AEMET-IM. 2011. Iberian climate atlas. Air temperature and precipitation (1971–2000). Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Medio Rural y Marino and Instituto de Meteorologia de Portugal. https://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf. Accessed 15 Feb 2021.
Álvarez, R., A. Muñoz, X.M. Pesqueira, J. García-Duro, O. Reyes, and M. Casal. 2009. Spatial and temporal patterns in structure and diversity of Mediterranean forest of Quercus pyrenaica in relation to fire. Forest Ecology and Management 257 (7): 1596–1602. https://doi.org/10.1016/j.foreco.2009.01.016.
Article
Google Scholar
Arani, B.M.S., S.R. Carpenter, L. Lahti, E.H. van Nes, and M. Scheffer. 2021. Exit time as a measure of ecological resilience. Science 372: eaay4895. https://doi.org/10.1126/science.aay4895.
Arianoutsou, M. 2004. Predicting the post-fire regeneration and resilience of Mediterranean plant communities. In Proceedings 10th MEDECOS Conference, ed. M. Arianotsou, and V.P. Papanatasis. Rotterdam: Millpress.
Baeza, M.J., M. De Luis, J. Raventós, and A. Escarré. 2002. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. Journal of Environmental Management 65 (2): 199–208. https://doi.org/10.1006/jema.2002.0545.
Article
CAS
PubMed
Google Scholar
Baeza, M.J., A. Valdecantos, J.A. Alloza, and V.R. Vallejo. 2007. Human disturbance and environmental factors as drivers of long-term post-fire regeneration patterns in Mediterranean forests. Journal of Vegetation Science 18 (2): 243–252. https://doi.org/10.1111/j.1654-1103.2007.tb02535.x.
Article
Google Scholar
Balao, F., O. Paun, and C. Alonso. 2018. Uncovering the contribution of epigenetics to plant phenotypic variation in Mediterranean ecosystems. Plant Biology 20 (1): 38–49. https://doi.org/10.1111/plb.12594.
Article
PubMed
Google Scholar
Bartels, S.F., H.Y.H. Chen, M.A. Wulder, and J.C. White. 2016. Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. Forest Ecology and Management 361: 194–207. https://doi.org/10.1016/j.foreco.2015.11.015.
Article
Google Scholar
Bellingham, P.J., and A.D. Sparrow. 2000. Resprouting as a life history strategy in woody plant communities. Oikos 89 (2): 409–416. https://doi.org/10.1034/j.1600-0706.2000.890224.x.
Article
Google Scholar
Bradbury, D., S.-L. Tapper, D. Coates, M. Hankinson, S. McArthur, and M. Byrne. 2016. How does the post-fire facultative seeding strategy impact genetic variation and phylogeographical history? The case of Bossiaea ornata (Fabaceae) in a fire-prone Mediterranean-Climate Ecosystem. Journal of Biogeography 43 (1): 96–110. https://doi.org/10.1111/jbi.12615.
Article
Google Scholar
Busby, S.U., K.B. Moffett, and A. Holz. 2020. High-severity and short-interval wildfires limit forest recovery in the Central Cascade Range. Ecosphere 11 (9): e03247. https://doi.org/10.1002/ECS2.3247.
Article
Google Scholar
Calvo, L., R. Tárrega, and E. Luis. 1991. Regeneration in Quercus pyrenaica ecosystems after surface fires. International Journal of Wildland Fire 1 (4): 205–210. https://doi.org/10.1071/WF9910205.
Article
Google Scholar
Calvo, L., R. Tárrega, and E. de Luis. 1998. Space-time distribution patterns of Erica australis L. subsp. aragonensis (Willk) after experimental burning, cutting, and ploughing. Plant Ecology 137: 1–12. https://doi.org/10.1023/A:1009732722644.
Article
Google Scholar
Calvo, L., R. Tárrega, and E. de Luis. 1999. Post-fire succession in two Quercus pyrenaica communities with different disturbance histories. Annals of Forest Science 56 (5): 441–447. https://doi.org/10.1051/forest:19990508.
