Skip to main content

Articles

Page 9 of 10

  1. Wildland fires occur with increasing frequency in southwestern riparian forests, yet little is known about the effects of fire on populations of native and exotic vegetation. From 2003 to 2006, we monitored re...

    Authors: D. Max Smith, Deborah M. Finch, Christian Gunning, Roy Jemison and Jeffrey F. Kelly
    Citation: Fire Ecology 2009 5:5010038
  2. Bird species that specialize in the use of burned forest conditions can provide insight into the prehistoric fire regimes associated with the forest types that they have occupied over evolutionary time. The na...

    Authors: Richard L. Hutto, Courtney J. Conway, Victoria A. Saab and Jeffrey R. Walters
    Citation: Fire Ecology 2008 4:4020115
  3. Truffles are an important food resource for wildlife in North American forests, but decades of fire exclusion have altered the availability of this resource. In Yosemite National Park, resource management poli...

    Authors: Marc D. Meyer, Malcolm P. North and Susan L. Roberts
    Citation: Fire Ecology 2008 4:4020105
  4. We evaluated the impact of fire severity and related spatial and vegetative parameters on small mammal populations in 2 yr- to 15 yr-old burns in Yosemite National Park, California, USA. We also developed habi...

    Authors: Susan L. Roberts, Jan W. van Wagtendonk, A. Keith Miles, Douglas A. Kelt and James A. Lutz
    Citation: Fire Ecology 2008 4:4020083
  5. There is a growing body of literature covering the responses of bird species to wildland fire events. Our study was unique among these because we investigated the effects of large-scale wildland fires on entir...

    Authors: Mark B. Mendelsohn, Cheryl S. Brehme, Carlton J. Rochester, Drew C. Stokes, Stacie A. Hathaway and Robert N. Fisher
    Citation: Fire Ecology 2008 4:4020063
  6. We examined changes in winter habitat use by four grassland passerine birds in response to summer prescribed burning within a Texas gulf coast tallgrass prairie during 2001 and 2002. We used a traditional Befo...

    Authors: Damion E. Marx, Sallie J. Hejl and Garth Herring
    Citation: Fire Ecology 2008 4:4020046
  7. We evaluated American three-toed woodpecker (Picoides dorsalis) response to spatial heterogeneity of burn severity and prey availability over multiple scales at the 56 000 ha Hayman Fire (2002) located in the Col...

    Authors: Natasha B. Kotliar, Elizabeth W. Reynolds and Douglas H. Deutschman
    Citation: Fire Ecology 2008 4:4020026
  8. Elemental and nitrogen isotopic compositions of tree-rings adjacent to a fire-scar in a white birch (Betula papyrifera) are compared to those away from the scar in the same tree, and to those of nearby non-scarre...

    Authors: Andrew R. Bukata, T. Kurtis Kyser and Tom A. Al
    Citation: Fire Ecology 2008 4:4010101
  9. Forest seed dispersal is altered after fire. Using seed traps, we studied impacts of fire severity on timing of seed dispersal, total seed rain, and seed rain richness in patches of high and low severity fire ...

    Authors: Tom R. Cottrell, Paul F. Hessburg and Jonathan A. Betz
    Citation: Fire Ecology 2008 4:4010087
  10. Prescribed fire is a common method used to produce desired ecological effects in chaparral by mimicking the natural role of fire. Since prescribed fires are usually conducted in moderate fuel and weather condi...

    Authors: Scott L. Stephens, David R. Weise, Danny L. Fry, Robert J. Keiffer, Jim Dawson, Eunmo Koo, Jennifer Potts and Patrick J. Pagni
    Citation: Fire Ecology 2008 4:4010074
  11. Cambium injury is an important factor in post-fire tree survival. Measurements that quantify the degree of bark charring on tree stems after fire are often used as surrogates for direct cambium injury because ...

    Authors: Sharon M. Hood, Danny R. Cluck, Sheri L. Smith and Kevin C. Ryan
    Citation: Fire Ecology 2008 4:4010057
  12. There is general interest among fire ecologists to integrate observed fire regimes into long term fire management. The United States-Mexico borderlands provide unique research opportunities to study effects of...

    Authors: Miguel L. Villarreal and Stephen R. Yool
    Citation: Fire Ecology 2008 4:4010014
  13. Due to a unique combination of environmental conditions, the chaparral shrublands of southern California are prone to large, intense wildland fires. There is ongoing work in the fire research community to esta...

    Authors: R. E. Clark, A. S. