Skip to main content
  • Original research
  • Open access
  • Published:

Global impacts of fire regimes on wildland bird diversity

A Correction to this article was published on 21 March 2024

This article has been updated



Fire is a natural disturbance that significantly impacts ecosystems and plays a crucial role in the distribution and preservation of biota worldwide. The effects of fires on bird diversity can be both positive, as they can create new habitats, and negative, as they can reduce nesting success. To fully understand the ecological implications of wildfires, we need to understand the spatial distribution of wildland bird diversity and fire regimes and how fire regimes affect wildland bird diversity ecosystems. Using data collected at a global scale, we examined effects of time-averaged fire regimes on the spatial diversity of wildland bird species. Initially, we used the MaxEnt algorithm to model the potential distribution of 1,115 wildland bird species over a 20-year period. We also processed satellite observations of burned areas (FIRECCI51) during the same period to estimate fire regime characteristics, including the average proportion of burnt vegetation, interannual variability in the burnt area, and fire intensity. Finally, the association between wild bird diversity and fire variables in each biome was determined through Spearman, Bonferroni, and Kruskal-Wallis statistics.


Our findings revealed that (I) the most affected wildland bird communities are those found in tropical ecosystems, where the majority of fires occur; (II) high fire intensity values and a substantial proportion of burned vegetation have a positive impact on maintaining a diverse population of wildland birds in biomes characterized by savannah or grassland covers, as seen in temperate or tropical zones. Conversely, low fire intensity values and a smaller proportion of burned vegetation also promote greater diversity of wildland birds in boreal or temperate zones, and (III) in Mediterranean ecosystems, a clear association between wildland bird diversity and wildfires could not be established.


This research could help identify areas that are ecologically vulnerable to wildfires. It could also be useful in guiding regional studies aligned with developing sustainable landscape management practices and conserving priority ecological zones in tropical ecosystems.



El fuego es una perturbación natural que impacta significativamente en los ecosistemas y juega un rol crucial en la distribución y preservación de la biota en todo el mundo. Los efectos de los incendios en la diversidad de aves pueden ser tanto positivos, dado que crean nuevos hábitats, como negativos, dado que pueden reducir el éxito de nidificación. Para entender completamente las implicaciones ecológicas del fuego, necesitamos entender la distribución espacial de la diversidad de aves silvestres en los diversos ecosistemas, así como de los regímenes de fuego, y cómo estos regímenes de fuego impactan en la diversidad de aves silvestres. A través de diferentes bases de datos a escala global, examinamos los efectos espaciales de los diferentes regímenes de fuego sobre la distribución espacial de la diversidad de aves silvestres. Inicialmente usamos el algoritmo MaxEnt para modelar la distribución potencial de 1.115 especies de aves silvestres durante un período de 20 años. Procesamos asimismo observaciones satelitales de áreas quemadas (FIRECCI51) durante el mismo período para estimar las características de los regímenes de fuegos, incluyendo la proporción de la vegetación quemada, la variabilidad interanual en el área quemada y la intensidad delfuego. Finalmente, la asociación entre la diversidad de las especies de aves silvestres y las variables del fuego para cada bioma fue determinada mediante los estadísticos de Spearman, Bonferroni y Kruskal -Wallis.


Nuestros resultados revelaron (I) las comunidades de aves silvestres más afectadas fueron aquellas encontradas en ecosistemas tropicales, donde ocurren la mayoría de los incendios; (II) Una alta intensidad de los fuegos y una proporción sustancial de la vegetación quemada tiene un impacto positivo en el mantenimiento de lapoblación de aves silvestres en biomas caracterizados por cobertura de sabanas y pastizales, como se ven en zonas subtropicales o templadas. Por otro lado, una baja intensidad de los fuegos y una menor proporción de vegetación quemada promueve una mayor diversidad de aves silvestres en zonas boreales o templadas, y (III) en ecosistemas mediterráneos, no pudo establecerse una clara asociación entre la diversidad de aves y el fuego.


Esta investigación puede ayudar a identificar áreas que son ecológicamente vulnerables a incendios. Puede también ser útil en guiar estudios regionales alineados con el desarrollo de prácticas de manejo sostenible de paisajes y de conservación de zonas prioritarias a nivel ecológicoen ecosistemas tropicales.


Fire disturbance affects global ecosystems and plays an important role in the distribution and maintenance of biota over time and space (Bowman et al. 2009). Fires can have devastating consequences on bird species distribution, modifying the structure and composition of natural assemblages, decreasing nesting success (Cahill and Walker 2000), reducing species abundance (Kinnaird and O’Brien 1998), and changing species composition (Adeney et al. 2006; Barlow and Peres 2004; Blair 2005; Cochrane and Laurance 2002; Kirkman et al. 2001; Midgley and Bond 2015). However, fires can also have beneficial effects on ecosystems, allowing originally absent species to migrate to new habitats (Brotons et al. 2005; Buddle et al. 2000; Pons and Clavero 2010), and opening up the vegetation, so creating simpler plant covers and structures that can be colonized by birds that prefer open habitats, which coexist with pre-fire species with strong links to that particular place (Barlow et al. 2002; Herrando et al. 2002; Moreira et al. 2001; Puig-Giron, Brotons, and Pons 2022). Thus, habitat structure variables such as canopy openness, land use, biomass, temperature, and habitat fragmentation, among others, have an important impact on bird diversity and abundance in burnt wildlands (Barlow and Peres 2004a).

Using threatened species as bioindicators in studies investigating the global impact of disturbances on animal communities unveils crucial insights into ecological vulnerability (Borges et al. 2019). Many threatened species might be more sensitive than other species to common threats like habitat loss and overharvest, making them a non-random sample of all available species. However, the unfortunately large number of species that are threatened today ensures that these species are increasingly representative of all avian taxa, including both specialists and those with generalist behaviors (Mace and Lande 1991). Thus, studying the worldwide spatial distribution of wild birds through the lens of threatened species underscores the importance of preserving global biodiversity and provides a comprehensive perspective on how wildfires impact avian communities in various environments (Connell et al. 2017; Lee et al. 2022; Lindenmayer et al. 2023).

The positive and negative effects of fire depend on the particular characteristics of the fire regime. Recent trends indicate that wildfires are becoming larger and more intense, with severe environmental consequences. Extreme fires create large patches of burnt ecosystem, sometimes in excess of 100,000 ha (Cochrane and Bowman 2021; Duane et al. 2021; García et al. 2022; Kelly et al. 2020), affecting significant proportions of the ecosystem. For example, around 30% of the wildland area in southwest Australia was burned in the extreme fire season of 2019-20 (Bowman et al. 2020; Clarke et al. 2022; Jones et al. 2022).

For ecosystems that are adapted to a specific fire regime, there is growing concern about the impacts of a changing fire regime on the distribution and maintenance of wildland bird diversity (Jones et al. 2016; Lindenmayer et al. 2012; Padoa-Schioppa et al. 2006). Within this field, relatively little research has been done on the spatial dependence between fire characteristics such as extension, intensity and frequency and the diversity of wildland bird species around the world. A better understanding of the interactions between wildfires and wildland bird diversity would be very useful in the design and implementation of effective management policies for the conservation and promotion of the ecosystem that hosts this biological diversity (Elith and Leathwick 2009; Guisan et al. 2013; Guisan and Thuiller 2005; Latif et al. 2018). Research in this field is complicated due to the wide array of variables that influence the dynamism of fire regimes. These variables include interrelated and interacting climate, social, and ecological factors, which make this multidisciplinary area of study particularly challenging. Even though several regional or local studies have explored the relationship between fire variables and bird diversity, they do not normally explore both temporal and spatial aspects of this issue (Barlow et al. 2002; Brotons et al. 2005; Buddle et al. 2000; Herrando et al. 2002; Moreira et al. 2001; Pons and Clavero 2010; Puig-Giron et al. 2022). Therefore, they do not provide a full picture of the dependencies between fire regimes and the diversity of wildland bird species nor do they address the impact of wildfires on the spatial distribution of wildland bird diversity.