Article
Google Scholar
Calvo, L., R. Tárrega, and E. de Luis. 2002a. The dynamics of Mediterranean shrubs species over 12 years following perturbations. Plant Ecology 160: 25–42. https://doi.org/10.1023/A:1015882812563.
Article
Google Scholar
Calvo, L., R. Tárrega, and E. Luis. 2002b. Regeneration patterns in a Calluna vulgaris heathland in the Cantabrian mountains (NW Spain): Effects of burning, cutting and ploughing. Acta Oecologica 23 (2): 81–90. https://doi.org/10.1016/S1146-609X(02)01137-2.
Article
Google Scholar
Calvo, L., R. Tárrega, and E. de Luis. 2002c. Secondary succession after perturbations in a shrubland community. Acta Oecologica. 23 (6): 393–404. https://doi.org/10.1016/S1146-609X(02)01164-5.
Article
Google Scholar
Calvo, L., S. Santalla, E. Marcos, L. Valbuena, R. Tárrega, and E. Luis. 2003. Regeneration after wildfire in communities dominated by Pinus pinaster, an obligate seeder, and in others dominated by Quercus pyrenaica, a typical resprouter. Forest Ecology and Management 184 (1–3): 209–223. https://doi.org/10.1016/S0378-1127(03)00207-X.
Article
Google Scholar
Calvo, L., R. Tárrega, E. Luis, L. Valbuena, and E. Marcos. 2005. Differences in the response to fire of Mediterranean shrubland. In New research on forest ecosystems, ed. A.R. Burk, 21–35. New York: Nova Science Publishers.
Google Scholar
Calvo, L., S. Santalla, L. Valbuena, E. Marcos, R. Tárrega, and E. Luis-Calabuig. 2008. Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecology 197: 81–90. https://doi.org/10.1007/s11258-007-9362-1.
Article
Google Scholar
Calvo, L., O. Torres, L. Valbuena, and E. Luis-Calabuig. 2013. Short communication. Recruitment and early growth of Pinus pinaster seedlings over five years after a wildfire in NW Spain. Forest Systems. 22 (3): 582–586. https://doi.org/10.5424/fs/2013223-04623.
Article
Google Scholar
Castro, J., and A.B. Leverkus. 2019. Effect of herbaceous layer interference on the post-fire regeneration of a serotinous pine (Pinus pinaster Aiton) across two seedling ages. Forests 10 (1): 74. https://doi.org/10.3390/f10010074.
Article
Google Scholar
Clarke, P.J., M.J. Lawes, J.J. Midgley, B.B. Lamont, F. Ojeda, G.E. Burrows, N.J. Enright, and K.J.E. Knox. 2013. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist 197 (1): 19–35. https://doi.org/10.1111/nph.12001.
Article
CAS
PubMed
Google Scholar
Collins, B.M., J.M. Lydersen, R.G. Everett, and S.L. Stephens. 2018. How does forest recovery following moderate-severity fire influence effects of subsequent wildfire in mixed-conifer forests? Fire Ecology 14: 3. https://doi.org/10.1186/s42408-018-0004-x.
Article
Google Scholar
Coop, J.D., S.A. Parks, S.R. McClernan, and L.M. Holsinger. 2016. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape. Ecological Applications 26 (2): 346–354. https://doi.org/10.1890/15-0775.
Article
PubMed
Google Scholar
Crotteau, J.S., J. Morgan Varner, and M.W. Ritchie. 2013. Post-fire regeneration across a fire severity gradient in the southern Cascades. Forest Ecology and Management 287: 103–112. https://doi.org/10.1016/j.foreco.2012.09.022.
Article
Google Scholar
Cruz, A., B. Pérez, and J.M. Moreno. 2003. Resprouting of the Mediterranean-type shrub Erica australis with modified lignotuber carbohydrate content. Journal of Ecology 91 (3): 348–356. https://doi.org/10.1046/j.1365-2745.2003.00770.x.
Article
Google Scholar
Enright, N.J., J.B. Fontaine, B.B. Lamont, B.P. Miller, and V.C. Westcott. 2014. Resistance and resilience to changing climate and fire regime depend on plant functional traits. Journal of Ecology 102 (6): 1572–1581. https://doi.org/10.1111/1365-2745.12306.
