Barbour, M.G., T. Keeler-Wolf, and A.A. Schoenherr, editors. 2007. Terrestrial vegetation of California. Third edition. University of California Press, Berkeley, USA. doi: 10.1525/california/9780520249554.001.0001
Book
Google Scholar
Biging, G.S., and L.C. Wensel. 1990. Estimation of crown form for six conifer species of northern California. Canadian Journal of Forest Research 20: 1137–1142. doi: 10.1139/x90-151
Article
Google Scholar
Brohman, R., and L. Bryant, editors. 2005. Existing vegetation classification and mapping technical guide. USDA Forest Service General Technical Report WO-GTR-67, Washington, D.C., USA.
Google Scholar
Collins, B.M., R.G. Everett, and S.L. Stephens. 2011. Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests. Ecosphere 2: art51. doi: 10.1890/ES11-00026.1
Article
Google Scholar
Congalton, R.G., and K. Green. 1999. Assessing the accuracy of remotely sensed data: principles and practices. Lewis Publishers, Boca Raton, Florida, USA.
Google Scholar
Crookston, N.L., and A.R. Stage. 1999. Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator. USDA Forest Service General Technical Report RMRS-GTR-24, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Book
Google Scholar
Crotteau, J.S., J. Morgan Varner III, and M.W. Ritchie. 2013. Post-fire regeneration across a fire severity gradient in the southern Cascades. Forest Ecology and Management 287: 103–112. doi: 10.1016/j.foreco.2012.09.022
Article
Google Scholar
Dillon, G.K., Z.A. Holden, P. Morgan, M.A. Crimmins, E.K. Heyerdahl, and C.H. Luce. 2011. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2: art130. doi: 10.1890/ES11-00271.1
Article
Google Scholar
Dixon, G.E. 2002. Essential FVS: a user’s guide to the Forest Vegetation Simulator. USDA Forest Service, Forest Management Service Center, Fort Collins, Colorado, USA.
Google Scholar
Dymond, J.R., and J.G. Qi. 1997. Reflection of visible light from a dense vegetation canopy—a physical model. Agricultural and Forest Meteorology 86: 143–155. doi: 10.1016/S0168-1923(97)00028-2
Article
Google Scholar
Eidenshink, J., B. Schwind, K. Brewer, Z.-L. Zhu, B. Quayle, and S. Howard. 2007. A project for monitoring trends in burn severity. Fire Ecology 3(1): 3–21. doi: 10.4996/fireecology.0301003
Article
Google Scholar
Holben, B.N., and C.O. Justice. 1980. The topographic effect on spectral response from nadir-pointing sensors. Photogrammetric Engineering and Remote Sensing 46: 1191–1200.
Google Scholar
Hood, S.M., S.L. Smith, and D.R. Cluck. 2010. Predicting mortality for five California conifers following wildfire. Forest Ecology and Management 260: 750–762. doi: 10.1016/j.foreco.2010.05.033
Article
Google Scholar
Jensen, J.R. 2000. Remote sensing of the environment: an earth resource perspective. Prentice Hall, Upper Saddle River, New Jersey, USA.
Google Scholar
Kane, V.R., J.A. Lutz, S.L. Roberts, D.F. Smith, R.J. McGaughey, N.A. Povak, and M.L. Brooks. 2013. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park. Forest Ecology and Management 287: 17–31. doi: 10.1016/j.foreco.2012.08.044
Article
Google Scholar
Key, C.H., and N.C. Benson. 2006a. Landscape assessment: ground measure of severity, the Composite Burn Index. Pages LA8–LA15 in: D.C. Lutes, editor. FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service Technical Report RMRS-GTR-164-CD, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Google Scholar
Key, C.H., and N.C. Benson. 2006b. Landscape assessment: remote sensing of severity, the Normalized Burn Ratio. Pages LA25–LA41 in: D.C. Lutes, editor. FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service Technical Report RMRS-GTR-164-CD, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Google Scholar
Kokaly, R.F., B.W. Rockwell, S.L. Hiare, and T.V.V. King. 2007. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyper-spectral and multispectral remote sensing. Remote Sensing of Environment 106: 305–325. doi: 10.1016/j.rse.2006.08.006
Article
Google Scholar
Kolden, C.A., J.A. Lutz, C.H. Key, J.T. Kane, and J.W. van Wagtendonk. 2012. Mapped versus actual burned area within wildfire perimeters: characterizing the unburned. Forest Ecology and Management 286: 38–47. doi: 10.1016/j.foreco.2012.08.020
Article
Google Scholar
Korhonen, L., K.T. Korhonen, M. Rautiainen, and P. Stenberg. 2006. Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica 40: 577–588. doi: 10.14214/sf.315
Article
Google Scholar
Kramer, C.Y. 1956. Extension of multiple range tests to group means with unequal number of replications. Biometrics 12: 307–310. doi: 10.2307/3001469
Article
Google Scholar
Laudenslayer, W.F. 1997. Effects of prescribed fire on live trees and snags in eastside pine forests in California. Pages 256–262 in: M. Morales, and T. Morales, editors. Proceedings of the symposium: fire in California ecosystems: integrating ecology, prevention and management. The Association for Fire Ecology Miscellaneous Publication 1.