This study uses data from around the world to assess which fire regimes promote or reduce avian diversity. First, geographic information systems and machine learning were applied to model the diversity of wildland bird species, using the biodiversity data provided by Global Biodiversity Information Facilities (GBIF) for the 2001–2020 period. Fire regime variables were computed from a dataset of satellite observations of burnt areas for the 2001–2020 period. Indices measuring fire intensity, interannual variability, and the proportion of burnt vegetation were included in a statistical model to analyze the relationship between these fire variables and the distribution of wildland bird diversity by biome.

Materials and methods

The methodology is outlined in Fig. 1. The aim of the first step was to obtain a spatial distribution of wildland bird species diversity (BSD), using a well-known statistical approach. The aim of step 2 was to estimate fire regime variables from a dataset derived from long-term satellite observations of burnt areas. Finally, the two datasets were linked using various statistical methods to identify which fire regime variables were more significantly associated with wildland bird diversity. Both databases were reprojected at a resolution of 0.25 ° to achieve a reasonable balance between computational efficiency and the need to capture regional patterns (Arrogante-Funes et al. 2021; García et al. 2022).

Fig. 1
figure 1

Workflow of the methodology to identify and assess the fire regimes that either promote or harm wildland bird diversity within their respective ecosystems

Potential bird diversity map

Bird data

The wildland bird diversity dataset for the period 2000 to 2020 was obtained from the platform of the Global Biodiversity Information Facility (GBIF) ( last access: 30 November 2022), an international organization that aims to provide free, open access to biodiversity data on a global scale. The GBIF operates as a network of member countries and organizations that contribute to a shared infrastructure and data portal. Its mission is to facilitate the mobilization, access, discovery, and use of biodiversity data to support scientific research, conservation, and sustainable development. The GBIF provides access to a wide range of biodiversity data, including species occurrence records, taxonomic classifications, and ecological data. The data come from a variety of sources, including natural history collections, research institutions, and citizen science projects.

Based on the Red List of Threatened Species, we selected 1115 forest, savannah, and grassland bird species that are categorized as Critically Endangered, Endangered, and Vulnerable ( last access: 30 November 2022). These categories were chosen because they are commonly used in habitat conservation (Hilton-Taylor 2000). The areas inhabited by endangered species are also of particular interest for researchers as they often have a rich biodiversity because they are also inhabited by other less specific, more common types of bird (Mace and Lande 1991). Out of the total number of species on the list (10,569), only 1115 were selected as they were the only ones for which there was a sufficient amount of observations in the GBIF database, approximately 5.5 million observations. We analyzed the data from the GBIF as to the different places in which the presence or habitat of these 1115 species had been detected (these were often detections of single individuals). After repeated entries and entries with missing coordinates had been filtered out, a total of 3,224,856 geographic points were obtained.

In order to analyze the possible association between wildland bird diversity and fire regimes at spatial scale, the point observations available in the GBIF were converted into a continuous spatial layer with a resolution of 0.25° using the Maxent (Phillips 1997) probabilistic algorithm.

The analysis of this database was based on the biomes proposed by Olson et al. (2001) and uploded by Dinerstein et al. (2017) (Fig. 2), which are homogeneous pieces of land in terms of communities, dynamic processes, and environmental conditions and are particularly appropriate for global-scale studies (Pausas and Ribeiro 2017). From these original biomes, the following were retained for further analyses as places where fire activity has been recorded: tropical and subtropical moist broadleaf forests; dry broadleaf forests and grasslands; tropical and subtropical savannas and shrubs; temperate broadleaf and mixed forests; temperate grasslands, savannas, and shrubs; Mediterranean forests, woodlands, and scrubs; montane grasslands and shrubs; boreal forests; and deserts and xeric Shrubs.

Fig. 2
figure 2

Terrestrial biomes used in this study (Source: Dinerstein et al. 2017)

Explanatory wildland bird diversity variables

Based on previous studies (Keast 1990; Petty and Avery 1990), a set of 23 explanatory variables (Table 1) were chosen to model the spatial distribution of bird diversity. Climatic, environmental, geological, topographic, anthropic, and dynamic factors were included in the analysis (Bradie and Leung 2017). All the explanatory variables were discretized at a scale of 0.25° using the average values for each cell. The numerical variables were normalized using a linear function from 1 to 100, with the exception of the population density variable, which was normalized using a logarithmic function because it does not have a normal distribution (Arrogante-Funes et al. 2021).

Table 1 Summary of the explanatory wildland bird diversity variables

Climatic factors were obtained from the Terra Climate database (Abatzoglou et al. 2018), covering global monthly variables with a 1/24° (~ 4 km) spatial resolution from 1958. This product uses WorldClim, CRU Ts4.0, and the Japanese 55-year Reanalysis. The Palmer Drought Severity Index is a dimensionless numerical variable that expresses the relationship between real evapotranspiration (ET) and potential evapotranspiration (ET0) of the Earth’s surface. The value of the index decreases as drought conditions increase. Thermal amplitude is a numerical variable that indicates the difference between the maximum and minimum temperature of the Earth’s surface in degrees Celsius. Higher values are therefore observed in more extreme climates with large differences between maximum and minimum temperatures. Precipitation accumulation is a numerical variable measuring the average rainfall accumulated annually in millimeters. Lastly, evapotranspiration is quantified in a numerical variable measuring mean annual evapotranspiration in millimeters.

Environmental data were obtained from different datasets from the National Aeronautics and Space Administration (NASA). The Land Cover map was obtained from the MCD12Q1 product, generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) (, last access: 20 October 2022). Distance to water bodies is a numerical variable captured in a raster image measuring the distance from each pixel to the center of the closest water mass (from the LC variable). Net photosynthesis (PsnNet) data from the MOD17A2H product is a numerical variable based on the radiation-use efficiency concept that expresses the gross primary productivity minus the maintenance respiration, measured in kg C/m² at a spatial resolution of 500 m. The normalized difference vegetation index (NDVI) from the MOD13A2 is a dimensionless numerical variable that highlights the plant cover and bare soils over large areas. Places with dense, healthy vegetation obtain high values, while areas with poor or scattered vegetation, or with no vegetation at all, have low values which indicate the scarcity or absence of photosynthetic activity. The biomass value obtained from the GFCC30SR product is a numerical variable that expresses the percentage of ground covered by woody vegetation (over 5 m), based on Landsat images at 30 m. Finally, vegetation continuous field data from MOD44B is a numerical variable indicating the percentage of ground covered by vegetation at 250 m. With the set of variables described above, we can get some idea of the condition of the ecosystems.

Geological variables were obtained from the Food and Agriculture Organization of the United Nations (FAO) in association with the International Institute for Applied Systems Analysis (IIASA), the International Soil Reference and Information Centre (ISRIC), the Institute of Soil Science – Chinese Academy of Sciences (ISSCAS), and the Joint Research Centre of the European Commission (JRC) (Nachtergaele et al. 2010). The Soil Map from the Harmonized World Soil Database is a categorical variable expressing the 28 major soil groupings based on existing regional and national updates of soil information worldwide at a spatial resolution of ~ 1 km.

