Abatzoglou, J.T., and A.P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci U S A 113: 11770–11775. https://doi.org/10.1073/pnas.1607171113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abatzoglou, J. T., D. S. Battisti, A. P. Williams, W. D. Hansen, B. J. Harvey, and C. A. Kolden. 2021. Projected increases in western US forest fire despite growing fuel constraints. Commun Earth Environ 2: 227. https://doi.org/10.1038/s43247-021-00299-0.
Article
Google Scholar
Agne, M. C., J. B. Fontaine, N. J. Enright, S. M. Bisbing, and B. J. Harvey. 2022. Demographic processes underpinning post-fire resilience in California closed-cone pine forests: The importance of fire interval, stand structure, and climate. Plant Ecol 223: 751-767. https://doi.org/10.1007/s11258-022-01228-7.
Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans Auto Control 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705.
Article
Google Scholar
Allen, C. D., D. D. Breshears, and N. G. McDowell. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6: art129. https://doi.org/10.1890/ES15-00203.1.
Article
Google Scholar
Baltzer, J.L., N.J. Day, X.J. Walker, D. Greene, M.C. Mack, H.D. Alexander, D. Arseneault, J. Barnes, Y. Bergeron, Y. Boucher, L. Bourgeau-Chavez, C.D. Brown, S. Carrière, B.K. Howard, S. Gauthier, M.-A. Parisien, K.A. Reid, B.M. Rogers, C. Roland, L. Sirois, S. Stehn, D.K. Thompson, M.R. Turetsky, S. Veraverbeke, E. Whitman, J. Yang, and J.F. Johnstone. 2021. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc Natl Acad Sci U S A 118: e2024872118. https://doi.org/10.1073/pnas.2024872118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boag, A.E., M.J. Ducey, M.W. Palace, and J. Hartter. 2020. Topography and fire legacies drive variable post-fire juvenile conifer regeneration in eastern Oregon, USA. Forest Ecol Manage 474: 118312. https://doi.org/10.1016/j.foreco.2020.118312.
Article
Google Scholar
Boer, M. M., V. Resco de Dios, and R. A. Bradstock. 2020. Unprecedented burn area of Australian mega forest fires. Nat Clim Chang 10: 170–172. https://doi.org/10.1038/s41558-020-0710-7.
Article
Google Scholar
Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Maechler, and B. M. Bolker. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9: 378–400.
Article
Google Scholar
Brown, C.D., and J.F. Johnstone. 2012. Once burned, twice shy: Repeat fires reduce seed availability and alter substrate constraints on Picea mariana regeneration. Forest Ecol Manage 266: 34–41. https://doi.org/10.1016/j.foreco.2011.11.006.
Article
Google Scholar
Buma, B., C. D. Brown, D. C. Donato, J. B. Fontaine, and J. F. Johnstone. 2013. The impacts of changing disturbance regimes on serotinous plant populations and communities. BioScience 63: 866–876. https://doi.org/10.1525/bio.2013.63.11.5.
Article
Google Scholar
Busby, S. U., K. B. Moffett, and A. Holz. 2020. High-severity and short-interval wildfires limit forest recovery in the Central Cascade Range. Ecosphere 11: e03247. https://doi.org/10.1002/ecs2.3247.
Article
Google Scholar
Carroll, C. J. W., A. K. Knapp, and P. H. Martin. 2021. Higher temperatures increase growth rates of Rocky Mountain montane tree seedlings. Ecosphere 12: e03414. https://doi.org/10.1002/ecs2.3414.
Article
Google Scholar
Chambers, M.E., P.J. Fornwalt, S.L. Malone, and M.A. Battaglia. 2016. Patterns of conifer regeneration following high severity wildfire in ponderosa pine – dominated forests of the Colorado Front Range. Forest Ecol Manage 378: 57–67. https://doi.org/10.1016/j.foreco.2016.07.001.
Article
Google Scholar
Chaney, N. W., E. F. Wood, A. B. McBratney, J. W. Hempel, T. W. Nauman, C. W. Brungard, and N. P. Odgers. 2016. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 274: 54–67. https://doi.org/10.1016/j.geoderma.2016.03.025.
Article
CAS
Google Scholar
Collins, B.M., and G.B. Roller. 2013. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA. Landscape Ecol 28: 1801–1813. https://doi.org/10.1007/s10980-013-9923-8.
Article
Google Scholar
Collins, L., R.A. Bradstock, H. Clarke, M.F. Clarke, R.H. Nolan, and T.D. Penman. 2021. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ Res Lett 16: 044029. https://doi.org/10.1088/1748-9326/abeb9e.
Article
Google Scholar
Collins, L., H. Clarke, M.F. Clarke, S.C. McColl Gausden, R.H. Nolan, T. Penman, and R. Bradstock. 2022. Warmer and drier conditions have increased the potential for large and severe fire seasons across south-eastern Australia. Global Ecol Biogeography. https://doi.org/10.1111/geb.13514.
Article
Google Scholar
Coop, J. D., S. A. Parks, C. S. Stevens-Rumann, S. D. Crausbay, P. E. Higuera, M. D. Hurteau, A. Tepley, E. Whitman, T. Assal, B. M. Collins, K. T. Davis, S. Dobrowski, D. A. Falk, P. J. Fornwalt, P. Z. Fulé, B. J. Harvey, V. R. Kane, C. E. Littlefield, E. Q. Margolis, M. North, M.-A. Parisien, S. Prichard, and K. C. Rodman. 2020. Wildfire-driven forest conversion in western North American landscapes. Bioscience 70: 659–673. https://doi.org/10.1093/biosci/biaa061.
Article
PubMed
PubMed Central
Google Scholar
Coppoletta, M., K.E. Merriam, and B.M. Collins. 2016. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol Appl 26: 686–699. https://doi.org/10.1890/15-0225.
Article
PubMed
Google Scholar
Crotteau, J.S., J. Morgan Varner, and M.W. Ritchie. 2013. Post-fire regeneration across a fire severity gradient in the southern Cascades. Forest Ecol Manage 287: 103–112. https://doi.org/10.1016/j.foreco.2012.09.022.
Article
Google Scholar
Davis, K.T., S.Z. Dobrowski, P.E. Higuera, Z.A. Holden, T.T. Veblen, M.T. Rother, S.A. Parks, A. Sala, and M.P. Maneta. 2019. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc Natl Acad Sci U S A 116: 6193–6198. https://doi.org/10.1073/pnas.1815107116.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Reu, J., J. Bourgeois, M. Bats, A. Zwertvaegher, V. Gelorini, P. De Smedt, W. Chu, M. Antrop, P. De Maeyer, P. Finke, M. Van Meirvenne, J. Verniers, and P. Crombé. 2013. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186: 39–49. https://doi.org/10.1016/j.geomorph.2012.12.015.
Article
Google Scholar
Donato, D.C., J.B. Fontaine, W.D. Robinson, J.B. Kauffman, and B.E. Law. 2009. Vegetation response to a short interval between high-severity wildfires in a mixed-evergreen forest. J Ecol 97: 142–154. https://doi.org/10.1111/j.1365-2745.2008.01456.x.
Article
Google Scholar
Donato, D. C., J. B. Fontaine, J. B. Kauffman, W. D. Robinson, and B. E. Law. 2013. Fuel mass and forest structure following stand-replacement fire and post-fire logging in a mixed-evergreen forest. Int J Wildland Fire 22: 652. https://doi.org/10.1071/WF12109.
Article
Google Scholar
Eidenshink, J., B. Schwind, K. Brewer, Z.-L. Zhu, B. Quayle, and S. Howard. 2007. A project for monitoring trends in burn severity. Fire Ecol 3: 3–21. https://doi.org/10.4996/fireecology.0301003.
Article
Google Scholar
Enright, N. J., and B. B. Lamont. 1989. Seed banks, fire season, safe sites and seedling recruitment in five co-occurring Banksia species. J Ecol 77: 1111–1122. https://doi.org/10.2307/2260826.
Enright, N.J., B.B. Lamont, and R. Marsula. 1996. Canopy seed bank dynamics and optimum fire regime for the highly serotinous shrub, Banksia hookeriana. J Ecol 84: 9. https://doi.org/10.2307/2261695.
Article
Google Scholar
Enright, N.J., J.B. Fontaine, B.B. Lamont, B.P. Miller, and V.C. Westcott. 2014. Resistance and resilience to changing climate and fire regime depend on plant functional traits. J Ecol 102: 1572–1581. https://doi.org/10.1111/1365-2745.12306.
Article
Google Scholar
Enright, N.J., J.B. Fontaine, D.M. Bowman, R.A. Bradstock, and R.J. Williams. 2015. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front Ecol Environ 13: 265–272. https://doi.org/10.1890/140231.
Article
Google Scholar
Esler, K.J., and R.M. Cowling. 1990. Effects of density on the reproductive output of Protea lepidocarpodendron. South+A1443 Afr J Botany 56: 29–33. https://doi.org/10.1016/S0254-6299(16)31107-3.
Article
Google Scholar
Espelta, J. M., I. Verkaik, M. Eugenio, and F. Lloret. 2008. Recurrent wildfires constrain long-term reproduction ability in Pinus halepensis Mill. Int J Wildland Fire 17: 579. https://doi.org/10.1071/WF07078.
Article
Google Scholar
ESRI [Environmental Systems Research Institute]. 2018. ArcGIS Release 10.6.1. Redlands: ESRI.
Evans, J. S., J. Oakleaf, S. A. Cushman, and D. Theobald. 2014. An ArcGIS toolbox for surface gradient and geomorphometric modeling, version 2.0–0. http://evansmurphy.wix.com/evansspatial. Accessed 21 Jan 2021.
Falk, D.A., P.J. van Mantgem, J.E. Keeley, R.M. Gregg, C.H. Guiterman, A.J. Tepley, J.N. Young, and D. Marshall. 2022. Mechanisms of forest resilience. Forest Ecol Manage 512: 120129. https://doi.org/10.1016/j.foreco.2022.120129.
Article
Google Scholar
Fry, D.L., and S.L. Stephens. 2006. Influence of humans and climate on the fire history of a ponderosa pine-mixed conifer forest in the southeastern Klamath Mountains, California. Forest Ecol Manage 223: 428–438. https://doi.org/10.1016/j.foreco.2005.12.021.
Article
Google Scholar
Fry, D. L., J. Dawson, and S. L. Stephens. 2012. Age and structure of mature knobcone pine forests in the northern California Coast Range, USA. Fire Ecol 8: 49–62. https://doi.org/10.4996/fireecology.0801049.
Article
Google Scholar
Gessler, P. E., I. D. Moore, N. J. McKenzie, and P. J. Ryan. 1995. Soil-landscape modelling and spatial prediction of soil attributes. Int J Geogr Inf Syst 9: 421–432. https://doi.org/10.1080/02693799508902047.
Article
Google Scholar
Gill, N. S., T. J. Hoecker, and M. G. Turner. 2021. The propagule doesn’t fall far from the tree, especially after short-interval, high-severity fire. Ecology 102: e03194. https://doi.org/10.1002/ecy.3194.
Article
PubMed
Google Scholar
Greene, D.F., J.C. Zasada, L. Sirois, D. Kneeshaw, H. Morin, and I. Charron. 1999. A review of the regeneration dynamics of North American boreal forest tree species. Can J Forest Res 29: 824–839.
Article
Google Scholar
Guiterman, C. H., E. Q. Margolis, C. D. Allen, D. A. Falk, and T. W. Swetnam. 2018. Long-term persistence and fire resilience of oak shrubfields in dry conifer forests of northern New Mexico. Ecosystems 21: 943–959. https://doi.org/10.1007/s10021-017-0192-2.
Article
Google Scholar
Gunderson, L.H. 2000. Ecological resilience—in theory and application. Ann Rev Ecol Syst 31: 425–439. https://doi.org/10.1146/annurev.ecolsys.31.1.425.
Article
Google Scholar
Hansen, W.D., and M.G. Turner. 2019. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol Monographs 89: e01340. https://doi.org/10.1002/ecm.1340.
Article
Google Scholar
Hansen, W. D., K. H. Braziunas, W. Rammer, R. Seidl, and M. G. Turner. 2018. It takes a few to tango: Changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology 99: 966–977. https://doi.org/10.1002/ecy.2181.
Article
PubMed
Google Scholar
Hartig, F. 2021. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.0. https://CRAN.R-project.org/package=DHARMa. Accessed 11 Nov 2021.
Harvey, B.J., and B.A. Holzman. 2014. Divergent successional pathways of stand development following fire in a California closed-cone pine forest. J Vegetation Sci 25: 88–99. https://doi.org/10.1111/jvs.12073.
Article
Google Scholar
Harvey, B. J., D. C. Donato, and M. G. Turner. 2016. High and dry: Post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches: Drought and post-fire tree seedlings. Global Ecol Biogeogr 25: 655–669. https://doi.org/10.1111/geb.12443.
Article
Google Scholar
Hoecker, T.J., W.D. Hansen, and M.G. Turner. 2020. Topographic position amplifies consequences of short-interval stand-replacing fires on postfire tree establishment in subalpine conifer forests. Forest Ecol Manage 478: 118523. https://doi.org/10.1016/j.foreco.2020.118523.
Article
Google Scholar
Howard, J. L. 1992. Pinus attenuata. Fire Sciences Laboratory: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Google Scholar
Hurteau, M.D., S. Liang, A.L. Westerling, and C. Wiedinmyer. 2019. Vegetation-fire feedback reduces projected area burned under climate change. Sci Rep 9: 2838. https://doi.org/10.1038/s41598-019-39284-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson, E. A., and G. I. Fryer. 1989. Population dynamics in lodgepole pine-Engelmann spruce forests. Ecology 70: 1335–1345. https://doi.org/10.2307/1938193.
Article
Google Scholar
Jolly, W.M., M.A. Cochrane, P.H. Freeborn, Z.A. Holden, T.J. Brown, G.J. Williamson, and D.M.J.S. Bowman. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6: 7537. https://doi.org/10.1038/ncomms8537.
Article
CAS
PubMed
Google Scholar
Kassambara, A. 2020. ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr. Accessed 2 Feb 2021.
Keeley, J. E., and P. Zedler. 1998. Life history evolution in pines. In Ecology and biogeography of Pinus, ed. D. M. Richardson, 219–242. Cambridge: Cambridge University Press.
Google Scholar
Keeley, J. E., G. Ne’eman, and C. J. Fotheringham. 1999. Immaturity risk in a fire-dependent pine. J Mediterr Ecol 1: 41–48.
Google Scholar
Kemp, K.B., P.E. Higuera, and P. Morgan. 2016. Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies. Landscape Ecol 31: 619–636. https://doi.org/10.1007/s10980-015-0268-3.
Article
Google Scholar
Kemp, K. B., P. E. Higuera, P. Morgan, and J. T. Abatzoglou. 2019. Climate will increasingly determine post-fire tree regeneration success in low-elevation forests. Northern Rockies USA Ecosphere 10: e02568. https://doi.org/10.1002/ecs2.2568.
Article
Google Scholar
Knapp, E. E., C. P. Weatherspoon, and C. N. Skinner. 2012. Shrub seed banks in mixed conifer forests of northern California and the role of Fire in regulating abundance. Fire Ecol 8: 32–48. https://doi.org/10.4996/fireecology.0801032.
Article
Google Scholar
Lamont, B.B., D.C.L. Maitre, R.M. Cowling, and N.J. Enright. 1991. Canopy seed storage in woody plants. Botanical Rev 57: 277–317.
Article
Google Scholar
Littlefield, C. E. 2019. Topography and post-fire climatic conditions shape spatio-temporal patterns of conifer establishment and growth. Fire Ecol 15: 34. https://doi.org/10.1186/s42408-019-0047-7.
Article
Google Scholar
Long, J. A. 2020. jtools: Analysis and presentation of social scientific data. R package version 2.1.0. https://cran.r-project.org/package=jtools. Accessed 1 Apr 2021.
Lüdecke, D. 2018. ggeffects: tidy data frames of marginal effects from regression models. J Open Source Softw 3: 772. https://doi.org/10.21105/joss.00772.
Article
Google Scholar
Mangiafico, S. S. 2016. Summary and analysis of extension program evaluation in R, version 1.19.10. https://rcompanion.org/handbook/. Accessed 5 Apr 2021.
Matusick, G., K.X. Ruthrof, J. Kala, N.C. Brouwers, D.D. Breshears, and G.E.S.J. Hardy. 2018. Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environ Res Lett 13: 095002. https://doi.org/10.1088/1748-9326/aad8cb.