Lentile, L.B., Z.A. Holden, A.M.S. Smith, M.J. Falkowski, A.T. Hudak, P. Morgan, S.A. Lewis, P.E. Gessler, and N.C. Benson. 2006. Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15: 319–345. doi: 10.1071/WF05097
Article
Google Scholar
Leonzo, C.M., and C.R. Keyes. 2010. Fire-excluded relict forests in the southeastern Klamath Mountains, California, USA. Fire Ecology 6(3): 62–76. doi: 10.4996/fireecology.0603062
Article
Google Scholar
Mallek, C., H.D. Safford, J.H. Viers, and J.D. Miller. 2013. Modern departures in fire severity and area vary by forest type, Sierra Nevada and southern Cascades, California, USA. Ecosphere 4: art153. doi: 10.1890/ES13-00217.1
Article
Google Scholar
Miller, J.D., B.M. Collins, J.A. Lutz, S.L. Stephens, J.W. van Wagtendonk, and D.A. Yasuda. 2012a. Differences in wildfires among ecoregions and land management agencies in the Sierra Nevada region, California, USA. Ecosphere 3: art80. doi: 10.1890/ES12-00158.1
Article
Google Scholar
Miller, J.D., E.E. Knapp, C.H. Key, C.N. Skinner, C.J. Isbell, R.M. Creasy, and J.W. Sherlock. 2009a. Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA. Remote Sensing of Environment 113: 645–656. doi: 10.1016/j.rse.2008.11.009
Article
Google Scholar
Miller, J.D., H.D. Safford, M.A. Crimmins, and A.E. Thode. 2009b. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 12: 16–32. doi: 10.1007/s10021-008-9201-9
Article
Google Scholar
Miller, J.D., C.N. Skinner, H.D. Safford, E.E. Knapp, and C.M. Ramirez. 2012b. Trends and causes of severity, size and number of fires in northwestern California, USA. Ecological Applications 22: 184–203. doi: 10.1890/10-2108.1
Article
PubMed
CAS
Google Scholar
Miller, J.D., and A.E. Thode. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 109: 66–80. doi: 10.1016/j.rse.2006.12.006
Article
Google Scholar
Miller, J.D., and S.R. Yool. 2002. Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of Environment 82: 481–496. doi: 10.1016/S0034-4257(02)00071-8
Article
Google Scholar
Minnich, R.A. 2007. Climate, paleoclimate, and paleovegetation. Pages 43–70 in: M.G. Barbour, T. Keeler-Wolf, and A.A. Schoenherr, editors. Terrestrial vegetation of California. University of California Press, Berkeley, USA.
Chapter
Google Scholar
NWCG [National Wildfire Coordinating Group]. 2014. PMS 205 glossary of wildland fire terminology. <http://www.nwcg.gov/pms/pubs/glossary/index.htm>. Accessed 1 October 2014.
Nelder, J.A., and R.W.M. Wedderburn. 1972. Generalized linear models. Journal of the Royal Statistical Society. Series A (General) 135: 370–384. doi: 10.2307/2344614
Article
Google Scholar
Parsons, A., P.R. Robichaud, S.A. Lewis, C. Napper, and J.T. Clark. 2010. Field guide for mapping post-fire soil burn severity. USDA Forest Service General Technical Report RMRS-GTR-243, Rocky Mountain Research Station, Fort Collins, Colorado, USA.
Book
Google Scholar
Pyne, S.J., P.L. Andrews, and R.D. Laven. 1996. Introduction to wildland fire. Second edition. John Wiley & Sons, New York, New York, USA.