Topographic factors were derived from NASA data (, last access: 10 October 2022). The X and Y coordinates are numerical variables identifying the centroid of the reference pixel. The digital elevation model from the NASA DEM product obtained by the Shuttle Radar Topography Mission (SRTM) is a numerical variable that expresses elevation data at one arc-second spacing. For more accurate geolocation, the information was combined with Geoscience Laser Altimeter System (GLAS) data obtained from observations from on board the Icesat satellite. Other reprocessing improvements include interpolation for gap filling based on the Advanced Land Observing Satellite Panchromatic Remote-sensing instrument for Stereo Mapping (PRISM) AW3D30 DEM, among others. With this product, we generated the slope and aspect. The slope is a numerical variable measuring the slope of the terrain in percentage terms based on the NASA DEM. Finally, aspect is a categorical variable resulting from the reclassification of the aspect terrain raster layer into eight classes of 45º (Table 2), from northeast to northwest in a clockwise direction.

Table 2 Aspect classes and abbreviations used

The anthropic factor was assessed in four ways: firstly, using data from the Oak Ridge National Laboratory (ORNL) (Dobson et al. 2000), the Global Biodiversity Model for Policy Support (GLOBIO) (, last access: 20 June 2022), and NASA (, last entry: 20 June 2021), and secondly, using population density data from the LandScan Global produced by ORNL, a numerical variable expressing the number of people per hectare yearly around the world at 30 arc seconds (~ 1 km) from 2000 m; the LandScan product uses geospatial science, remote sensing data, and machine learning algorithms, so as to capture people’s full potential activity during both day and night rather than just their residential location; and thirdly, using road density data obtained from the Global Roads Inventory Projects (GRIP) (, last access: 20 June 2021), a numerical variable that measures the meters of road per km2 at a five arcminutes resolution (~ 8 × 8 km). GRIP contains five levels of roads worldwide and is based on different sources, such as Open Street Map. Lastly, distance to human infrastructures from LC is a numerical variable that expresses the Euclidean distance between the center of each pixel and the nearest urban area at a resolution of 1 km.

The dynamic factor was provided by Global Land Discovery and Analyses (GLAD) through the Long-Term Global Land Change 1982–2016 dataset at a spatial resolution of 0.05 ° (, last access: 25 June 2021). This product was developed from Advanced Very High-Resolution Radiometer (AVHRR) remote sensing data to obtain the net annual land use changes (taking into account both gains and losses) in categories such as vegetation continuous field (VCF), tree canopy (TC) cover, short vegetation (SV) cover, and bare ground (BG) cover. The range of values is between 1 and 100. Tree canopy cover change, short vegetation cover change, and bare ground cover change are numerical variables that measure the net changes over the world over the last 35 years.

Wildland bird species distribution modeling: MaxEnt

The presence-only MaxEnt algorithm (Phillips 1997), which has proved very robust in similar studies (Bradie and Leung 2017), was used for modeling the potential distribution of each wildland bird species. MaxEnt works by identifying patterns in the data, given the constraints imposed on the system, and then choosing the most likely option for the system based on Shannon’s entropy maximization principle.

This algorithm calculates a logistic output (mean, maximum, minimum, mode) that can be interpreted as an estimate of the relative probability of species distribution in a certain geographic area (Elith et al. 2011). Values range from 0 (lowest probability) to 1 (highest probability).

MaxEnt can handle continuous numerical and categorical variables and automatically includes the interactions between them. To optimize the model, the regularization multiplier was set to 2.0, and its characteristics were based on variations in Akaike’s information criterion and the mean area under the curve (AUC: Elith et al. 2011). Furthermore, to maximize the sensitivity of the model (Freeman and Moisen 2008), various thresholds were tested: threshold = 0.5, sensitivity = specificity, maximization (sensitivity + specificity)/2, and minimization of the distance between the ROC plot and (0, 1). In the end, we selected the last of these, i.e., minimization of the distance between the ROC plot and (0, 1).

The MaxEnt model was executed for each species at the biome level. Within each biome, we selected those species which, according to the GBIF, had been observed in that biome. The models were run at a cell resolution of 0.25° by selecting the median value of the 3 × 3 neighborhood cells. A total of 7928 runs of MaxEnt were executed. In all cases, the input explanatory variables were the same, and the models were built with 80% of the sample for training and the remaining 20% for validation. Internal calibration of the models was based on 10-fold cross-validation before the final model in each run was selected. Model accuracies were based on AUC values and the Kappa agreement index. To mitigate the border effect between the different biomes, the Maxent models were run after extending the modeling area three cells beyond the edge of each biome and then computing the average probability value within the cells that appeared in the intersection between two adjacent biomes. All the probability maps of presence and absence for each bird species were combined to obtain the map of wildland bird species diversity (BSD) diversity at biome level (a probability value of between 0 and 1 of having that species). Apart from that, moreover, we produce another map with three BSD categories (low, medium, and high), using Jenks Natural, in line with similar studies (Arrogante-Funes et al. 2021; Martínez Vega et al. 2007) in order to subsequently apply different statistics.

Fire regime data

Fire occurrence data was obtained from the FireCCI51 global burnt area product, which was generated as part of the Fire Disturbance project of the European Space Agency’s Climate Change Initiative program (, latest access: October 2022). This product is based on satellite observation data, using Terra-MODIS 250 m near infrared reflectance data. These data are complemented and endorsed by active fire data from the same sensor at a resolution of 1 km (Lizundia-Loiola et al. 2020). The FireCCI51 product is available for 2001–2019, at a global scale, in two spatial resolutions: 250 m and 0.25° grid cells. The latter dataset was used to compute the 19-year time-series of available FireCCI51 data which had three fire variables that were representative of fire regimes according to the classification proposed by García et al. (2022) : (a) the proportion of burnt area (PBA), defined as the average ratio between the actual BA for each cell and the burnable area in that cell; (b) interannual variability (IV) in BA, measured as the coefficient of variation between the mean and the standard deviation of annual BA, and (c) fire intensity (FI), measured as the average fire radiative power in megawatts (MW) of the burnt patches in each cell. This last variable was obtained by running a previous contextual analysis to convert burnt pixels into burnt patches, following the methods described by Laurent et al. (2019).

The aim when selecting these three variables was to describe critical characteristics of the fire regime. The PBA highlights the importance of fire in each cell. The burnable area was obtained by adding together all the land covers that could potentially be burnable (forest, shrub, grass, croplands…). The land cover data for this layer was obtained from the ESA Climate Change Initiative program (, last access: 10 January 2022). Interannual variability (IV) is an indicator of the duration of fires in a particular area, i.e., how long it takes to put them out (Archibald et al. 2013) and is related to the impact of climate cycles and anthropogenic activity on fire occurrence (Chuvieco et al., 2023). Finally, fire intensity (FI) is a surrogate of burn severity, in that fires have more severe impacts when they release more energy. This variable therefore indicates the seriousness of the damage caused by the fire.

Statistical analyses

The frequency distribution of each fire variable was examined as a function of the biome region to evaluate associations between the response variable (numeric and categorical BSD map) and the explanatory fire regime variables.

Next, inferential statistical tests were conducted to test the significance of the association between BSD numeric and categorical distribution and the explanatory fire regime variables. Spearman correlation coefficients were used to find out whether the association between the numeric BSD map and fire variables was positive or negative. Then, the Kruskal-Wallis test was used to test the significance of the association, as BSD was expressed as a categorical variable. A pairwise analysis called the Bonferroni test was also performed. This test was used to evaluate whether there were any significant differences between the observed frequencies in the wildland bird diversity categories in relation with the different fire regime variables. Possible statistical errors were controlled by making multiple comparisons. Furthermore, these results allowed us to determine the behavior of fire regime variables within each biome, with a focus on identifying the biomes with the highest and lowest values of wildland bird species.


