ADS. 2005. 2005 Aerial insect and disease survey USGS 100k Quad: Bend - 44121-A1; 4J. Portland: USDA Forest Service, Region 6.
Google Scholar
Agne, M.C., T. Woolley, and S. Fitzgerald. 2016. Fire severity and cumulative disturbance effects in the post-mountain pine beetle lodgepole pine forests of the Pole Creek Fire. For Ecol Manag 366: 73–86. https://doi.org/10.1016/j.foreco.2016.02.004.
Article
Google Scholar
Bentz, B.J., Régnière, J., Fettig, C.J., et al. 2010. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience 60: 602–613. https://doi.org/10.1525/bio.2010.60.8.6.
Article
Google Scholar
Bird, M.I., J.G. Wynn, G. Saiz, et al. 2015. The pyrogenic carbon cycle. Annu Rev Earth Planet Sci 43: 273–298. https://doi.org/10.1146/annurev-earth-060614-105038.
Article
CAS
Google Scholar
Brodowski, S., A. Rodionov, L. Haumaier, et al. 2005. Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36: 1299–1310. https://doi.org/10.1016/j.orggeochem.2005.03.011.
Article
CAS
Google Scholar
Buma, B., R.E. Poore, and C.A. Wessman. 2014. Disturbances, their interactions, and cumulative effects on carbon and charcoal stocks in a forested ecosystem. Ecosystems 17: 947–959. https://doi.org/10.1007/s10021-014-9770-8.
Article
Google Scholar
Campbell, J., D. Donato, D. Azuma, and B. Law. 2007. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J Geophys Res 112. https://doi.org/10.1029/2007JG000451.
DeLuca, T.H., M.D. MacKenzie, M.J. Gundale, and W.E. Holben. 2006. Wildfire-Produced Charcoal Directly Influences Nitrogen Cycling in Ponderosa Pine Forests. Soil Sci Soc Am J 70: 448–453. https://doi.org/10.2136/sssaj2005.0096.
Article
CAS
Google Scholar
Dittmar, T. 2008. The molecular level determination of black carbon in marine dissolved organic matter. Org Geochem 39: 396–407. https://doi.org/10.1016/j.orggeochem.2008.01.015.
Article
CAS
Google Scholar
Donato, D.C., J.L. Campbell, J.B. Fontaine, and B.E. Law. 2009. Quantifying char in postfire woody detritus inventories. Fire Ecol 5: 104–115. https://doi.org/10.4996/fireecology.0502104.
Article
Google Scholar
Donato, D.C., J.B. Fontaine, and J.L. Campbell. 2016. Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest. Ecosphere 7: e01341. https://doi.org/10.1002/ecs2.1341.
Article
Google Scholar
Eidenshink, J., B. Schwind, K. Brewer, et al. 2007. A Project for Monitoring Trends in Burn Severity. Fire Ecol 3: 3–21. https://doi.org/10.4996/fireecology.0301003.
Article
Google Scholar
Flannigan, M., Stocks, B., Turetsky, M., Wotton, M. 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology 15: 549–560. https://doi.org/10.1111/j.1365-2486.2008.01660.x.
Article
Google Scholar
Glaser, B., L. Haumaier, G. Guggenberger, and W. Zech. 1998. Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org Geochem 29: 811-8-19. https://doi.org/10.1016/S0146-6380(98)00194-6.
Article
Google Scholar
Hammes, K., M.W.I. Schmidt, R.J. Smernik, et al. 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob Biogeochem Cycles 21. https://doi.org/10.1029/2006GB002914.
Harmon, M.E. 2001. Moving towards a new paradigm for woody detritus management. Ecol Bull 49: 269–278.
Harvey, B.J., Donato, D.C., Romme, W.H., Turner, M.G. (2013). Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Ecology 94: 2475–2486. https://doi.org/10.1890/13-0188.1.
Harvey, B.J., D.C. Donato, and M.G. Turner. 2014. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proc Natl Acad Sci 111: 15120–15125. https://doi.org/10.1073/pnas.1411346111.
