Balfour, V.N., S.H. Doerr, and P.R. Robichaud. 2014. The temporal evolution of wildfire ash and implications for post-fire infiltration. International Journal of Wildland Fire 23: 733–745. https://doi.org/10.1071/WF13159.
Article
Google Scholar
Balfour, V.N., and S.W. Woods. 2013. The hydrological properties and the effects of hydration on vegetative ash from the northern Rockies, USA. Catena 111: 9–24. https://doi.org/10.1016/j.catena.2013.06.014.
Article
CAS
Google Scholar
Baxter, B.J.M., J. Van Staden, J.E. Granger, and N.A.C. Brown. 1994. Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra. Environmental and Experimental Botany 34: 217–223. https://doi.org/10.1016/0098-8472(94)90042-6.
Article
Google Scholar
Bodi, M.B., D.A. Martin, V.N. Balfour, C. Santin, S.H. Doerr, P. Pereira, A. Cerda, and J. Mataix-Solera. 2014. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews 130: 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007.
Article
CAS
Google Scholar
Bodí, M.B., J. Mataix-Solera, S.H. Doerr, and A. Cerdà. 2011. The wettability of ash from burned vegetation and its relationship to mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160: 599–607. https://doi.org/10.1016/j.geoderma.2010.11.009.
Article
CAS
Google Scholar
Bond, W.J., and J.E. Keeley. 2005. Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20: 387–394. https://doi.org/10.1016/j.tree.2005.04.025.
Article
Google Scholar
Bova, A.S., and M.B. Dickinson. 2008. Beyond “fire temperatures”: calibrating thermocouple probes and modeling their response to surface fires in hardwood fuels. Canadian Journal of Forest Research 38: 1008–1020. https://doi.org/10.1139/X07-204.
Article
Google Scholar
Busenberg, G. 2004. Wildfire management in the United States: the evolution of a policy failure. Review of Policy Research 21: 145–156. https://doi.org/10.1111/j.1541-1338.2004.00066.x.
Article
Google Scholar
Campos, I., N. Abrantes, J.J. Keizer, C. Vale, and P. Pereira. 2016. Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of the Total Environment 572: 1363–1376. https://doi.org/10.1016/j.scitotenv.2016.01.190.
Article
CAS
PubMed
Google Scholar
Curtis, J.T. 1959. The vegetation of Wisconsin. Madison: University of Wisconsin Press.
Google Scholar
David, M.B., D.F. Grigal, L.F. Ohmann, and G.Z. Gertner. 1988. Sulfur, carbon and nitrogen relationships in forest soils across the northern Great Lakes states as affected by atmospheric deposition and vegetation. Canadian Journal of Forest Research 18: 1386–1391. https://doi.org/10.1139/x88-216.
Article
Google Scholar
Doerr, S.H., W.H. Blake, R.A. Shakesby, F. Stagnitti, S.H. Vuurens, G.S. Humphreys, and P. Wallbrink. 2004. Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire 13: 157–163. https://doi.org/10.1071/WF03051.
Article
Google Scholar
Escudey, M., N. Arancibia-Miranda, C. Pizarro, and M. Antilén. 2015. Effect of ash from forest fires on leaching in volcanic soils. Catena 135: 383–392. https://doi.org/10.1016/j.catena.2014.08.006.
Article
CAS
Google Scholar
Escudey, M., P. De La Fuente, M. Antiĺn, and M. Molina. 2010. Effect of ash from forest fires on phosphorus availability, transport, chemical forms, and content in volcanic soils. Environment and Chemistry 7: 103–110. https://doi.org/10.1071/EN09067.
Article
CAS
Google Scholar
Fernandes, P.M., G.M. Davies, D. Ascoli, C. Fernández, F. Moreira, E. Rigolot, C.R. Stoof, J.A. Vega, and D. Molina. 2013. Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Frontiers in Ecology and the Environment 11: e4–e14. https://doi.org/10.1890/120298.
Article
Google Scholar
Gabet, E.J., and A. Bookter. 2011. Physical, chemical and hydrological properties of ponderosa pine ash. International Journal of Wildland Fire 20: 443–452. https://doi.org/10.1071/WF09105.