Article
Google Scholar
Fernandes, P.M. 2013. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landscape and Urban Planning 110: 175–182. https://doi.org/10.1016/j.landurbplan.2012.10.014.
Article
Google Scholar
Fernandez-Anez, N., A. Krasovskiy, M. Müller, H. Vacik, J. Baetens, E. Hukić, M.K. Solomun, et al. 2021. Current wildland fire patterns and challenges in Europe: a synthesis of national perspectives. Air, Soil Water Research 14: 1–19. https://doi.org/10.1177/11786221211028185.
Article
Google Scholar
Fernández-García, V., M. Santamarta, A. Fernández-Manso, C. Quintano, E. Marcos, and L. Calvo. 2018. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sensing of Environment 206: 205–217. https://doi.org/10.1016/j.rse.2017.12.029.
Article
Google Scholar
Fernández-García, V., E. Marcos, J.M. Fernández-Guisuraga, A. Taboada, S. Suárez-Seoane, and L. Calvo. 2019b. Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. International Journal of Wildland Fire 28 (5): 354–364. https://doi.org/10.1071/WF18103.
Article
Google Scholar
Fernández-García, V., J. Miesel, M.J. Baeza, E. Marcos, and L. Calvo. 2019c. Wildfire effects on soil properties in fire-prone pine ecosystems: indicators of burn severity legacy over the medium term after fire. Applied Soil Ecology 135: 147–156. https://doi.org/10.1016/j.apsoil.2018.12.002.
Article
Google Scholar
Fernández-García, V., P.Z. Fulé, E. Marcos, and L. Calvo. 2019d. The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions. Forest Ecology and Management 444: 59–68. https://doi.org/10.1016/j.foreco.2019.04.040.
Article
Google Scholar
Fernández-García, V., E. Marcos, P.Z. Fulé, O. Reyes, V.M. Santana, and L. Calvo. 2020. Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment 716: 137137. https://doi.org/10.1016/j.scitotenv.2020.137137.
Article
CAS
PubMed
Google Scholar
Fernández-García, V., E. Marcos, S. Huerta, and L. Calvo. 2021. Soil-vegetation relationships in Mediterranean forests after fire. Forest Ecosystems 8: 18. https://doi.org/10.1186/s40663-021-00295-y.
Article
Google Scholar
Fernández-García, V., D. Beltrán-Marcos, R. Pinto-Prieto, J.M. Fernández-Guisuraga, and L. Calvo. 2019d. Uso de técnicas de teledetección para determinar la relación entre la historia de incendios y la severidad del fuego. In Teledetección. Hacia Una Visión Global del Cambio Climático, ed. L.A. Ruiz, J. Estornell, A. Calle, and J.C. Antuña-Sánchez, 135–138. Madrid: Ediciones Universidad de Valladolid.
Fernández-Guisuraga, J.M., S. Suárez-Seoane, P. García-Llamas, and L. Calvo. 2021. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: a case study in a burned Mediterranean landscape. Journal of Environmental Management 288: 112462. https://doi.org/10.1016/j.jenvman.2021.112462.
Article
PubMed
Google Scholar
Fernandez-Manso, A., C. Quintano, and D.A. Roberts. 2016. Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sensing of Environment 184: 112–123. https://doi.org/10.1016/j.rse.2016.06.015.
Article
Google Scholar
Fox, J., and S. Weisberg. 2019. An R companion to applied regression. Thousand Oaks: Sage Publications.
Google Scholar
García-Llamas, P., S. Suárez-Seoane, A. Fernández-Manso, C. Quintano, and L. Calvo. 2020. Evaluation of fire severity in fire prone ecosystems of Spain under two different environmental conditions. Journal of Environmental Management 271: 110706. https://doi.org/10.1016/j.jenvman.2020.110706.
Article
PubMed
Google Scholar
GEODE. 2021. Mapa geológico digital continuo de España. Instituto Geológico y Minero de España. http://mapas.igme.es/gis/rest/services/Cartografia_Geologica/IGME_Geode_50/MapServer. Accessed 15 Feb 2021.