Article
Google Scholar
McCune, B., and D. Keon. 2002. Equations for potential annual direct incident radiation and heat load. J Vegetation Sci 13: 603–606.
Article
Google Scholar
Nathan, R., and G. Ne’eman. 2004. Spatiotemporal dynamics of recruitment in Aleppo pine (Pinus halepensis Miller). Plant Ecol 171: 123–137.
Article
Google Scholar
Natural Resources Conservation Service [NRCS]. 2021. Soil Survey Geographic (SSURGO) Database. United States Department of Agriculture. https://data.nal.usda.gov/dataset/soil-survey-geographic-database-ssurgo. Accessed 8 Jan 2021.
Paine, R. T., M. J. Tegner, and E. A. Johnson. 1998. Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545. https://doi.org/10.1007/s100219900049.
Article
Google Scholar
Parks, S. A., and J. T. Abatzoglou. 2020. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophysical Reseach Letters 47:e2020GL089858. https://doi.org/10.1029/2020GL089858.
PRISM Climate Group. 2019. Oregon State University. http://prism.oregonstate.edu. Accessed 12 Dec 2019.
Ramsey, F., and D. Schafer. 2012. The statistical sleuth: A course in methods of data analysis, 3rd Edition. Boston: Cengage Learning.
R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Google Scholar
Reilly, M. J., V. J. Monleon, E. S. Jules, and R. J. Butz. 2019. Range-wide population structure and dynamics of a serotinous conifer, knobcone pine (Pinus attenuata L.), under an anthropogenically-altered disturbance regime. Forest Ecol Manag 441: 182–191. https://doi.org/10.1016/j.foreco.2019.03.017.
Article
Google Scholar
Robinson, D., A. Hayes, and S. Couch. 2021. broom: Convert statistical objects into tidy tibbles. R package version 0.7.6. https://CRAN.R-project.org/package=broom.
Rodman, K.C., T.T. Veblen, M.A. Battaglia, M.E. Chambers, P.J. Fornwalt, Z.A. Holden, T.E. Kolb, J.R. Ouzts, and M.T. Rother. 2020. A changing climate is snuffing out post-fire recovery in montane forests. Global Ecol Biogeography 29: 2039–2051. https://doi.org/10.1111/geb.13174.
Article
Google Scholar
Rodman, K. C., T. T. Veblen, T. B. Chapman, M. T. Rother, A. P. Wion, and M. D. Redmond. 2020. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Ecol Appl. 30: e02001. https://doi.org/10.1002/eap.2001.
Romanyà, J., and V. R. Vallejo. 2004. Productivity of Pinus radiata plantations in Spain in response to climate and soil. Forest Ecol Manag 195: 177–189. https://doi.org/10.1016/j.foreco.2004.02.045.
Article
Google Scholar
Seidl, R., D. Thom, M. Kautz, D. Martin-Benito, M. Peltoniemi, G. Vacchiano, J. Wild, D. Ascoli, M. Petr, J. Honkaniemi, M.J. Lexer, V. Trotsiuk, P. Mairota, M. Svoboda, M. Fabrika, T.A. Nagel, and C.P.O. Reyer. 2017. Forest disturbances under climate change. Nat Clim Change 7: 395–402. https://doi.org/10.1038/nclimate3303.
Article
Google Scholar
Smith, A. G., B. A. Newingham, A. T. Hudak, and B. C. Bright. 2019. Got shrubs? Precipitation mediates long-term shrub and introduced grass dynamics in chaparral communities after fire. Fire Ecol 15: 12. https://doi.org/10.1186/s42408-019-0031-2.
Article
Google Scholar
Stevens-Rumann, C., and P. Morgan. 2016. Repeated wildfires alter forest recovery of mixed-conifer ecosystems. Ecol Appl 26: 1842–1853. https://doi.org/10.1890/15-1521.1.
Article
PubMed
Google Scholar
Stevens-Rumann, C.S., K.B. Kemp, P.E. Higuera, B.J. Harvey, M.T. Rother, D.C. Donato, P. Morgan, and T.T. Veblen. 2018. Evidence for declining forest resilience to wildfires under climate change. Ecol Lett 21: 243–252. https://doi.org/10.1111/ele.12889.
Article
PubMed
Google Scholar
Tapias, R., L. Gil, P. Fuentes-Utrilla, and J. A. Pardos. 2001. Canopy seed banks in Mediterranean pines of south-eastern Spain: a comparison between Pinus halepensis Mill., P. pinaster Ait., P. nigra Arn. and P. pinea L. J Ecol 89: 629–638. https://doi.org/10.1046/j.1365-2745.2001.00575.x.
Taylor, A.H., and C.N. Skinner. 1998. Fire history and landscape dynamics in a late-successional reserve, Klamath Mountains, California, USA. Forest Ecol Manage 111: 285–301. https://doi.org/10.1016/S0378-1127(98)00342-9.
Article
Google Scholar
Trumbore, S., P. Brando, and H. Hartmann. 2015. Forest health and global change. Science 349: 814–818. https://doi.org/10.1126/science.aac6759.
Article
CAS
PubMed
Google Scholar
Turner, M. G., W. H. Romme, and R. H. Gardner. 1999. Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. Int J Wildland Fire 9: 21-36. https://doi.org/10.1071/WF99003.
Article
Google Scholar
Turner, M. G., T. G. Whitby, D. B. Tinker, and W. H. Romme. 2016. Twenty-four years after the Yellowstone Fires: Are postfire lodgepole pine stands converging in structure and function? Ecology 97: 1260–1273. https://doi.org/10.1890/15-1585.1.
Article
PubMed
Google Scholar
Turner, M.G., K.H. Braziunas, W.D. Hansen, and B.J. Harvey. 2019. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc Natl Acad Sci U S A 116: 11319–11328. https://doi.org/10.1073/pnas.1902841116.
Article
CAS
PubMed
PubMed Central
Google Scholar
U.S. Geological Survey. 1999a. Digital representation of “Atlas of United States Trees” by Little, E. L. Jr. http://climchange.cr.usgs.gov/data/atlas/little/. Accessed 24 Jan 2018.
U.S. Geological Survey. 1999b. National elevation dataset. https://apps.nationalmap.gov/3depdem/ Accessed 1 Feb 2021.
van de Water, K. M., and H. D. Safford. 2011. A summary of fire frequency estimates for California vegetation before Euro-American settlement. Fire Ecol 7: 26–58. https://doi.org/10.4996/fireecology.0703026.
Article
Google Scholar
Vogl, R.J. 1973. Ecology of knobcone pine in the Santa Ana Mountains, California. Ecol Monographs 43: 125–143. https://doi.org/10.2307/1942191.
Article
Google Scholar
Vogl, R. J., W. P. Armstrong, K. L. White, and K. L. Cole. 1977. The closed-cone pines and cypress. In Terrestrial Vegetation of California, eds. Michael G. Barbour, and Jack Major, 295–358. New York: John Wiley and Sons.
Google Scholar
Wall, A., and C.J. Westman. 2006. Site classification of afforested arable land based on soil properties for forest production. Can J Forest Res 36: 1451–1460. https://doi.org/10.1139/x06-031.
Article
Google Scholar
Wang, T., A. Hamann, D. Spittlehouse, and C. Carroll. 2016. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One 11: e0156720. https://doi.org/10.1371/journal.pone.0156720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welch, K. R., H. D. Safford, and T. P. Young. 2016. Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean-climate zone. Ecosphere 7: e01609. https://doi.org/10.1002/ecs2.1609.
Article
Google Scholar
Whitman, E., M.-A. Parisien, D.K. Thompson, and M.D. Flannigan. 2019. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci Rep 9: 18796. https://doi.org/10.1038/s41598-019-55036-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
Book
Google Scholar
Williams, A.P., C.D. Allen, A.K. Macalady, D. Griffin, C.A. Woodhouse, D.M. Meko, T.W. Swetnam, S.A. Rauscher, R. Seager, H.D. Grissino-Mayer, J.S. Dean, E.R. Cook, C. Gangodagamage, M. Cai, and N.G. McDowell. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3: 292–297. https://doi.org/10.1038/nclimate1693.
Article
Google Scholar
Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models and extensions in ecology and R. New York, New York, USA: Springer.
Book
Google Scholar