Article
CAS
Google Scholar
Hyde, J.C., A.M.S. Smith, R.D. Ottmar, et al. 2011. The combustion of sound and rotten coarse woody debris: a review. Int J Wildland Fire 20: 163. https://doi.org/10.1071/WF09113.
Article
Google Scholar
Jones, M.W., C. Santín, G.R. van der Werf, and S.H. Doerr. 2019. Global fire emissions buffered by the production of pyrogenic carbon. Nat Geosci 12: 742–747. https://doi.org/10.1038/s41561-019-0403-x.
Article
CAS
Google Scholar
Makoto, K., N. Kamata, N. Kamibayashi, et al. 2012. Bark-beetle-attacked trees produced more charcoal than unattacked trees during a forest fire on the Kenai Peninsula, Southern Alaska. Scand J For Res 27: 30–35. https://doi.org/10.1080/02827581.2011.619566.
Article
Google Scholar
Manies, K.L., J.W. Harden, B.P. Bond-Lamberty, and K.P. O'Neill. 2005. Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage. Can J For Res 35: 472–482. https://doi.org/10.1139/x04-179.
Article
Google Scholar
Masiello, C.A. 1998. Black carbon in deep-sea sediments. Science 280: 1911–1913. https://doi.org/10.1126/science.280.5371.1911.
Article
CAS
PubMed
Google Scholar
Matosziuk, L.M., Y. Alleau, B.K. Kerns, et al. 2019. Effects of season and interval of prescribed burns on pyrogenic carbon in ponderosa pine stands in the southern Blue Mountains, Oregon, USA. Geoderma 348: 1–11. https://doi.org/10.1016/j.geoderma.2019.04.009.
Article
CAS
Google Scholar
McBeath, A.V., R.J. Smernik, M.P.W. Schneider, et al. 2011. Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org Geochem 42: 1194–1202. https://doi.org/10.1016/j.orggeochem.2011.08.008.
Article
CAS
Google Scholar
McConnell, T.J., E.W. Johnson, and B. Burns. 2000. A guide to conducting aerial sketchmapping surveys. Fort Collins: USDA Forest Service.
Google Scholar
Michelotti, L., and J. Miesel. 2015. Source Material and Concentration of Wildfire-Produced Pyrogenic Carbon Influence Post-Fire Soil Nutrient Dynamics. Forests 6: 1325–1342. https://doi.org/10.3390/f6041325.
Article
Google Scholar
MTBS. 2016. Monitoring Trends in Burn Severity assessment of Fire Information: or4417812169920120909. Sioux Falls: U.S. Geological Survey and U.S. Forest Service.
Google Scholar
Nappi, A., P. Drapeau, M. Saint-Germain, and V.A. Angers. 2010. Effect of fire severity on long-term occupancy of burned boreal conifer forests by saproxylic insects and wood-foraging birds. Int J Wildland Fire 19: 500. https://doi.org/10.1071/WF08109.
Article
Google Scholar
Pingree, M.R.A., and T.H. DeLuca. 2017. Function of wildfire-deposited pyrogenic carbon in terrestrial ecosystems. Front Environ Sci 5: 53. https://doi.org/10.3389/fenvs.2017.00053.
Article
Google Scholar
R Core Team. 2020. R: A language and environment for statistical computing. Version 3.6.3. Vienna: R Foundation for Statistical Computing.
Google Scholar
Raffa, K.F., Aukema, B.H., Bentz, B.J., Carroll, A.L., Hicke, J.A., Turner, M.G., Romme, W.H. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58: 501–517. https://doi.org/10.1641/B580607.
Article
Google Scholar
Randerson, J.T., Y. Chen, G.R. van der Werf, et al. 2012. Global burned area and biomass burning emissions from small fires: BURNED AREA FROM SMALL FIRES. J Geophys Res Biogeosciences 117. https://doi.org/10.1029/2012JG002128.
Santín, C., S.H. Doerr, E.S. Kane, et al. 2016. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob Change Biol 22: 76–91. https://doi.org/10.1111/gcb.12985.
Article
Google Scholar
Santín, C., S.H. Doerr, C.M. Preston, and G. González-Rodríguez. 2015. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob Change Biol 21: 1621–1633. https://doi.org/10.1111/gcb.12800.