González-De Vega, S., J. De las Heras, and D. Moya. 2018. Post-fire regeneration and diversity response to burn severity in Pinus halepensis Mill. forests. Forests 9 (6): 299. https://doi.org/10.3390/f9060299.
González-De Vega, S., and J. De las Heras, and D. Moya. 2016. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term. Science of the Total Environment 573: 1171–1177. https://doi.org/10.1016/j.scitotenv.2016.03.115.
Article
CAS
PubMed
Google Scholar
Graham, R.T., S. McGaffrey, and T.B. Jain. 2004. Science basis for changing forest structure to modify wildfire behavior and severity. In General Technical Report RMRS-GTR-120. Fort Collins: USDA Forest Service, Rocky Mountain Research Station.
Gunderson, L.H. 2000. Ecological resilience - In theory and application. Annual Review of Ecology and Systematics 31: 425–439. https://doi.org/10.1146/annurev.ecolsys.31.1.425.
Article
Google Scholar
Halpern, C.B. 1988. Early successional pathways and the resistance and resilience of forest communities. Ecology 69 (3): 1703–1715. https://doi.org/10.2307/1941148.
Article
Google Scholar
Hammer, Ø., D.A.T. Harper, and P.D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electrononica 4 (1): 4. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245.
Huerta, S., V. Fernández-García, E. Marcos, S. Suárez-Seoane, and L. Calvo. 2021. Physiological and regenerative plant traits explain vegetation regeneration under different severity levels in Mediterranean fire-prone ecosystems. Forests 12 (2): 149. https://doi.org/10.3390/f12020149.
Article
Google Scholar
IUSS-WRB. 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soil and creating legends for soil maps. World Soil Resources Report No. 106. Rome: FAO.
Kazanis, D., and M. Arianotsou. 2004. Factors determining low Mediterranean ecosystems resilience to fire: The case of Pinus halepensis forests. In Proceedings 10th MEDECOS Conference, ed. M. Arianotsou, and V.P. Papanatasis. Rotterdam: Millpress.
Kazanis, D., and M. Arianoutsou. 1996. Vegetation composition in a post-fire successional gradient of Pinus halepensis forests in Attica. Greece. inTernational Journal of Wildland Fire 6 (2): 83–91. https://doi.org/10.1071/WF9960083.
Article
Google Scholar
Keeley, J. E. 2005. Fire as a threat to biodiversity in fire-type shrublands. In Planning for biodiversity: Bringing research and management together. General Technical Report PSW-GTR-195, ed. B.E. Kus, and J.L. Beyers. Albany: USDA Forest Service, Pacific Southwest Research Station.
Keeley, J.E. 2009. Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire 18 (1): 116–126. https://doi.org/10.1071/wf07049.
Article
Google Scholar
Key, C.H., and N.C. Benson. 2006. Landscape assessment (LA) sampling and analysis methods. In General Technical Report RMRS-GTR-164-CD. Ogden: USDA Forest Service, Rocky Mountain Research Station.
Kimura, H., and S. Tsuyuzaki. 2011. Fire severity affects vegetation and seed bank in a wetland. Applied Vegetation Science 14 (3): 350–357. https://doi.org/10.1111/j.1654-109X.2011.01126.x.
Article
Google Scholar
Kowaljow, E., M.S. Morales, J.I. Whitworth-Hulse, S.R. Zeballos, M.A. Giorgis, M. Rodríguez Catón, and D.E. Gurvich. 2018. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degradation & Development 30 (3): 266–277. https://doi.org/10.1002/ldr.3219.
Article
Google Scholar
Lamont, B.B., N.J. Enright, and T. He. 2011. Fitness and evolution of resprouters in relation to fire. Plant Ecology 212: 1945–1957. https://doi.org/10.1007/s11258-011-9982-3.
Article
Google Scholar
Lamont, B.B., T. He, and Z. Yan. 2019. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biological Reviews 94 (3): 903–928. https://doi.org/10.1111/brv.12483.
Article
PubMed
Google Scholar
Lamothe, K.A., K.M. Somers, and D.A. Jackson. 2019. Linking the ball-and-cup analogy and ordination trajectories to describe ecosystem stability, resistance, and resilience. Ecosphere 10 (3): e02629. https://doi.org/10.1002/ecs2.2629.