Distribution of wildland bird diversity

Figure 3 shows the final output of the wildland bird species diversity model. Higher values are found in the tropical regions, particularly in the evergreen biomes, including Amazonia, the Congo Basin and the Gulf of Guinea, and Southeast Asia. High values are also observed in Central and Southeast America, South Africa and Madagascar, Southeast Australia, and several regions in Western Europe.

Fig. 3
figure 3

MaxEnt integration model of the wildland bird species diversity. The values indicate the sum total of the probabilities of the presence of each species in each 0.25° cell

The MaxEnt integrated model obtained overall accuracy of 87.75% and a Kappa index value of 0.83 (both highly significant: p < 0.001). The main explanatory variables were land cover, soil map, thermal amplitude, mean temperature, NDVI, precipitation accumulation, distance to water bodies, Palmer Drought Severity index, elevation, and road density, accounting for 90% of the model (Table 3).

Table 3 The explanatory power of the input variables in the integrated MaxEnt BSD model accounts for 90% of the model. The variables that contribute to this explanation are shown in gray

Impacts of fire regime variables on BSD

At a global scale, there was no clear trend in terms of the association between the wildfire variables and BSD (Fig. 4). There was a significant difference between the PBA values for areas with low BSD and those for areas with medium or high BSD but not between medium and high. The PBA values were higher for the areas with low BSD than for the areas with medium or high BSD values, which means that more extensively burnt areas tend to have lower bird diversity. The Bonferroni tests revealed significant differences between the interannual variability (IV) values for the three BSD classes, which implies that fire duration is an important driver of wildland bird species diversity. The areas with higher BSD tended to have higher IV values. Finally, there were significant differences between the fire intensity (FI) values for the areas with low and high BSD, but the trends were not clear, with a very low negative correlation (spearman rho = − 0.01).

Fig. 4
figure 4

Boxplots for the different fire variables by wildland bird species diversity categories at global scale. 1 = low diversity, 2 = medium diversity, and 3 = high diversity

More significant associations between BSD and the fire variables were found at biome scale. Figures 5, 6, and 7 include the spatial distribution of the Spearman correlation values between BSD and the fire variables for the different biomes. PBA showed significant negative correlations with BSD in tropical evergreen forest, tropical savannahs, and desert shrublands and positive correlations with BSD in temperate grasslands, including Central Asia and North America and South America and Australia (Fig. 5).

Fig. 5
figure 5

Spearman correlation coefficient between BSD and PBA. The correlation was computed for all the cells in each biome

There were significant negative associations (Spearman rho values < − 0.2) between interannual variability and BSD in boreal forest, temperate grassland, and montane grasslands (Fig. 6). This variable is positively associated with Tropical evergreen and tropical grassland and savannas. This suggests that the more frequently fires recur, the more diversity they promote in boreal and temperate forest, while in temperate grasslands and tropical forest, the higher recurrence of fires reduces biodiversity.

Fig. 6
figure 6

Spearman correlation coefficient between BSD and IV. Correlation was computed for all the cells in each biome

Finally, the association between BSD and the average intensity of fires is much less clear (Fig. 7). The only significant positive Spearman correlations are in biomes with abundant dry vegetation, such as tropical dry forest and desert and xeric shrublands. Slightly positive relations were found for montane grasslands. The trends indicate that the more intense the fires are, the less biodiversity there is in areas that are better adapted to dry periods. These areas are probably covered by xerophytic species, which are more vulnerable to intense fire conditions. However, in montane areas, the more intense fires favor BSD.

Fig. 7
figure 7

Spearman correlation coefficient between BSD and FI. The correlation was computed for all the cells in each biome

Table 4 shows the results of the Bonferroni test assessing whether there are significant differences between the three BSD categories (low-medium-high) for the three fire variables. The BSD in tropical evergreen forest increases with higher IV and FI and lower PBA values; for the tropical dry forest, FI is the only variable with a significant association with BSD (in this case negative); for temperate forests, no significant associations could be found between BSD and any of the fire variables; for boreal forest, all three fire variables have negative associations with BSD, although the only significant one is IV. For tropical grasslands and savannas, the higher the PBA and FI values, the lower the BSD; for temperate grasslands, the greater the IV and the lower the PBA, the lower the BSD. For montane grasslands, IV is negatively related to BSD, while FI has a positive association with it. In the Mediterranean biome, no significant associations were observed between BSD and any of the fire variables, whereas in desert and xeric shrublands, BSD is negatively related with both PBA and FI.

Table 4 Results of the Bonferroni test assessing the association between fire variables and BSD categories


Potential wildland bird species diversity map: data and modeling issues

Using GBIF data and the MaxEnt algorithm, we managed to generate maps highlighting the probability of occurrence (or potential habitat) of each bird species. In this study, we used a traditional approach based solely on data showing the presence of individual species in a particular biome as a sign of their fitness to inhabit such an environment (Hirzel and Le Lay 2008). However, the cost and effort involved in collecting data on this large scale, especially in remote or poor areas, is a challenge for global studies (e.g., Rocchini et al. 2015). In regions where data are scarce, the only alternative is to use presence data (Anderson and Gonzalez 2011; Zaniewski et al. 2002). This is why we selected GBIF, a presence dataset, for the global analysis performed in this paper. It is important to note that the GBIF dataset has uncertainties arising from the fact that the observations were obtained via crowd-sourcing, which should cause a bias towards regions with a higher density of bird watchers.

Given the global scale, the heterogeneity of the sources used, and the extensive area covered by an ecoregion, sometimes the uncertainty arises less from the method used to combine the databases and more from prior uncertainties in the databases themselves (Richards and Rowe 1999). It is also important to highlight that the global scale provides us with general information on what is happening, so enabling us to detect specific points where the results are unclear, which can then be studied at a more detailed local/regional scale (Goodchild et al. 1993). Despite the above, our approach follows the conceptual framework of essential biodiversity variables (EBVs) proposed by Kissling et al. (2018) which was based on (i) developing models to combine heterogeneous data sets from multiple sources and fill gaps in the geographic coverage data; (ii) integrating emerging data collection methods and technologies, such as citizen science and satellite remote sensing; and (iii) resolving major technical issues relating, among others, to the structure, workflow execution, and production process of the datasets.

Our BSD map contains more points of high species diversity than in previous research by Mittermeier et al. (2011) and Myers et al. (2010) despite being only threatened birds in our study. More specifically our work classifies the entire tropical zone and Southeast Australia as important points of high species diversity. Our results are also consistent with the findings of Neke and Du Plessis (2004) and Maseko et al. (2020) about the high levels of species diversity in the South African biome and with Recher (1969), Wiens (1992), and Razeng and Watson (2014), who found that the canopy cover of a patch, the density of shrubs, and the amount of litter and ground cover strongly influence the diversity of bird species in Southeast Australia. The fact that more areas show high bird species diversity values may be due to the fact that we used the extensive GBIF spatial database and the MaxEnt algorithm as a spatialization method as opposed to the heuristic models used by previous researchers.

Additionally, it is noteworthy that the use of threatened birds as unique observations in our study has identified diversity hotspots similar to previous authors, further contributing to the hypothesis that the use of protected species determines areas with higher ecological values and, consequently, species diversity (Connell et al. 2017; Lee et al. 2022; Lindenmayer et al. 2023).

As happens with the data obtained by Mittermeier et al. (2011) and Myers et al. (2010), GBIF information is not continuous in space and only offers points on the map where birds have been sighted. We therefore decided to complement the GBIF data with MaxEnt, which, unlike the heuristic methods used in the previous studies, facilitates the estimation of probability distributions from incomplete or partial information. Several authors have shown that the MaxEnt approach is more efficient, robust, accurate, and flexible than the heuristic methods (Phillips 1997; Bradie and Leung 2017).

