Arno, S.F., and K.M. Sneck. 1977. A method for determining fire history in coniferous forests of the Mountain West. In United States Department of Agriculture Forest Service General Technical Report INT-42. Ogden.
Ashe, W.W. 1894. The forests, forest lands, and forest products of eastern North Carolina. J. Daniels, state printer and binder.
Google Scholar
Bale, A.M. 2009. Fire effects and litter accumulation dynamics in a montane longleaf pine ecosystem. Columbia: Master’s Thesis, University of Missouri–Columbia.
Bhuta, A.A.R., L.M. Kennedy, and N. Pederson. 2009. Climate-radial growth relationships of northern latitudinal range margin longleaf pine (Pinus palustris P. Mill.) in the Atlantic Coastal Plain of Southeastern Virginia. Tree-Ring Research 65: 105–115.
Article
Google Scholar
Boudreaux, E.A. 2007. The archaeology of Town Creek. Chapel Hill: University of Alabama Press.
Brewer PW, Velásquez ME, Sutherland EK, Falk DA (2016) Fire History Analysis and Exploration System (FHAES) version 2.0. 2 [computer software]
Brockway, D.G., and K.W. Outcalt. 1998. Gap-phase regeneration in longleaf pine wiregrass ecosystems. Forest Ecology and Management 106: 125–139.
Article
Google Scholar
Chapman, H.H. 1932. Some further relations of fire to longleaf pine. Journal of Forestry 30: 602–604.
Google Scholar
Coe, J.L. 1964. The formative cultures of the Carolina Piedmont. Transactions of the American Philosophical Society 54: 1–130.
Article
Google Scholar
Daniel, I.R., Jr., and J.R. Butler. 1996. An archaeological survey and petrographic description of rhyolite sources in the Uwharrie Mountains, North Carolina. Southern Indian Studies 45: 1–37.
Google Scholar
Falk, D.A., E.K. Heyerdahl, P.M. Brown, et al. 2011. Multi-scale controls of historical forest-fire regimes: New insights from fire-scar networks. Frontiers in Ecology and the Environment 9: 446–454.
Article
Google Scholar
Fill, J.M., S.M. Welch, J.L. Waldron, and T.A. Mousseau. 2012. The reproductive response of an endemic bunchgrass indicates historical timing of a keystone process. Ecosphere 3: 1–12.
Article
Google Scholar
Frost, C. 2007. History and future of the longleaf pine ecosystem. In The longleaf pine ecosystem, 9–48. New York: Springer.
Frost, C.C. 1998. Presettlement fire frequency regimes of the United States: A first approximation. In Fire in ecosystem management: Shifting the paradigm from suppression to prescription. Tall Timbers Fire Ecology Conference Proceedings, 70–81.
Google Scholar
Guyette, R.P., M.C. Stambaugh, D.C. Dey, and R.-M. Muzika. 2012. Predicting fire frequency with chemistry and climate. Ecosystems 15: 322–335.
Article
Google Scholar
Hale, P.M. 1883. The woods and timbers of North Carolina: A compilation from the botanical and geological reports of Drs. Curtis, Emmons and Kerr, to which are added information obtained from the Census Bureau and Accurate Reports from the several counties.
Book
Google Scholar
Henderson, J.P. 2006. Dendroclimatological analysis and fire history of longleaf pine (Pinus palustris Mill.) in the Atlantic and Gulf Coastal Plain. Knoxville: PhD Dissertation, The University of Tennessee.
Holmes, R.L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
Google Scholar
Huffman, J.M. 2006. Historical fire regimes in southeastern pine savannas. Baton Rouge: PhD Dissertation, Louisiana State University.
Huffman, J.M., and W.J. Platt. 2014. Fire history of the Avon Park Air Force Range: Evidence from tree rings. Unpublished contract report submitted to Avon Park Air Force Range. https://talltimbers.org/wp-content/uploads/2016/11/Huffman-and-Platt-2014-Avon-Park-Report_reduced.pdf.
Huffman, J.M., and M.T. Rother. 2017. Dendrochronological field methods for fire history in pine ecosystems of the Southeastern Coastal Plain. Tree-Ring Research 73: 42–46.
Article
Google Scholar
Jose, S., E.J. Jokela, and D.L. Miller. 2007. The longleaf pine ecosystem. In The longleaf pine ecosystem, 3–8. New York: Springer.
Jurney, R.C., and W.A. Davis. 1930. Soil survey of Montgomery County, North Carolina. The Bureau.
Google Scholar
Kaiser, A.L., P. Soulé, S.L. van de Gevel, et al. 2020. Dendroecological investigation of red-cockaded woodpecker cavity tree selection in endangered longleaf pine forests. Forest Ecology and Management 473: 118291.
Article
Google Scholar
Keeley, J.E., J.G. Pausas, P.W. Rundel, et al. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406–411.
Article
CAS
Google Scholar
Klaus, N. 2019. Fire history of a Georgia montane longleaf pine (Pinus palustris) community. Georgia Journal of Science 77: 5.
Google Scholar
Larsson, L. 2016. CooRecorder and Cdendro programs of the CooRecorder/Cdendro package version 8.1 [computer software].
Google Scholar
Malevich, S.B., C.H. Guiterman, and E.Q. Margolis. 2018. burnr: Fire history analysis and graphics in R. Dendrochronologia 49: 9–15.
Article
Google Scholar
Mitchell, T.J., T.W. Patterson, and P.A. Knapp. 2019. Comparison of climate–growth responses of montane and piedmont longleaf pine (Pinus palustris Mill.) chronologies in North Carolina. Trees 33: 615–620.