Article
Google Scholar
Lecina-Diaz, J., J. Martínez-Vilalta, A. Alvarez, M. Banqué, J. Birkmann, D. Feldmeyer, J. Vayreda, and J. Retana. 2021. Characterizing forest vulnerability and risk to climate-change hazards. Frontiers in Ecology and the Environment 19 (2): 126–133. https://doi.org/10.1002/fee.2278.
Article
Google Scholar
Lloret, F., L.A. Jaime, J. Margalef-Marrase, M.A. Pérez-Navarro, and E. Batllori. 2022. Short-term forest resilience after drought-induced die-off in Southwestern European forests. Science of the Total Environment 806 (4): 150940. https://doi.org/10.1016/j.scitotenv.2021.150940.
Article
CAS
PubMed
Google Scholar
López-Poma, R., B.J. Orr, and S. Bautista. 2014. Successional stage after land abandonment modulates fire severity and post-fire recovery in a Mediterranean mountain landscape. International Journal of Wildland Fire 23 (7): 1005–1015. https://doi.org/10.1071/WF13150.
Article
Google Scholar
Lucas-Borja, M.E., J. González-Romero, P.A. Plaza-Álvarez, J. Sagra, M.E. Gómez, D. Moya, A. Cerdà, and J. de las Heras. 2019. The impact of straw mulching and salvage logging on post-fire runoff and soil erosion generation under Mediterranean climate conditions. Science of the Total Environment 654: 441–451. https://doi.org/10.1016/j.scitotenv.2018.11.161.
Article
CAS
PubMed
Google Scholar
Lüdecke, D. 2021. sjPlot: Data visualization for statistics in social science. R package version 2.8.8. https://strengejacke.github.io/sjPlot/. Accessed 13 Apr 2021.
Meng, R., J. Wu, F. Zhao, B.D. Cook, R.P. Hanavan, and S.P. Serbin. 2018. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques. Remote Sensing of Environment 210: 282–296. https://doi.org/10.1016/j.rse.2018.03.019.
Article
Google Scholar
Menges, E.S., S.A. Smith, G.L. Clarke, and S.M. Koontz. 2021. Are fire temperatures and residence times good predictors of survival and regrowth for resprouters in Florida, USA, scrub? Fire Ecology 17: 16. https://doi.org/10.1186/s42408-021-00101-8.
Article
Google Scholar
Minor, J., D.A. Falk, and G.A. Barron-Gafford. 2017. Fire severity and regeneration strategy influence shrub patch size and structure following disturbance. Forests 8 (7): 221. https://doi.org/10.3390/f8070221.
Article
Google Scholar
Mitchell, R.J., M.H.D. Auld, M.G. Le Duc, and M.H. Robert. 2000. Ecosystem stability and resilience: A review of their relevance for the conservation management of lowland heaths. Perspectives in Plant Ecology, Evolution and Systematics 3 (2): 142–160. https://doi.org/10.1078/1433-8319-00009.
Article
Google Scholar
Montès, N., C. Ballini, G. Bonin, and J. Faures. 2004. A comparative study of aboveground biomass of three Mediterranean species in a post-fire succession. Acta Oecologica 25 (1–2): 1–6. https://doi.org/10.1016/j.actao.2003.10.002.
Article
Google Scholar
Moreira, B., and J.G. Pausas. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7 (12): e51523. https://doi.org/10.1371/journal.pone.0051523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreira, B., J. Tormo, and J.G. Pausas. 2012. To resprout or not to resprout: Factors driving intraspecific variability in resprouting. Oikos 121: 1577–1584. https://doi.org/10.1111/j.1600-0706.2011.20258.x.
Article
Google Scholar
Moreira, F., O. Viedma, M. Arianoutsou, T. Curt, N. Koutsias, E. Rigolot, A. Barbati, P. Conona, P. Vaz, G. Xanthopoulos, F. Mouillot, and E. Bilgili. 2011. Landscape-wildfire interactions in southern Europe: Implications for landscape management. Journal of Environmental Management. 92 (10): 2389–2402. https://doi.org/10.1016/j.jenvman.2011.06.028.