Google Scholar
Safford, H.D., J.D. Miller, and B.M. Collins. In press. Differences in land ownership, fire management objectives, and source data matter: a reply to Hanson and Odion (2014). International Journal of Wildland Fire. doi: 10.1071/wf14013
Safford, H.D., J.T. Stevens, K. Merriam, M.D. Meyer, and A.M. Latimer. 2012. Fuel treatment effectiveness in California yellow pine and mixed conifer forests. Forest Ecology and Management 274: 17–28. doi: 10.1016/j.foreco.2012.02.013
Article
Google Scholar
Safford, H.D., and K. Van de Water. 2014. Using fire return interval departure (FRID) analysis to map spatial and temporal changes in fire frequency on national forest lands in California. USDA Forest Service Research Paper PSW-RP-266, Pacific Southwest Research Station, Albany, California, USA.
Google Scholar
Sawyer, J.O., and D.A. Thornburgh. 1977. Montane and subalpine vegetation of the Klamath Mountains. Pages 699–732 in: M.G. Barbour and J. Major, editors. Terrestrial vegetation of California. John Wiley and Sons, New York, New York, USA.
Google Scholar
Scholl, A.E., and A.H. Taylor. 2010. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecological Applications 20: 362–380. doi: 10.1890/08-2324.1
Article
PubMed
Google Scholar
Singh, A. 1989. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing 10: 989–1003. doi: 10.1080/01431168908903939
Article
Google Scholar
Skinner, C.N. 2002. Influence of fire on the dynamics of dead woody material in forests of California and southwestern Oregon. Pages 445–454 in: W. F. Laudenslayer Jr., P.J. Shea, B.E. Valentine, C.P. Weatherspoon, and T.E. Lisle, editors. Proceedings of the symposium on the ecology and management of dead wood in western forests. USDA Forest Service General Technical Report PSW-GTR-181, Pacific Southwest Research Station, Albany, California, USA.
Google Scholar
Skinner, C.N., A.H. Taylor, and J.K. Agee. 2006. Klamath Mountains bioregion. Pages 170–194 in: N.G. Sugihara, J.W. Van Wagtendonk, J.A. Fites-Kaufman, K.E. Shaffer, and A.E. Thode, editors. Fire in California ecosystems. University of California, Berkeley, USA.
Chapter
Google Scholar
Spanner, M.A., L.L. Pierce, D.L. Peterson, and S.W. Running. 1990. Remote sensing of temperate coniferous forest leaf area index: the influence of canopy closure, understory vegetation and background reflectance. International Journal of Remote Sensing 11: 95–111. doi: 10.1080/01431169008955002
Article
Google Scholar
Stenback, J.M., and R.G. Congalton. 1990. Using Thematic Mapper imagery to examine forest understory. Photogrammetric Engineering and Remote Sensing 56: 1285–1290.
Google Scholar
Taylor, A.H., and C.N. Skinner. 2003. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecological Applications 13: 704–719. doi: 10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2
Article
Google Scholar
USDA [US Department of Agriculture]. 2004. Sierra Nevada forest plan amendment final supplemental environmental impact statement. USDA Forest Service Report R5-MB-046, Pacific Southwest Region, Vallejo, California, USA.
Google Scholar
USDA [US Department of Agriculture]. 2007. Rapid Assessment of Vegetation Condition after Wildfire (RAVG). <http://www.fs.fed.us/postfirevegcondition/index.shtml>. Accessed 1 October 2014.
USDA-DOI [US Department of Agriculture-Departmet of the Interior]. 2005. Monitoring Trends in Burn Severity (MTBS) Project. <http://www.mtbs.gov>. Accessed 1 October 2014.
van Mantgem, P.J., N.L. Stephenson, E. Knapp, J. Battles, and J.E. Keeley. 2011. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California. Forest Ecology and Management 261: 989–994. doi: 10.1016/j.foreco.2010.12.013
Article
Google Scholar
van Wagtendonk, J.W., and J.A. Lutz. 2007. Fire regime attributes of wildland fires in Yosemite National Park, USA. Fire Ecology 3(2): 34–52. doi: 10.4996/fireecology.0302034
Article
Google Scholar
Vankat, J.L., and J. Major. 1978. Vegetation changes in Sequoia National Park, California. Journal of Biogeography 5: 377–402. doi: 10.2307/3038030
Article
Google Scholar
White, J.D., K.C. Ryan, C.C. Key, and S.W. Running. 1996. Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire 6: 125–136. doi: 10.1071/WF9960125
Article
Google Scholar
Woods, S.W., and V.N. Balfour. 2008. The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA. International Journal of Wildland Fire 17: 535–548. doi: 10.1071/WF07040
Article
Google Scholar