While MaxEnt can handle categorical variables, there are some disadvantages to including them in the model (Phillips 1997). The greater complexity of the model and the correlation with other variables can lead to overfitting of the model. In our study, however, the land cover and soil map variables were processed by assigning arbitrary values to the categories. This ensures that the model accurately identifies the relationships between the variables and the outcome of interest.

Despite this, the land cover and soil map variables were very important for modeling the potential habitats of birds, together with others such as thermal amplitude, mean temperature, NDVI, precipitation accumulation, distance to water bodies, Palmer Drought Severity index, elevation, and road density. In our study, these environmental, climatic, and anthropic factors affect the composition and structure of the forest, which in turn can have a significant impact on the distribution and abundance of bird species (Bradie and Leung 2017). Different bird species have adapted to different types of habitats, so the presence or absence of certain types of vegetation can determine which species are present in a particular area (Atauri and Lucio 2001). The presence of different forest types, such as mixed forests or deciduous forests, can also influence the composition of bird species (Farina 1997; Herrando et al. 2002). In addition, the fragmentation of forests due to human activities, such as the construction of roads and railways, can reduce the size of suitable habitats for some bird species, leading to a decline in their populations. As regards the soil map, the type of soil in an area can also affect the diversity of bird species. Certain soil types may be suitable for specific plant species that are important food sources or nesting habitats for particular bird species (Herrando et al. 2002). For example, acidic soils support the plants that attract the insects on which insectivorous birds can feed, while sandy soils are often a good option for ground-nesting birds. Soil type can also affect the availability of water, which can be critical for birds that require wetland or riparian habitats.

The effects of fire regime on wildland bird species diversity

Several authors have shown that fires play a special role in maintaining ecosystem health and conserving biodiversity and pyrodiversity (Bowman et al. 2009; Krawchuk and Moritz 2011; Pais et al. 2020).

If we look at wildfires at a global scale, our results indicated that the proportion of burnt area (PBA), interannual variability (IV), and fire intensity (FI) are important drivers of the distribution and the maintenance of wildland bird species diversity (BSD), as argued by several authors (Gosper et al. 2019; Jones et al. 2016; Lindenmayer et al. 2012; Parsons and Gosper 2011; San-Miguel-Ayanz et al. 2013; Williams 2013; Xaud et al. 2013). However, the relationship between them is quite complex and mediated by other external factors, such as climate and land cover.

The biomes with the greatest association between wildland bird diversity and fires were tropical forests, savannas, and grasslands, particularly in both tropical fringes of Africa, which host the vast majority of burnt areas worldwide (Lizundia-Loiola et al. 2020, 2022). The more frequent recurrence and low intensity of the wildfires reduce BSD in the tropical and subtropical moist broadleaf forests and grasslands, savannas, and shrubs, as indicated by recent studies of biodiversity by Buisson et al. (2019) and Pivello et al. (2021). According to Phillips (1997) and Laurance and Curran (2008), one of the factors altering bird diversity in tropical and subtropical regions is the current wildfire dynamics in deforested areas and the increasing use of fire in the land-clearing process, a finding reflected in our results in the low BSD values in areas with high PBA and FI. This may indicate that birds from tropical and subtropical evergreen forest prefer ecosystems with low fire activity (Alley et al. 2007). In short, this type of fire regime in which fires are deliberately started by humans suggests that historically there were few wildfires. The birds in these areas have therefore not adapted to the new situation and their populations are dwindling.

The highest values of BSD in boreal and xeric areas, in our study, occurred under low intensity fire regimes. In boreal forests, large and mega-fires are causing huge biodiversity losses due to their long duration and slow recovery, which leads to the exile of birds and a decrease in the diversity of bird species in burnt boreal areas (Morissette et al. 2002; Schieck and Song 2006). Our results confirm these findings, in that BSD increased in areas with low-intensity fires (Puig-Girón et al. 2022). One example is the desert and xeric shrublands biome, where lower PBA values were associated with increases in BSD, probably because these areas have more insects and nutrients (Levin et al. 2012; Miller et al. 2012). Within a more general approach focused on four bird species, Pastro et al. (2014) studied the possible association between the diversity of bird species and fire regimes. Our study coincides with that of Sietz et al. (2011), who also found a negative association between fire variables and bird diversity, highlighting that these fires are mostly of human origin and are associated with the maintenance of organic matter for the crops.

Our results suggest that wildfires that burn intensely, steadily, and persistently over time support higher wildland bird species diversity (BSD) in the temperate and montane grasslands and scrub shrub biomes, as evidenced in the study of Pons et al. (2003). However, there are few studies on fire regimes and bird diversity in temperate and mountain grass ecosystems, so it would be necessary to delve into this with more regional or local studies. In grassy areas, the fires burn fast but the grass grows back quickly. The birds can resist for a few weeks, and when the pasture comes back, they can return to carry out their biological role in the same places (Coppedge et al. 2008; Daubenmire 1968).

In this context, the type of cover plays an important role, as in the biomes with forests mentioned earlier, low FI and PBA contribute to greater bird species diversity, while in the biomes with grasslands, high FI and PBA values have similar results. The birds in the burnt forests with intense and severe fire regimes cannot complete their biological cycle because the insects (a source of nutrients) (Nilsson 1992) have been killed, and regeneration takes too long (Auclerc et al. 2019; Carbone et al. 2019). In temperate broadleaf forests, intense wildfires promote the canopy’s opening and maintain the landscape’s heterogeneity (Brotons et al. 2005; Herrando et al. 2002; Puig-Giron et al. 2022). According to previous research (Atauri and Lucio 2001; Farina (1997); Herrando et al. (2002), a heterogeneous plant composition allows the ecosystem to host numerous species of birds. However, in areas with greater fire intensity, the diversity of wildland birds is reduced because they are unable to maintain and carry out their biological cycle in these places because the plant structure takes too long to recover (Brotons et al. 2005; Herrando et al. 2002).

By contrast, in Mediterranean ecosystems no clear association could be found in our study between wildfire variables and wildland bird diversity, as suggested in other studies by Brotons et al. (2005), Buddle et al. (2000) or Pons and Clavero (2010), among others. This may be due to the fact that this study has a resolution of 0.25 ° which makes it difficult to capture the great heterogeneity of the ecosystems and therefore the association between wildfire and wildland bird diversity. This is the main vulnerability highlighted by the methodological frameworks (Turner et al., 2003). In this case, it would be of great interest to expand the scale applied in these biomes in order to be able to identify associations between wildfires and the ecological values of these areas.

Understanding the spatial association between wildfires and wildland bird diversity should enable us to identify ecosystems that are ecologically vulnerable to fire. This global-scale study is valuable for identifying issues and guiding more localized research in these critic areas, enabling a more precise characterization of patterns between fire regimes and bird diversity. Thus, this contributes to enhancing conservation strategies and aids in preserving critical habitats for the survival of wild birds worldwide (Connell et al. 2017) and to develop sustainable landscape management practices which can help conserve the priority ecological zones in these ecosystems (Brown et al. 2004; Gilliam 2007). The potential wildland bird diversity map and the differentiation between the three fire regimes will be useful in the selection of new priority areas for protection against fires.


The MaxEnt algorithm was used with GBIF data to develop a Potential Wildland Bird Species Diversity (BSD) map on the basis of limited data at a global scale. Kruskal-Wallis, Bonferroni, and Spearman statistical analyses were used to demonstrate (i) the association between the PBA, IV, and FI and (ii) the fire regimes associated with higher BSD values.