Article
PubMed
Google Scholar
Moreno, M.V., M. Conedera, E. Chuvieco, and G.B. Pezzatti. 2014. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environmental Science & Policy 37: 11–22. https://doi.org/10.1016/j.envsci.2013.08.005.
Article
Google Scholar
Moya, D., S. González-De Vega, F. García-Orenes, A. Morugán-Coronado, V. Arcenegui, J. Mataix-Solera, M.E. Lucas-Borja, and J. De las Heras. 2018. Temporal characterisation of soil-plant natural recovery related to fire severity in burned Pinus halepensis Mill. forests. Science of the Total Environment 640–641: 42–51. https://doi.org/10.1016/j.scitotenv.2018.05.212.
Article
CAS
PubMed
Google Scholar
Nemens, D.G., J.M. Varner, and P.W. Dunwiddie. 2019. Resilience of Oregon white oak to reintroduction of fire. Fire Ecology 15: 29. https://doi.org/10.1186/s42408-019-0045-9.
Article
Google Scholar
Ninyerola, M., X. Pons, and J.M. Roure. 2005. Atlas Climático digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona. http://opengis.uab.es/wms/iberia. Accessed 15 Feb 2021.
Orwin, K.H., and D.A. Wardle. 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology and Biochemistry 36 (11): 1907–1912. https://doi.org/10.1016/j.soilbio.2004.04.036.
Article
CAS
Google Scholar
Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Climatic Change 63: 337–350. https://doi.org/10.1023/B:CLIM.0000018508.94901.9c.
Article
Google Scholar
Pausas, J.G., and V.R. Vallejo. 1999. The role of fire in European Mediterranean ecosystems. In Remote sensing of large wildfires in the European Mediterranean Basin, ed. E. Chuvieco, 3–16. Heidelberg: Springer-Verlag.
Pausas, J.G., E. Carbó, R.N. Caturla, J.M. Gil, and R. Vallejo. 1999. Post-fire regeneration patterns in the eastern Iberian Peninsula. Acta Oecologica 20 (5): 499–508. https://doi.org/10.1016/S1146-609X(00)86617-5.
Pausas, J.G., J. Lovet, A. Rodrigo, and R. Vallejo. 2008. Are wildfires a disaster in the Mediterranean Basin? – a review. International Journal of Wildland Fire 17 (6): 713–723. https://doi.org/10.1071/WF07151.
Article
Google Scholar
Pereira, P., G. Rein, and D. Martin. 2016. Past and present post-fire environments. Science of the Total Environment 573: 1275–1277. https://doi.org/10.1016/j.scitotenv.2016.05.040.
Article
CAS
PubMed
Google Scholar
Pereira, P., I. Bogunovic, W. Zhao, and D. Barcelo. 2021. Short-term effect of wildfires and prescribed fires on ecosystem services. Current Opinion in Environmental Science & Health 22: 100266. https://doi.org/10.1016/j.coesh.2021.100266.
Article
Google Scholar
Pérez-Fernández, M.A., and B.B. Lamont. 2016. Competition and facilitation between Australian and Spanish legumes in seven Australian soils. Plant Species Biology 31 (4): 256–271. https://doi.org/10.1111/1442-1984.12111.
Article
Google Scholar
Pimm, S.L. 1984. The complexity and stability of ecosystems. Nature 307: 321–326. https://doi.org/10.1038/307321a0.
Provendier, D., and P. Balandier. 2008. Compared effects of competition by grasses (Gramonoids) and broom (Cytisus scoparius) on growth and functional traits of beech (Fagus sylvatica). Annals of Forest Science 65: 510. https://doi.org/10.1051/forest:2008028.
Article
Google Scholar
Puerta-Piñero, C., L. Brotons, L. Coll, and J.R. González-Olabarría. 2012. Valuing acorn dispersal and resprouting capacity ecological functions to ensure Mediterranean forest resilience after fire. European Journal of Forest Research 131: 835–844. https://doi.org/10.1007/s10342-011-0557-6.
Article
Google Scholar
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http: //www.R-project.org/. Accessed 13 Apr 2021.