Article
CAS
Google Scholar
Glasspool, I.J., D. Edwards, and L. Axe. 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32: 381–383. https://doi.org/10.1130/G20363.1.
Article
Google Scholar
Gray, D.M., and J. Dighton. 2006. Mineralization of forest litter nutrients by heat and combustion. Soil Biology and Biochemistry 38: 1469–1477. https://doi.org/10.1016/j.soilbio.2005.11.003.
Article
CAS
Google Scholar
Guyette, R.P., M.C. Stambaugh, D.C. Dey, J.M. Marschall, J. Saunders, and J. Lampereur. 2016. 350 years of fire-climate-human interactions in a Great Lakes sandy outwash plain. Forests 7 (9): 189. https://doi.org/10.3390/f7090189.
Article
Google Scholar
Hageman, P.L. 2007. US Geological Survey field leach test for assessing water reactivity and leaching potential of mine wastes, soils, and other geologic and environmental materials, US Geological Survey techniques and methods, book 5, chapter D3. Reston: USDI, US Geological Survey.
Google Scholar
Heikens, A.L., and P.A. Robertson. 1994. Barrens of the Midwest: a review of the literature. Castanea 59: 184–194.
Google Scholar
Hiers, J.K., J.J. O’Brien, R.J. Mitchell, J.M. Gregoand, and E.L. Loudermilk. 2009. The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests. International Journal of Wildland Fire 18 (3): 315–325.
Article
Google Scholar
Hogue, B.A., and P.W. Inglett. 2012. Nutrient release from combustion residues of two contrasting herbaceous vegetation types. Science of the Total Environment 431: 9–19. https://doi.org/10.1016/j.scitotenv.2012.04.074.
Article
CAS
PubMed
Google Scholar
Jiménez-Pinilla, P., E. Lozano, J. Mataix-Solera, V. Arcenegui, A. Jordán, and L.M. Zavala. 2016. Temporal changes in soil water repellency after a forest fire in a Mediterranean calcareous soil: influence of ash and different vegetation type. Science of the Total Environment 572: 1252–1260. https://doi.org/10.1016/j.scitotenv.2015.09.121.
Article
CAS
PubMed
Google Scholar
Khanna, P., B. Ludwig, and R. Raison. 1996. Comparing modelled and observed effects of ash additions on chemistry of a highly acid soil. Australian Journal of Soil Research 34: 999. https://doi.org/10.1071/SR9960999.
Article
CAS
Google Scholar
Kurth, V.J., M.D. Mackenzie, and T.H. Deluca. 2006. Estimating charcoal content in forest mineral soils. Geoderma 137: 135–139. https://doi.org/10.1016/j.geoderma.2006.08.003.
Article
CAS
Google Scholar
Leach, M.K., and T.J. Givnish. 1996. Ecological determinants of species loss in remnant prairies. Science 273: 1555–1558. https://doi.org/10.1126/science.273.5281.1555.
Article
CAS
Google Scholar
Liodakis, S., M. Tsoukala, and G. Katsigiannis. 2009. Laboratory study of leaching properties of Mediterranean forest species ashes. Water, Air, and Soil Pollution 203: 99–107. https://doi.org/10.1007/s11270-009-9994-y.
Article
CAS
Google Scholar
Lutes, D.C., R.E. Keane, J.F. Caratti, C.H. Key, N.C. Benson, S. Sutherland, and L.J. Gangi. 2006. FIREMON: fire effects monitoring and inventory system. USDA Forest Service General Technical Report RMRS-GTR-164-CD. Fort Collins: Rocky Mountain Research Station.
Book
Google Scholar
Maestrini, B., and J.R. Miesel. 2017. Modification of the weak nitric acid digestion method for the quantification of black carbon in organic matrices. Organic Geochemistry 103: 136–139. https://doi.org/10.1016/j.orggeochem.2016.10.010.
Article
CAS
Google Scholar
McAndrews, J.H. 1966. Postglacial history of prairie, savanna, and forest in northwestern Minnesota. Memoirs of the Torrey Botanical Club 22: 1–72.
Google Scholar
McBride, M.B. 1989. Reactions controlling heavy metal solubility in soils. In Advances in soil science, ed. B.A. Stewart, vol. 10, 1–47. New York: Springer-Verlag. https://doi.org/10.1007/978-1-4613-8847-0_1.
Chapter
Google Scholar
Merino, A., B. Chávez-Vergara, J. Salgado, M.T. Fonturbel, F. García-Oliva, and J.A. Vega. 2015. Variability in the composition of charred litter generated by wildfire in different ecosystems. Catena 133: 52–63. https://doi.org/10.1016/j.catena.2015.04.016.
Article
CAS
Google Scholar
Mitchell, R.J., J.K. Hiers, J. O’Brien, and G. Starr. 2009. Ecological forestry in the Southeast: understanding the ecology of fuels. Journal of Forestry 107: 391–397.
Google Scholar
Niemuth, N.D., and M.S. Boyce. 2004. Influence of landscape composition on sharp-tailed grouse lek location and attendance in Wisconsin pine barrens. Ecoscience 11: 209–217. https://doi.org/10.1080/11956860.2004.11682826.
Article
Google Scholar
Noss, R.F., E.T. LaRoe III, and J.M. Scott. 1995. Endangered ecosystems of the United States: a preliminary assessment of loss and degradation, USDI National Biological Service Biological Report 28. Washington, D.C..
Nowacki, G.J., and M.D. Abrams. 2008. The demise of fire and “mesophication” of forests in the eastern United States. BioScience 58: 123–138. https://doi.org/10.1641/B580207.
Article
Google Scholar
NPS [National Park Service]. 2003. Fire monitoring handbook. Boise: National Interagency Fire Center, Fire Management Program.
Google Scholar
Olsen, S., C. Cole, and L. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate, US Department of Agriculture Circular No. 939. Washington, D.C..
Pereira, P., X. Beda, D. Martin, J. Mataix-Solera, and C. Guerrero. 2011. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Environmental Research 111: 237–247. https://doi.org/10.1016/j.envres.2010.09.002.
Article
CAS
PubMed
Google Scholar
Pereira, P., X. Ubeda, and D.A. Martin. 2012. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 191: 105–114. https://doi.org/10.1016/j.geoderma.2012.02.005.
Article
CAS
Google Scholar
Plumlee, G.S., D. a Martin, T. Hoefen, R. Kokaly, A. Eckberg, G. P. Meeker, M. Adams, M. Anthony, and P.J. Lamothe. 2007. Preliminary analytical results for ash and burned soils from the October 2007 southern California wildfires. USDI, US Geological Survey Open-File Report 2007-1407, Reston, Virginia, USA.
Book
Google Scholar
R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Google Scholar
Radeloff, V.C., D.J. Mladenoff, H.S. He, and M.S. Boyce. 1999. Forest landscape change in the northwestern Wisconsin pine barrens from pre-European settlement to the present. Canadian Journal of Forest Research 29: 1649–1659. https://doi.org/10.1139/x99-089.
Article
Google Scholar
Raison, R.J. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil 51: 73–108. https://doi.org/10.1007/BF02205929.
Article
CAS
Google Scholar
Ryan, K.C., E.E. Knapp, and J.M. Varner. 2013. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Frontiers in Ecology and the Environment 11: e15–e24. https://doi.org/10.1890/120329.
Article
Google Scholar
Santín, C., S.H. Doerr, X.L. Otero, and C.J. Chafer. 2015. Quantity, composition and water contamination potential of ash produced under different wildfire severities. Environmental Research 142: 297–308. https://doi.org/10.1016/j.envres.2015.06.041.
Article
CAS
PubMed
Google Scholar
Santín, C., X.L. Otero, S.H. Doerr, and C.J. Chafer. 2018. Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Science of the Total Environment 621: 1103–1114. https://doi.org/10.1016/j.scitotenv.2017.10.116.
Article
CAS
PubMed
Google Scholar
Scherer, S.S., C.C. Kern, A.W. D’Amato, B.J. Palik, and M.R. Russell. 2017. Long-term pine regeneration, shrub layer dynamics, and understory community composition responses to repeated prescribed fire in Pinus resinosa forests. Canadian Journal of Forest Research 129: 117–129.
Google Scholar
Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. In Agriculure Handbook 436, Second ed. Washington, D.C: USDA Natural Resources Conservation Service.
Google Scholar
Sweet, E.T. 1880. Geology of western Lake Superior district. Chapter 1: surface features. In Geology of Wisconsin. Survey of 1873−1879, chief geologist. T.C. Chamberlin, vol. III, 310–329. Madison: The Commissioners of Public Printing.
Taft, J.B. 2003. Fire effects on community structure, composition, and diversity in a dry sandstone barrens. Journal of the Torrey Botanical Society 130: 170–192. https://doi.org/10.2307/3557552.
Article
Google Scholar
Tuininga, A.R., and J. Dighton. 2004. Changes in ectomycorrhizal communities and nutrient availability following prescribed burns in two upland pine-oak forests in the New Jersey pine barrens. Canadian Journal of Forest Research 34: 1755–1765. https://doi.org/10.1139/x04-037.
Article
Google Scholar
Tweiten, M.A., R.R. Calcote, E.A. Lynch, S.C. Hotchkiss, and G.W. Schuurman. 2015. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests. Ecological Applications 25: 1984–1996. https://doi.org/10.1890/14-2015.1.
Article
PubMed
Google Scholar
Ubeda, X., P. Pereira, L. Outeiro, and D.A. Martin. 2009. Effects of fire temperature on the physical andd chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation and Development 20: 589–608. https://doi.org/10.1002/ldr.930.
Article
Google Scholar
Ulery, A.L., R.C. Graham, and C. Amrhein. 1993. Wood-ash composition and soil pH following intense burning. Soil Science 156: 358–364. https://doi.org/10.1097/00010694-199311000-00008.
Article
CAS
Google Scholar
USDA Forest Service. 2013. Final Environmental Impact Statement: Lakewood Southeast Project. Lakewood-Laona Ranger District, Lakewood: USDA Forest Service.
Google Scholar
Uys, R.G., W.J. Bond, and T.M. Everson. 2004. The effect of different fire regimes on plant diversity in southern African grasslands. Biological Conservation 118: 489–499. https://doi.org/10.1016/j.biocon.2003.09.024.
Article
Google Scholar
VanAuken, O.W. 2009. Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management 90: 2931–2942. https://doi.org/10.1016/j.jenvman.2009.04.023.
Article
CAS
Google Scholar
Vogl, R.J. 1970. Fire and the northern Wisconsin pine barrens. Proceedings of the annual Tall Timbers Fire Ecology Conference 10: 175–209.
Google Scholar
Vora, R.S. 1993. Moquah Barrens: pine barrens restoration experiment initiated in Chequamegon National Forest. Restoration & Management Notes 11: 39–44.
Google Scholar
Wagner, C.V., and I.R. Methven. 1978. Two recent articles on fire ecology. Canadian Journal of Forest Research 8 (4): 491–492.
Article
Google Scholar
Wan, S., D. Hui, and Y. Luo. 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecological Applications 11: 1349–1365.
Article
Google Scholar
Wisconsin DNR [Wisconsin Department of Natural Resources]. 2015. Assessment of current conditions. Chapter 2. In The ecological landscapes of Wisconsin: an assessment of ecological resources and a guide to planning sustainable management, ed. P. Duyfhuizen, C-1–C-174. Madison: Wisconsin Depatment of Natural Resources publication PUB-SS-1131C 2015.
Google Scholar
Yusiharni, E., and R. Gilkes. 2012. Minerals in the ash of Australian native plants. Geoderma 189–190: 369–380. https://doi.org/10.1016/j.geoderma.2012.06.035.
Article
CAS
Google Scholar
Zheng, W., E.K. Morris, A. Lehmann, and M.C. Rillig. 2016. Interplay of soil water repellency, soil aggregation and organic carbon. A Meta-analysis. Geoderma 283: 39–47. https://doi.org/10.1016/j.geoderma.2016.07.025.
Article
CAS
Google Scholar