On a global scale, our results show that bird diversity is highly sensitive to fire in moist tropical regions, with negative correlations for PBA and positive for IV and FI. This suggests that BSD increases in areas with varying but intense fire regimes (forest clearing) and decreases as the burnt area increases. In tropical dry regions, an increase in the number of fires, and in their frequency and intensity, has negative effects on BSD. In temperate savannah or grassland covers, higher FI and PBA values tend to promote BSD, while in boreal or temperate zones, low FI and PBA values also benefit BSD. No clear association could be found between BSD and wildfires in Mediterranean ecosystems.

This research could help identify ecologically vulnerable areas to wildfires. It could also be useful in guiding regional studies aligned with the development of sustainable landscape management practices and the conservation of priority ecological zones in tropical ecosystems.

Availability of data and materials

The datasets used and/or analyzed here are available from the corresponding author on reasonable request.

Change history


  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data 5: 1–12.

  • Adeney, J. M., J. R. Ginsberg, G. J. Russell, and M. F. Kinnaird. 2006. Effects of an ENSO-related fire on birds of a lowland tropical forest in Sumatra. Animal Conservation 9(3): 292–301.

    Article  Google Scholar 

  • Alley, R., T. Berntsen, N. L. Bindoff, Z. Chen, A. Chidthaisong, P. Friedlingstein, and F. Zwiers. 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers, 21. IPCC Secretariat: Geneva.

  • Anderson, R. P., and I. Gonzalez. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecological Modelling 222(15): 2796–2811.

    Article  Google Scholar 

  • Archibald, S., C.E. Lehmann, J.L. Gómez-Dans, and R.A. Bradstock. 2013. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences 110 (16): 6442–6447.

    Article  CAS  Google Scholar 

  • Arrogante-Funes, P., A. G. Bruzón, F. Arrogante-Funes, R. N. Ramos-Bernal, and R. Vázquez-Jiménez. 2021. Integration of vulnerability and hazard factors for landslide risk assessment. International Journal of Environmental Research and Public Health 18(22).

  • Atauri, J. A., and J. V. Lucio. 2001. The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecology 16(2): 147–159.

    Article  Google Scholar 

  • Auclerc, A., J. M. Le Moine, P. J. Hatton, J. A. Bird, and K. J. Nadelhoffer. 2019. Decadal post-fire succession of soil invertebrate communities is dependent on the soil surface properties in a northern temperate forest. Science of the Total Environment 647: 1058–1068.

    Article  CAS  PubMed  Google Scholar 

  • Barlow, J., and C. A. Peres. 2004. Avifaunal responses to single and recurrent wildfires in Amazonian Forests. Ecological Applications 14(5): 1358–1373.

    Article  Google Scholar 

  • Barlow, J., T. Haugaasen, and C. A. Peres. 2002. Effects of ground fires on understorey bird assemblages in Amazonian Forests. Biological Conservation 105(2): 157–169.

    Article  Google Scholar 

  • Blair, B. C. 2005. Fire effects on the spatial patterns of soil resources in a Nicaraguan wet tropical forest. Journal of Tropical Ecology 21(4): 435–444.

    Article  Google Scholar 

  • Borges, F. J. A., B. R. Ribeiro, L. E. Lopes, and R. Loyola. 2019. Bird vulnerability to climate and land use changes in the Brazilian Cerrado. Biological Conservation 236(May): 347–355.

    Article  Google Scholar 

  • Bowman, D. M. J. S., J. K. Balch, P. Artaxo, W. J. Bond, J. M. Carlson, M. A. Cochrane, C. M. D’Antonio, R. S. DeFries, J. C. Doyle, S. P. Harrison, F. H. Johnston, J. E. Keeley, M. A. Krawchuk, C. A. Kull, J. B. Marston, M. A. Moritz, I. C. Prentice, C. I. Roos, A. C. Scott, …, and S. J. Pyne. 2009. Fire in the earth system. Science 324(5926): 481–484.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, D. M., G. Williamson, M. Yebra, J. Lizundia-Loiola, M. Pettinari, and S. Shah. 2020. Wildfires: Australia needs a national monitoring agency. Nature 584: 188–191.

    Article  CAS  PubMed  Google Scholar 

  • Bradie, J., and B. Leung. 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography 44(6): 1344–1361.

    Article  Google Scholar 

  • Brotons, L., P. Pons, and S. Herrando. 2005. Colonization of dynamic Mediterranean landscapes: where do birds come from after fire? Journal of Biogeography 32(5): 789–798.

    Article  Google Scholar 

  • Brown, R. T., J. K. Agee, and J. F. Franklin. 2004. Forest restoration and fire: principles in the context of place. Conservation Biology 18(4): 903–912.

    Article  Google Scholar 

  • Buddle, C. M., J. R. Spence, and D. W. Langor. 2000. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23(4): 424–436.

    Article  Google Scholar 

  • Buisson, E., S. Le Stradic, F. A. O. Silveira, G. Durigan, G. E. Overbeck, A. Fidelis, G. W. Fernandes, W. J. Bond, J. M. Hermann, G. Mahy, S. T. Alvarado, N. P. Zaloumis, and J. W. Veldman. 2019. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews 94(2): 590–609.

    Article  PubMed  Google Scholar 

  • Cahill, A. J., and J. S. Walker. 2000. The effects of forest fire on the nesting success of the Red-knobbed Hornbill Aceros cassidix. Bird Conservation International 10(2): 109–114.

    Article  Google Scholar 

  • Carbone, L. M., J. Pausas, J. Tavella, and R. Aguilar. 2019. A global synthesis of fire effects on pollinators. Global Ecology and Biogeography 28(10): 1487–1498.

    Article  Google Scholar 

  • Chuvieco, E., M. Yebra, S. Martino, K. Thonicke, M. Gómez-Giménez, J. San-Miguel, and D. Viegas. 2023. Towards an integrated approach to wildfire risk assessment:when, where, what and how may the landscapes burn. Fire. 6 (5): 215.

    Article  Google Scholar 

  • Clarke, H., B. Cirulis, T. Penman, O. Price, M. Boer, and R. Bradstock. 2022. The 2019–2020 Australian forest fires are a harbinger of decreased prescribed burning effectiveness under rising extreme conditions. Scientific Reports 12.

  • Cochrane, M., and D. Bowman. 2021. Manage fire regimes, not fires. Nature Geoscience 14: 455–457.

    Article  CAS  Google Scholar 

  • Cochrane, M. A., and W. F. Laurance. 2002. Fire as a large-scale edge effect in amazonian forests. Journal of Tropical Ecology 18(3): 311–325.

    Article  Google Scholar 

  • Connell, J., S. J. Watson, R. S. Taylor, S. C. Avitabile, R. H. Clarke, A. F. Bennett, and M. F. Clarke. 2017. Testing the effects of a century of fires: requirements for post-fire succession predict the distribution of threatened bird species. Diversity and Distributions 23(9): 1078–1089.

    Article  Google Scholar 

  • Coppedge, B. R., S. D. Fuhlendorf, W. C. Harrell, and D. M. Engle. 2008. Avian community response to vegetation and structural features in grasslands managed with fire and grazing. Biological Conservation 141(5): 1196–1203.

    Article  Google Scholar 

  • Daubenmire, R. 1968. Ecology of fire grasslands. Advances in Ecological Research 5: 209–266.

    Article  Google Scholar 

  • Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N.D. Burgess, E. Wikramanayake, and M. Saleem. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67 (6): 534–545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobson, J. E., E. A. Brlght, P. R. Coleman, R. C. Durfee, and B. A. Worley. 2000. LandScan: a global population database for estimating populations at risk. Photogrammetric Engineering & Remote Sensing 66: 849–857.

    Article  Google Scholar 

  • Duane, A., M. Castellnou, and L. Brotons. 2021. Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change 165: 43.

    Article  Google Scholar 

  • Elith, J., and J. R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics 40: 677–697.

    Article  Google Scholar 

  • Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57.

    Article  Google Scholar 

  • Farina, A. 1997. Landscape structure and breeding bird distribution in a sub-mediterranean agro-ecosystem. Landscape Ecology 12(6): 365–378.

    Article  Google Scholar 

  • Freeman, E. A., and G. G. Moisen. 2008. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling 217(1–2): 48–58.

    Article  Google Scholar 

  • García, M., M. L. Pettinari, E. Chuvieco, J. Salas, F. Mouillot, W. Chen, and I. Aguado. 2022. Characterizing global fire regimes from satellite-derived products. Forests 13(5): 1–20.

    Article  Google Scholar 

  • Gilliam, F. S. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57(10): 845–858.

    Article  Google Scholar 

  • Goodchild, M. F., B. O. Parks, and L. T. Steyaert. 1993. Environmental modelling with GIS. In Environmental modelling with GIS, 318–331. New York: Oxford University Press.

    Google Scholar 

  • Gosper, C. R., E. Fox, A. H. Burbidge, M. D. Craig, T. K. Douglas, J. A. Fitzsimons, S. McNee, A. O. Nicholls, J. O’Connor, S. M. Prober, D. M. Watson, S. J. Watson, and C. J. Yates. 2019. Multi-century periods since fire in an intact woodland landscape favour bird species declining in an adjacent agricultural region. Biological Conservation 230(October 2018): 82–90.

  • Guisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8(9): 993–1009.

    Article  PubMed  Google Scholar 

  • Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, T. J. Regan, L. Brotons, E. Mcdonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. Broennimann, M. Austin, …, and Y. M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16(12): 1424–1435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrando, S., L. Brotons, R. Del Amo, and S. Llacuna. 2002. Bird community succession after fire in a dry Mediterranean shrubland. Ardea 90(2): 303–310.

    Google Scholar 

  • Hilton-Taylor, C. 2000. 2000 IUCN Red list of threatened species. Gland, Switzerland and Cambridge, UK: IUCN.

    Google Scholar 

  • Hirzel, A. H., and G. Le Lay. 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology 45(5): 1372–1381.

    Article  Google Scholar 

  • Jones, G. M., R. J. Gutiérrez, D. J. Tempel, S. A. Whitmore, W. J. Berigan, and M. Z. Peery. 2016. Megafires: an emerging threat to old-forest species. Frontiers in Ecology and the Environment 14(6): 300–306.

    Article  Google Scholar 

  • Jones, M., J. Abatzoglou, S. Veraverbeke, N. Andela, G. Lasslop, and M. Forkel. 2022. Global and regional trends and drivers of fire under climate change. Reviews of Geophysics 60.

  • Keast, A. 1990. Biogeography and ecology of forest bird communities: Vol. No. 598.2.

  • Kelly, L., K. Giljohann, A. Duane, N. Aquilué, S. Archibald, and E. Batllori. 2020. Fire and biodiversity in the Anthropocene. Science 370.

  • Kinnaird, M. F., and T. G. O’Brien. 1998. Ecological effects of wildfire on lowland rainforest in Sumatra. Conservation Biology 12(5): 954–956.

    Article  Google Scholar 

  • Kirkman, L. K., R. J. Mitchell, R. C. Helton, and M. B. Drew. 2001. Productivity and species richness across an environmental gradient in a fire-dependent ecosystem. American Journal of Botany 88(11): 2119–2128.

    Article  CAS  PubMed  Google Scholar 

  • Kissling, W. D., J. A. Ahumada, A. Bowser, M. Fernandez, N. Fernández, E. A. García, R. P. Guralnick, N. J. B. Isaac, S. Kelling, W. Los, L. McRae, J. B. Mihoub, M. Obst, M. Santamaria, A. K. Skidmore, K. J. Williams, D. Agosti, D. Amariles, C. Arvanitidis, …, and A. R. Hardisty. 2018. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biological Reviews 93(1): 600–625.

    Article  PubMed  Google Scholar 

  • Krawchuk, M. A., and M. A. Moritz. 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92(1): 121–132.

    Article  PubMed  Google Scholar 

  • Latif, Q. S., V. A. Saab, J. R. Haas, and J. G. Dudley. 2018. FIRE-BIRD: a GIS-based toolset for applying habitat suitability models to inform land management planning. USDA Forest Service - General Technical Report RMRS-GTR 2018(391): 1–74.

  • Laurance, W. F., and T. J. Curran. 2008. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. 399–408.

  • Laurent, P., F. Mouillot, M. Vanesa Moreno, C. Yue, and P. Ciais. 2019. Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences 16(2): 275–288.

    Article  CAS  Google Scholar 

  • Lee, J. S., W. K. Cornwell, and R. T. Kingsford. 2022. Rainforest bird communities threatened by extreme fire. Global Ecology and Conservation 33(October 2021): e01985.

  • Levin, N., S. Levental, and H. Morag. 2012. The effect of wildfires on vegetation cover and dune activity in Australia’s desert dunes: a multisensor analysis. International Journal of Wildland Fire 21(4): 459–475.

    Article  Google Scholar 

  • Lindenmayer, D. B., W. Blanchard, L. McBurney, D. Blair, S. Banks, G. E. Likens, J. F. Franklin, W. F. Laurance, J. A. R. Stein, and P. Gibbons. 2012. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. Plos One 7(10).

  • Lindenmayer, D., C. MacGregor, and M. J. Evans. 2023. Multi-decadal habitat and fire effects on a threatened bird species. Biological Conservation 283(May): 110124.

    Article  Google Scholar 

  • Lizundia-Loiola, J., G. Otón, R. Ramo, and E. Chuvieco. 2020. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sensing of Environment 236(November 2019): 111493.

  • Lizundia-Loiola, J., M. Franquesa, A. Khairoun, and E. Chuvieco. 2022. Global burned area mapping from Sentinel-3 Synergy and VIIRS active fires. Remote Sensing of Environment 282(September): 113298.

    Article  Google Scholar 

  • Mace, G. M., and R. Lande. 1991. Assessing extinction threats: towards a reassessment of IUCN endangered species categories. Conservation Biology 5.

  • Martínez Vega, J., R. Romero Calcerrada, and P. Echavarría. 2007. Valoración paisajística y ecológica de la Comunidad de Madrid: su integración en un índice sintético de riesgo de incendios forestales. Revista de Teledetección 28(April 2016): 43–60.

  • Maseko, M. S. T., M. M. Zungu, D. A. E. Smith, Y. C. E. Smith, C. T. Downs, D. A. E. Smith, and Y. C. E. Smith. 2020. Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. 533–542.

  • Midgley, G. F., and W. J. Bond. 2015. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nature Climate Change 5(9): 823–829.

    Article  Google Scholar 

  • Miller, M. E., M. A. Bowker, R. L. Reynolds, and H. L. Goldstein. 2012. Post-fire land treatments and wind erosion - lessons from the Milford Flat Fire, UT, USA. Aeolian Research 7: 29–44.

    Article  Google Scholar 

  • Mittermeier, R. A., W. R. Turner, F. W. Larsen, T. M. Brooks, and C. Gascon. 2011. Global biodiversity conservation: the critical role of hotspots.