Article
Google Scholar
Noss, R.F. 2018. Fire ecology of Florida and the Southeastern Coastal Plain. Gainesville: University Press of Florida.
Oswalt, C., and J.M. Guldin. 2021. Status of longleaf pine in the South: An FIA update. In Non-refereed general technical report: early release, vol. 2021, 1–25.
Google Scholar
Patterson, T.W., L.W. Cummings, and P.A. Knapp. 2016. Longleaf pine (Pinus palustris Mill.) morphology and climate/growth responses along a physiographic gradient in North Carolina. The Professional Geographer 68: 238–248.
Article
Google Scholar
Patterson, T.W., and P.A. Knapp. 2016. Observations on a rare old-growth montane longleaf pine forest in central North Carolina, USA. Natural Areas Journal 36: 153–161.
Article
Google Scholar
Pederson, N., J.M. Varner, and B.J. Palik. 2008. Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape. Forest Ecology and Management 254: 85–95.
Article
Google Scholar
Peet, R.K. 2006. Ecological classification of longleaf pine woodlands. In The longleaf pine ecosystem, 51–93. New York: Springer.
Peet, R.K., and D.J. Allard. 1993. Longleaf pine vegetation of the southern Atlantic and eastern Gulf Coast regions: A preliminary classification. In Proceedings of the Tall Timbers fire ecology conference, 45–81.
Google Scholar
Pinchot, G., and W.W. Ashe. 1897. Timber trees and forests of North Carolina. Winston-Salem: MI & JC Stewart, public printers.
Platt, W.J. 1999. Southeastern pine savannas. In Savannas, barrens, and rock outcrop plant communities of North America, 23–51. Cambridge: Cambridge University Press.
Chapter
Google Scholar
Platt, W.J., S.L. Orzell, and M.G. Slocum. 2015. Seasonality of fire weather strongly influences fire regimes in south Florida savanna-grassland landscapes. PLoS One 10: e0116952.
Article
Google Scholar
Rother, M.T., J.M. Huffman, C.H. Guiterman, et al. 2020. A history of recurrent, low-severity fire without fire exclusion in southeastern pine savannas, USA. Forest Ecology and Management 475: 118406.
Article
Google Scholar
Rother, M.T., J.M. Huffman, G.L. Harley, et al. 2018. Cambial phenology informs tree-ring analysis of fire seasonality in Coastal Plain pine savannas. Fire Ecology 14: 164–185.
Article
Google Scholar
Schafale, M.P., and A.S. Weakley. 2012. Classification of the natural communities of North Carolina: Fourth approximation. Raleigh: North Carolina Natural Heritage Program, Division of Parks and Recreation, Department of Environment and Natural Resources.
Google Scholar
Soulé, P.T., P.A. Knapp, J.T. Maxwell, and T.J. Mitchell. 2021. A comparison of the climate response of longleaf pine (Pinus palustris Mill.) trees among standardized measures of earlywood, latewood, adjusted latewood, and totalwood radial growth. Trees 35: 1065–1074.
Article
Google Scholar
Speer, J.H. 2010. Fundamentals of tree-ring research. Tucson: University of Arizona Press.
Google Scholar
Spooner, J.K., R.K. Peet, M.P. Schafale, et al. 2021. The role of fire in the dynamics of Piedmont vegetation. In Fire ecology and management: Past, present, and future of US forested ecosystems, 31–62. New York: Springer.
Stambaugh, M.C., S.W. Bigelow, and E.R. Abadir. 2021. Linkages between forest growth, climate, and agricultural production are revealed through analysis of seasonally-partitioned longleaf pine (Pinus palustris Mill.) tree rings. Dendrochronologia 65: 125801.
Article
Google Scholar
Stambaugh, M.C., R.P. Guyette, and J.M. Marschall. 2011. Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. Journal of Vegetation Science 22: 1094–1104.
Article
Google Scholar
Stambaugh, M.C., J.M. Varner, and S.T. Jackson. 2017. Biogeography: An interweave of climate, fire, and humans. In Ecological restoration and management of longleaf pine forests, 17–38. Boca Raton: CRC Press.
Stokes, M.A., and T.L. Smiley. 1968. An introduction to tree-ring dating. Tucson: University of Arizona Press.
Van Lear, D.H., W.D. Carroll, P.R. Kapeluck, and R. Johnson. 2005. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. Forest Ecology and Management 211: 150–165.
Article
Google Scholar
Varner, J.M., and J.S. Kush. 2004. Remanat old-growth longleaf pine (Pinus palustris Mill.) savannas and forests of the southeastern USA: Status and threats. Natural Areas Journal 24 (2):141–149.
Varner, J.M., J.S. Kush, and R.S. Meldahl. 2003. Structural characteristics of frequently-burned old-growth longleaf pine stands in the mountains of Alabama. Castanea 68 (3):211–221.
Wahlenberg, W.G. 1946. Longleaf pine: Its use, ecology, regeneration, protection, growth, and management. Washington DC: Charles Lathrop Pack Forestry Foundation.
Ware, S., C. Frost, and P.D. Doerr. 1993. Southern mixed hardwood forest: The former longleaf pine forest. In Biodiversity of the southeastern United States: Lowland terrestrial communities, 447–493.
Google Scholar
White, C.R., and G.L. Harley. 2016. Historical fire in longleaf pine (Pinus palustris) forests of south Mississippi and its relation to land use and climate. Ecosphere 7: e01458.
Article
Google Scholar