Article
Google Scholar
Schmidt, M.W.I., J.O. Skjemstad, C.I. Czimczik, et al. 2001. Comparative analysis of black carbon in soils. Glob Biogeochem Cycles 15: 163–167. https://doi.org/10.1029/2000GB001284.
Article
CAS
Google Scholar
Schneider, M.P.W., M. Hilf, U.F. Vogt, and M.W.I. Schmidt. 2010. The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200°C and 1000°C. Org Geochem 41: 1082–1088. https://doi.org/10.1016/j.orggeochem.2010.07.001.
Article
CAS
Google Scholar
Schneider, M.P.W., L.A. Pyle, K.L. Clark, et al. 2013. Toward a “molecular thermometer” to estimate the charring temperature of wildland charcoals derived from different biomass sources. Environ Sci Technol 47: 11490–11495. https://doi.org/10.1021/es401430f.
Article
CAS
PubMed
Google Scholar
Schneider, M.P.W., R.H. Smittenberg, T. Dittmar, and M.W.I. Schmidt. 2011. Comparison of gas with liquid chromatography for the determination of benzenepolycarboxylic acids as molecular tracers of black carbon. Org Geochem 42: 275–282. https://doi.org/10.1016/j.orggeochem.2011.01.003.
Article
CAS
Google Scholar
Singh, N., S. Abiven, M.S. Torn, and M.W.I. Schmidt. 2012. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9: 2847–2857. https://doi.org/10.5194/bg-9-2847-2012.
Article
CAS
Google Scholar
Stockstad, D.S. 1979. Spontaneous and piloted ignition of rotten wood. Ogden: USDA Forest Service.
Google Scholar
Swanson, M.E., J.F. Franklin, R.L. Beschta, et al. 2011. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9: 117–125. https://doi.org/10.1890/090157.
Article
Google Scholar
Talucci, A.C., and M.A. Krawchuk. 2019. Dead forests burning: the influence of beetle outbreaks on fire severity and legacy structure in sub-boreal forests. Ecosphere 10: e02744. https://doi.org/10.1002/ecs2.2744.
Article
Google Scholar
Torn, M.S., P.M. Vitousek, and S.E. Trumbore. 2005. The influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling. Ecosystems 8: 352–372. https://doi.org/10.1007/s10021-004-0259-8.
Article
CAS
Google Scholar
Turner, M.G., K.H. Braziunas, W.D. Hansen, and B.J. Harvey. 2019. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc Natl Acad Sci 116: 11319–11328. https://doi.org/10.1073/pnas.1902841116.
Article
CAS
PubMed
Google Scholar
Uhelski, D., and J.R. Miesel. 2017. Physical location in the tree during forest fire influences element concentrations of bark-derived pyrogenic carbon from charred jack pines (Pinus banksiana Lamb.). Org Geochem 110: 87–91. https://doi.org/10.1016/j.orggeochem.2017.04.014.
Article
CAS
Google Scholar
Ward, A., C.A. Cansler, and A.J. Larson. 2017. Black carbon on coarse woody debris in once- and twice-burned mixed-conifer forest. Fire Ecol 13: 143–147. https://doi.org/10.4996/fireecology.130288796.
Article
Google Scholar
Welch, B.L. 1947. The Generalization of ‘Student’s’ Problem when Several Different Population Variances are Involved. Biometrika 34: 28. https://doi.org/10.2307/2332510.
Article
CAS
PubMed
Google Scholar
Wiedemeier, D.B., M.D. Hilf, R.H. Smittenberg, et al. 2013. Improved assessment of pyrogenic carbon quantity and quality in environmental samples by high-performance liquid chromatography. J Chromatogr A 1304: 246–250. https://doi.org/10.1016/j.chroma.2013.06.012.
Article
CAS
PubMed
Google Scholar
Wiedemeier, D.B., S.Q. Lang, M. Gierga, et al. 2016. Characterization, quantification and compound-specific isotopic analysis of pyrogenic carbon using benzene polycarboxylic acids (BPCA). J Vis Exp 53922. https://doi.org/10.3791/53922.