  • Moreira, F., P. G. Ferreira, F. C. Rego, and S. Bunting. 2001. Landscape changes and breeding bird assemblages in northwestern Portugal: the role of fire. Landscape Ecology 16(2): 175–187.

    Article  Google Scholar 

  • Morissette, J. L., T. P. Cobb, R. M. Brigham, and P. C. James. 2002. The response of boreal forest songbird communities to fire and post-fire harvesting. Canadian Journal of Forest Research 32(12): 2169–2183.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, Da Fonseca, G. A., and J. Kent. 2010. Biodiversity hotspots for conservation priorities. Nature 468(7326): 895.

    Article  CAS  Google Scholar 

  • Nachtergaele, F., H. Van Velthuizen, N. Lucverelst, Batjes, K. Dijkshoorn, V. Van Engelen, G. Fischer, A. Jones, L. Montanarella, M. Petri, S. Prieler, X. Shi, E. Teixeira, and D. Wiberg. 2010. The harmonized world soil database. August, 34–37.

  • Neke, K. S., and M. A. Du Plessis. 2004. The threat of transformation: quantifying the vulnerability of grasslands in South Africa. Conservation Biology 18(2): 466–477.

    Article  Google Scholar 

  • Nilsson, S. G. 1992. Forests in the temperate–boreal transition—natural and man-made features. Ecological Principles of Nature Conservation. Springer, Boston, MA, 373–393.

  • Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D’amico, I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel, P. Hedao, and K. R. Kassem. 2001. Terrestrial ecoregions of the World: a New Map of Life on Earth. BioScience 51(11): 933.[0933:teotwa];2.

    Article  Google Scholar 

  • Padoa-Schioppa, E., M. Baietto, R. Massa, and L. Bottoni. 2006. Bird communities as bioindicators: the focal species concept in agricultural landscapes. Ecological Indicators 6(1): 83–93.

    Article  Google Scholar 

  • Pais, S., N. Aquilué, J. Campos, Â. Sil, B. Marcos, F. Martínez-Freiría, J. Domínguez, L. Brotons, J. P. Honrado, and A. Regos. 2020. Mountain farmland protection and fire-smart management jointly reduce fire hazard and enhance biodiversity and carbon sequestration. Ecosystem Services 44(June): 101143.

    Article  Google Scholar 

  • Parsons, B. C., and C. R. Gosper. 2011. Contemporary fire regimes in a fragmented and an unfragmented landscape: implications for vegetation structure and persistence of the fire-sensitive malleefowl. International Journal of Wildland Fire 20: 184–194.

    Article  Google Scholar 

  • Pastro, L. A., C. R. Dickman, and M. Letnic. 2014. M E TA - fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Global Ecology and Biogeography 23(10): 1146–1156.

    Article  Google Scholar 

  • Pausas, J. G., and E. Ribeiro. 2017. Fire and plant diversity at the global scale. Global Ecology and Biogeography 26(8): 889–897.

    Article  Google Scholar 

  • Petty, J. M., and M. Avery. 1990. Forest bird communities (Forestry Commission Occasional Paper (ed.); 26th ed.).

  • Phillips, O. L. 1997. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Biodiversity and Conservations 6(2): 291–311.

    Article  Google Scholar 

  • Pivello, V. R., I. Vieira, A. V. Christianini, D. B. Ribeiro, L. da Silva Menezes, C. N. Berlinck, F. P. L. Melo, J. A. Marengo, C. G. Tornquist, W. M. Tomas, and G. E. Overbeck. 2021. Understanding Brazil’s catastrophic fires: causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation 19(3): 233–255.

    Article  Google Scholar 

  • Pons, P., and M. Clavero. 2010. Bird responses to fire severity and time since fire in managed mountain rangelands. Animal Conservation 13(3): 294–305.

    Article  Google Scholar 

  • Pons, Pere, B. Lambert, E. Rigolot, and R. Prodon. 2003. The effects of grassland management using fire on habitat occupancy and conservation of birds in a mosaic landscape. Biodiversity and Conservation 12(9): 1843–1860.

    Article  Google Scholar 

  • Puig-giron, R., L. Brotons, and P. Pons. 2022. Aridity, fire severity and proximity of populations affect the temporal responses of open-habitat birds to wildfires tawny pipit. 272(July).

  • Razeng, E., and D. M. Watson. 2014. Nutritional composition of the preferred prey of insectivorous birds: popularity refl ects quality. July, 1–8.

  • Recher, H. F. 1969. The University of Chicago Bird Species Diversity and Habitat Diversity in Australia and North America. The American Naturalist 103(929): 75–80.

    Article  Google Scholar 

  • Richards, D., and W. D. Rowe. 1999. Decision-making with heterogeneous sources of information. Risk Analysis 19(1): 69–81.

    Article  Google Scholar 

  • Rocchini, D., J.L. Hernández-Stefanoni, and K.S. He. 2015. Advancing species diversityestimate by remotely sensed proxies: a conceptual review. Ecological informatics 25: 22–28.

    Article  Google Scholar 

  • San-Miguel-Ayanz, J., J. M. Moreno, and A. Camia. 2013. Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. Forest Ecology and Management 294: 11–22.

    Article  Google Scholar 

  • Schieck, J., and S. J. Song. 2006. Changes in bird communities throughout succession following fire and harvest in boreal forests of western North America: literature review and meta-analyses. Canadian Journal of Forest Research 36(5): 1299–1318.

    Article  Google Scholar 

  • Sietz, D., M. K. B. Lüdeke, and C. Walther. 2011. Categorisation of typical vulnerability patterns in global drylands. Global Environmental Change 21(2): 431–440.

    Article  Google Scholar 

  • Turner, B.L., R.E. Kasperson, P.A. Matson, J.J. McCarthy, R.W. Corell, L. Christensen, and A. Schiller. 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the national academy of sciences 100 (14): 8074–8079.

    Article  CAS  Google Scholar 

  • Wiens, J. A. 1992. The ecology of bird communities. vol. 1 Cambridge University Press.

    Google Scholar 

  • Williams, J. 2013. Forest Ecology and Management exploring the onset of high-impact mega-fires through a forest land management prism. Forest Ecology and Management 294: 4–10.

    Article  Google Scholar 

  • Xaud, H. A. M., F. da Martins S. R. V., and J. R. Dos Santos. 2013. Tropical forest degradation by mega-fires in the northern Brazilian Amazon. Forest Ecology and Management 294: 97–106.

    Article  Google Scholar 

  • Zaniewski, A. E., A. Lehmann, and J. M. C. Overton. 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling 157(2–3): 261–280.

    Article  Google Scholar 

Download references


This research was conducted within the framework of Spanish National Project RTI2018-097538-B-I00. In addition, Fátima Arrogante-Funes was supported by a predoctoral scholarship (FPI) from the Spanish Ministry of Science, Innovation and Universities (PRE2019-089208). The authors would like to thank the European project FirEurisk for its support, funded by the European Union. Grant agreement ID: 101003890.


The Ministerio de Ciencia Innovación y Universidades has supported this research (grant no. RTI2018-097538-B-I00) (grant no. PRE2019-089208). This research was supported by the FirEUrisk project, funded by the European Union (Grant agreement ID: 101003890).

Author information

Authors and Affiliations



FAF designed the study, organized and oversaw data collection, developed the analysis approach, and implemented the analysis. IAS and EC obtained funding, drafted the manuscript, and contributed editorial input during manuscript preparation. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Fátima Arrogante-Funes.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: “The Acknowledgements and Funding section information have been updated”.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrogante-Funes, F., Aguado, I. & Chuvieco, E. Global impacts of fire regimes on wildland bird diversity. fire ecol 20, 25 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: