
Dahm, C.N., R.I. Candelaria-Ley, C.S. Reale, J.K. Reale, and D.J. Van Horn. 2015. Extreme water quality degradation following a catastrophic forest fire. Freshwater Biology 60: 2584–2599. https://doi.org/10.1111/fwb.12548.
Article
CAS
Google Scholar
DeBano, L.F. 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology 231: 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3.
Article
Google Scholar
Degens, E., S. Kempe, and J. Richey. 1991. Biochemistry of major world rivers; scope 42. Chichester: Wiley.
Google Scholar
Diemer, L.A., W.H. McDowell, A.S. Wymore, and A.S. Prokushkin. 2015. Nutrient uptake along a fire gradient in boreal streams of central Siberia. Freshwater Science 34: 1443–1456. https://doi.org/10.1086/683481.
Article
Google Scholar
Dittmar, T., C.E. de Rezende, M. Manecki, J. Niggemann, A.R. Coelho Ovalle, A. Stubbins, and M.C. Bernardes. 2012. Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nature Geoscience 5: 618–622. https://doi.org/10.1038/ngeo1541.
Article
CAS
Google Scholar
Doerr, S., R. Shakesby, and R. Walsh. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51: 33–65. https://doi.org/10.1016/S0012-8252(00)00011-8.
Article
Google Scholar
Engle, D.L., J.O. Sickman, C.M. Moore, A.M. Esperanza, J.M. Melack, and J.E. Keeley. 2008. Biogeochemical legacy of prescribed fire in a giant sequoia–mixed conifer forest: a 16-year record of watershed balances. Journal of Geophysical Research 113: G01014. https://doi.org/10.1029/2006JG000391.
Article
CAS
Google Scholar
Esposito, G., F. Matano, F. Molisso, G. Ruoppolo, A. Di Benedetto, and M. Sacchi. 2017. Post-fire erosion response in a watershed mantled by volcaniclastic deposits, Sarno Mountains, southern Italy. Catena 152: 227–241. https://doi.org/10.1016/j.catena.2017.01.009.
Article
Google Scholar
Florsheim, J.L., A. Chin, A.M. Kinoshita, and S. Nourbakhshbeidokhti. 2017. Effect of storms during drought on post-wildfire recovery of channel sediment dynamics and habitat in the southern California chaparral, USA. Earth Surface Processes and Landforms 42: 1482–1492. https://doi.org/10.1002/esp.4117.
Article
Google Scholar
González-Pérez, J.A., F.J. González-Vila, G. Almendros, and H. Knicker. 2004. The effect of fire on soil organic matter—a review. Environment International 30: 855–870. https://doi.org/10.1016/j.envint.2004.02.003.
Article
CAS
PubMed
Google Scholar
Güereña, D.T., J. Lehmann, T. Walter, A. Enders, H. Neufeldt, H. Odiwour, H. Biwott, J. Recha, K. Shepherd, and E. Barrios. 2015. Terrestrial pyrogenic carbon export to fluvial ecosystems: lessons learned from the White Nile watershed of East Africa. Global Biogeochemical Cycles 29: 1911–1928. https://doi.org/10.1002/2015GB005095.
Article
CAS
Google Scholar
Helms, J.R., A. Stubbins, J.D. Ritchie, E.C. Minor, D.J. Kieber, and K. Mopper. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53: 955–969. https://doi.org/10.4319/lo.2008.53.3.0955.
Article
Google Scholar
Hertkorn, N., M. Harir, B. Koch, B. Michalke, and P. Schmitt-Kopplin. 2013. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10: 1583–1624. https://doi.org/10.5194/bg-10-1583-2013.
Article
CAS
Google Scholar
Hockaday, W.C., A.M. Grannas, S. Kim, and P.G. Hatcher. 2006. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Organic Geochemistry 37: 501–510. https://doi.org/10.1016/j.orggeochem.2005.11.003.
Article
CAS
Google Scholar
Hockaday, W.C., A.M. Grannas, S. Kim, and P.G. Hatcher. 2007. The transformation and mobility of charcoal in a fire-impacted watershed. Geochimica et Cosmochimica Acta 71: 3432–3445. https://doi.org/10.1016/j.gca.2007.02.023.
Article
CAS
Google Scholar
Homann, P.S., B.T. Bormann, R.L. Darbyshire, and B.A. Morrissette. 2011. Forest soil carbon and nitrogen losses associated with wildfire and prescribed fire. Soil Science Society of America Journal 75: 1926–1934. https://doi.org/10.2136/sssaj2010-0429.
Article
CAS
Google Scholar
Inamdar, S., S. Singh, S. Dutta, D. Levia, M. Mitchell, D. Scott, H. Bais, and P. McHale. 2011. Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed. Journal of Geophysical Research 116: G03043. https://doi.org/10.1029/2011JG001735.
Article
CAS
Google Scholar
Jackson, B.K., and S.M.P. Sullivan. 2009. Influence of wildfire severity on riparian plant community heterogeneity in an Idaho, USA wilderness. Forest Ecology and Management 259: 24–32. https://doi.org/10.1016/j.foreco.2009.09.036.
Article
Google Scholar
Jackson, B.K., and S.M.P. Sullivan. 2015. Responses of riparian tetragnathid spiders to wildfire in forested ecosystems of the California mediterranean climate region, USA. Freshwater Science 34: 1542–1557. https://doi.org/10.1086/683682.
Article
Google Scholar
Jaffé, R., Y. Ding, J. Niggemann, A.V. Vähätalo, A. Stubbins, R.G. Spencer, J. Campbell, and T. Dittmar. 2013. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340: 345–347. https://doi.org/10.1126/science.1231476.
Article
CAS
PubMed
Google Scholar
Johnson, A.H., and R.C. Reynolds Jr. 1977. Chemical character of headwater streams in Vermont and New Hampshire. Water Resources Research 13: 469–473. https://doi.org/10.1029/WR013i002p00469.
Article
CAS
Google Scholar
Johnson, L., C. Richards, G. Host, and J. Arthur. 1997. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology 37: 193–208. https://doi.org/10.1046/j.1365-2427.1997.d01-539.x.
Article
CAS
Google Scholar
Keeler-Wolf, T., P. Moore, E. Reyes, J. Menke, D. Johnson, and D. Karavidas. 2012. Yosemite National Park vegetation classification and mapping project report. USDI National Park Service Natural Resource Technical Report NPS/YOSE/NRTR—2012/598, National Forest Service, Fort Collins, Colorado.
Keeley, J.E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18: 116–126. https://doi.org/10.1071/WF07049.
Article
Google Scholar
Kitzberger, T., D.A. Falk, A.L. Westerling, and T.W. Swetnam. 2017. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12: e0188486. https://doi.org/10.1371/journal.pone.0188486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knicker, H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85: 91–118. https://doi.org/10.1007/s10533-007-9104-4.
Article
CAS
Google Scholar
Lam, B., A. Baer, M. Alaee, B. Lefebvre, A. Moser, A. Williams, and A.J. Simpson. 2007. Major structural components in freshwater dissolved organic matter. Environmental Science & Technology 41: 8240–8247. https://doi.org/10.1021/es0713072.
Article
CAS
Google Scholar
Larouche, J.R., B.W. Abbott, W.B. Bowden, and J.B. Jones. 2015. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences 12: 4221–4233. https://doi.org/10.5194/bg-12-4221-2015.
Article
CAS
Google Scholar
Lee, B.S., K. Lajtha, J.A. Jones, and A.E. White. 2018. Fluorescent DOC characteristics are related to streamflow and pasture cover in streams of a mixed landscape. Biogeochemistry 140: 317–340. https://doi.org/10.1007/s10533-018-0494-2.
Article
CAS
Google Scholar
Li, S., X. Xia, X. Tan, and Q. Zhang. 2013. Effects of catchment and riparian landscape setting on water chemistry and seasonal evolution of water quality in the upper Han River basin, China. PLoS ONE 8: e53163. https://doi.org/10.1371/journal.pone.0053163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lintern, A., J.A. Webb, D. Ryu, S. Liu, U. Bende-Michl, D. Waters, P. Leahy, P. Wilson, and A.W. Western. 2018. Key factors influencing differences in stream water quality across space. Wiley Interdisciplinary Reviews-Water 5: e1260. https://doi.org/10.1002/wat2.1260.
Article
Google Scholar
Lydersen, J.M., M.P. North, and B.M. Collins. 2014. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes. Forest Ecology and Management 328: 326–334. https://doi.org/10.1016/j.foreco.2014.06.005.
Article
Google Scholar
Maestrini, B., E.C. Alvey, M.D. Hurteau, H. Safford, and J.R. Miesel. 2017. Fire severity alters the distribution of pyrogenic carbon stocks across ecosystem pools in a Californian mixed-conifer forest. Journal of Geophysical Research-Biogeosciences 122: 2338–2355. https://doi.org/10.1002/2017JG003832.
Article
CAS
Google Scholar
Malison, R.L., and C.V. Baxter. 2010. The fire pulse: wildfire stimulates flux of aquatic prey to terrestrial habitats driving increases in riparian consumers. Canadian Journal of Fisheries and Aquatic Sciences 67: 570–579. https://doi.org/10.1139/F10-006.
Article
Google Scholar
Masiello, C., and P. Louchouarn. 2013. Fire in the ocean. Science 340: 287–288. https://doi.org/10.1126/science.1237688.
Article
CAS
PubMed
Google Scholar
Mast, M.A., and D.W. Clow. 2008. Effects of 2003 wildfires on stream chemistry in Glacier National Park, Montana. Hydrological Processes 22: 5013–5023. https://doi.org/10.1002/hyp.7121.
Article
CAS
Google Scholar
Mast, M.A., S.F. Murphy, D.W. Clow, C.A. Penn, and G.A. Sexstone. 2016. Water-quality response to a high-elevation wildfire in the Colorado Front Range. Hydrological Processes 30: 1811–1823. https://doi.org/10.1002/hyp.10755.
Article
Google Scholar
McCune, B., and D. Keon. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13: 603–606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x.
Article
Google Scholar
Miesel, J.R., W.C. Hockaday, R.K. Kolka, and P.A. Townsend. 2015. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region. Journal of Geophysical Research-Biogeosciences 120: 1124–1141. https://doi.org/10.1002/2015JG002959.
Article
CAS
Google Scholar
Miller, J.D., and H. Safford. 2012. Trends in wildfire severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and southern Cascades, California, USA. Fire Ecology 8: 41–57. https://doi.org/10.4996/fireecology.0803041.
Article
Google Scholar
Miller, J.D., H.D. Safford, M. Crimmins, and A.E. Thode. 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade mountains, California and Nevada, USA. Ecosystems 12: 16–32. https://doi.org/10.1007/s10021-008-9201-9.
Article
Google Scholar
Montgomery, D.R., and J.M. Buffington. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109: 596–611. https://doi.org/10.1130/0016-7606(1997)109%3C0596:CRMIMD%3E2.3.CO;2.
Article
Google Scholar
Moody, J.A., R.A. Shakesby, P.R. Robichaud, S.H. Cannon, and D.A. Martin. 2013. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews 122: 10–37. https://doi.org/10.1016/j.earscirev.2013.03.004.
Article
Google Scholar
Myers-Pigg, A.N., P. Louchouarn, R.M. Amon, A. Prokushkin, K. Pierce, and A. Rubtsov. 2015. Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: implications for wildfire-stream metabolic linkages. Geophysical Research Letters 42: 377–385. https://doi.org/10.1002/2014GL062762.
Article
CAS
Google Scholar
Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142 https://doi.org/10.1111/j.2041-210x.2012.00261.x.
Article
Google Scholar
Näthe, K., D.F. Levia, M. Steffens, and B. Michalzik. 2017. Solid-state 13C NMR characterization of surface fire effects on the composition of organic matter in both soil and soil solution from a coniferous forest. Geoderma 305: 394–406. https://doi.org/10.1016/j.geoderma.2017.06.030.
Article
CAS
Google Scholar
Nave, L.E., E.D. Vance, C.W. Swanston, and P.S. Curtis. 2011. Fire effects on temperate forest soil C and N storage. Ecological Applications 21: 1189–1201. https://doi.org/10.1890/10-0660.1.
Article
PubMed
Google Scholar
Norwood, M.J., P. Louchouarn, L.-J. Kuo, and O.R. Harvey. 2013. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars. Organic Geochemistry 56: 111–119. https://doi.org/10.1016/j.orggeochem.2012.12.008.
Article
CAS
Google Scholar
Parham, L.M., A.S. Prokushkin, O.S. Pokrovsky, S.V. Titov, E. Grekova, L.S. Shirokova, and W.H. McDowell. 2013. Permafrost and fire as regulators of stream chemistry in basins of the Central Siberian Plateau. Biogeochemistry 116: 55–68. https://doi.org/10.1007/s10533-013-9922-5.
Article
CAS
Google Scholar
Ramchunder, S.J., L.E. Brown, and J. Holden. 2013. Rotational vegetation burning effects on peatland stream ecosystems. Journal of Applied Ecology 50: 636–648. https://doi.org/10.1111/1365-2664.12082.
Article
Google Scholar
Ranalli, A.J. 2004. A summary of the scientific literature on the effects of fire on the concentration of nutrients in surface waters. Reston: US Geological Survey Open File Report 2004-1296. https://doi.org/10.3133/ofr20041296.
Book
Google Scholar
Reilly, M.J., C.J. Dunn, G.W. Meigs, T.A. Spies, R.E. Kennedy, J.D. Bailey, and K. Briggs. 2017. Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere 8 (3): e01695. https://doi.org/10.1002/ecs2.1695.