Reyes, O., M. Casal, and F.C. Rego. 2009. Resprouting ability of six Atlantic shrub species. Folia Geobotanica 44: 19–29. https://doi.org/10.1007/s12224-009-9029-x.
Article
Google Scholar
Rundel, P.W., M.T.K. Arroyo, R.M. Cowling, J.E. Keeley, B.B. Lamont, J.G. Pausas, and P. Vargas. 2018. Fire and plant diversification in Mediterranean-climate regions. Frontiers in Plant Science 9: 851. https://doi.org/10.3389/fpls.2018.00851.
Article
PubMed
PubMed Central
Google Scholar
Rykiel, E.J. 1985. Towards a definition of ecological disturbance. Australian Journal of Ecology 10 (3): 361–365. https://doi.org/10.1111/j.1442-9993.1985.tb00897.x.
Article
Google Scholar
Sánchez-Pinillos, M., A. Leduc, A. Ameztegui, D. Kneeshaw, F. Lloret, and L. Coll. 2019. Resistance, resilience or change: Post-disturbance dynamics of boreal forests after insect outbreaks. Ecosystems 22: 1886–1901. https://doi.org/10.1007/s10021-019-00378-6.
Article
Google Scholar
Santana, V.M., M.J. Baeza, R.H. Marrs, and V.R. Vallejo. 2010. Old-field secondary succession in SE Spain: can fire divert it? Plant Ecology 211: 337–349. https://doi.org/10.1007/s11258-010-9793-y.
Article
Google Scholar
Schaffhauser, A., T. Curt, and T. Tatoni. 2008. The resilience ability of vegetation after different fire recurrences in Provence. WIT Transactions on Ecology and the Environment 119: 297–310. https://doi.org/10.2495/FIVA080301.
Article
Google Scholar
Seidl, R., T.A. Spies, D.L. Peterson, S.L. Stephens, and J.A. Hicke. 2016. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Applied Ecology. 53 (1): 120–129. https://doi.org/10.1111/1365-2664.12511.
Article
PubMed
Google Scholar
Shade, A., H. Peter, S.D. Allison, D.L. Baho, M. Berga, H. Bürgmann, H.D. Huber, S. Langenheder, J.T. Lennon, J.B.H. Martiny, K.L. Matulich, T.M. Schmidt, and J. Handelsman. 2012. Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology 3: 417. https://doi.org/10.3389/fmicb.2012.00417.
Article
PubMed
PubMed Central
Google Scholar
Steel, Z.L., D. Foster, M. Coppoletta, J.M. Lydersen, S.L. Stephens, A. Paudel, S.H. Markwith, K. Merriam, and B.M. Collins. 2021. Ecological resilience and vegetation transition in the face of two successive large wildfires. Journal of Ecology 109: 3340–3355. https://doi.org/10.1111/1365-2745.13764.
Article
Google Scholar
Stevens-Rumann, C.S., and P. Morgan. 2019. Tree regeneration following wildfires in the western US: a review. Fire Ecology 15: 15. https://doi.org/10.1186/s42408-019-0032-1.
Article
Google Scholar
Tárrega, R., L. Calvo, and L. Trabaud. 1992. Effect of high temperatures on seed germination of two woody Leguminosae. Vegetatio 102: 139–147. https://doi.org/10.1007/BF00044730.
Article
Google Scholar
Valdecantos, A., M.J. Baeza, and V.R. Vallejo. 2009. Vegetation management for promoting ecosystem resilience in fire-prone Mediterranean shrublands. Restoration Ecology 17 (3): 414–421. https://doi.org/10.1111/j.1526-100X.2008.00401.x.
Article
Google Scholar
Walker, B., C.S. Holling, S.R. Carpenter, and A. Kinzig. 2004. Resilience, adaptability and transformability in social-ecological systems. Ecology and Society 9 (2): 5. https://doi.org/10.5751/ES-00650-090205.
Article
Google Scholar
Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
Book
Google Scholar
Wittenberg, L., D. Malkinson, O. Beeri, A. Halutzy, and N. Tesler. 2007. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape. Mt. Carmel Israel. Catena 71 (1): 76–83. https://doi.org/10.1016/j.catena.2006.10.007.
Article
Google Scholar