Article
Google Scholar
Repeta, D.J., T.M. Quan, L.I. Aluwihare, and A. Accardi. 2002. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters. Geochimica et Cosmochimica Acta 66: 955–962. https://doi.org/10.1016/S0016-7037(01)00830-4.
Article
CAS
Google Scholar
Rhoades, C.C., A.T. Chow, T.P. Covino, T.S. Fegel, D.N. Pierson, and A.E. Rhea. 2018. The legacy of a severe wildfire on stream nitrogen and carbon in headwater catchments. Ecosystems: 1–15. https://doi.org/10.1007/s10021-018-0293-6.
Rhoades, C.C., D. Entwistle, and D. Butler. 2011. The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. International Journal of Wildland Fire 20: 430–442. https://doi.org/10.1071/WF09086.
Article
CAS
Google Scholar
Rumpel, C., and I. Kögel-Knabner. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil 338: 143–158. https://doi.org/10.1007/s11104-010-0391-5.
Article
CAS
Google Scholar
Santín, C., S.H. Doerr, C.M. Preston, and G. González-Rodríguez. 2015. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biology 21: 1621–1633. https://doi.org/10.1111/gcb.12800.
Article
PubMed
PubMed Central
Google Scholar
Santos, F., D. Russell, and A.A. Berhe. 2016. Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California. Journal of Geophysical Research-Biogeosciences 121: 2877–2885. https://doi.org/10.1002/2016JG003597.
Article
CAS
Google Scholar
Santos, F., S. Wagner, D. Rothstein, R. Jaffe, and J.R. Miesel. 2017. Impact of a historical fire event on pyrogenic carbon stocks and dissolved pyrogenic carbon in spodosols in northern Michigan. Frontiers in Earth Science 5: 80. https://doi.org/10.3389/feart.2017.00080.
Article
Google Scholar
Sawyer, J.O., T. Keeler-Wolf, and J. Evens. 2009. A manual of California vegetation. Second edition. Sacramento: California Native Plant Society.
Google Scholar
Scott, D.F., M.P. Curran, P.R. Robichaud, and J.W. Wagenbrenner. 2009. Soil erosion after forest fire. In Fire effects on soils and restoration strategies, ed. A. Cerda and P.R. Robichaud, 177–195. Enfield: Science Publishers. https://doi.org/10.1201/9781439843338-c6.
Chapter
Google Scholar
Smith, H.G., G.J. Sheridan, P.N. Lane, P. Nyman, and S. Haydon. 2011. Wildfire effects on water quality in forest catchments: a review with implications for water supply. Journal of Hydrology 396: 170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043.
Article
CAS
Google Scholar
Spigel, K.M., and P.R. Robichaud. 2007. First-year post-fire erosion rates in Bitterroot National Forest, Montana. Hydrological Processes 21: 998–1005. https://doi.org/10.1002/hyp.6295.
Article
CAS
Google Scholar
Stephens, S.L., T. Meixner, M. Poth, B. McGurk, and D. Payne. 2004. Prescribed fire, soils, and stream water chemistry in a watershed in the Lake Tahoe Basin, California. International Journal of Wildland Fire 13: 27–35. https://doi.org/10.1071/WF03002.
Article
CAS
Google Scholar
Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Eos Transactions American Geophysical Union 38: 913–920. https://doi.org/10.1029/TR038i006p00913.
Article
Google Scholar
U.S. EPA. 1993. “Method 350.1: Nitrogen, Ammonia (Colorimetric, Automated Phenate),” Revision 2.0. Cincinnati, OH
Wagner, S., K.M. Cawley, F.L. Rosario-Ortiz, and R. Jaffé. 2015. In-stream sources and links between particulate and dissolved black carbon following a wildfire. Biogeochemistry 124: 145–161. https://doi.org/10.1007/s10533-015-0088-1.
Article
CAS
Google Scholar
Weishaar, J.L., G.R. Aiken, B.A. Bergamaschi, M.S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37: 4702–4708. https://doi.org/10.1021/es030360x.
Article
CAS
Google Scholar
Williams, M.R., and J.M. Melack. 1997. Effects of prescribed burning and drought on the solute chemistry of mixed-conifer forest streams of the Sierra Nevada, California. Biogeochemistry 39: 225–253. https://doi.org/10.1023/A:1005858219050.
Article
CAS
Google Scholar
Wymore, A.S., A.A. Coble, B. Rodríguez-Cardona, and W.H. McDowell. 2016. Nitrate uptake across biomes and the influence of elemental stoichiometry: a new look at LINX II. Global Biogeochemical Cycles 30: 1183–1191. https://doi.org/10.1002/2016GB005468.
Article
CAS
Google Scholar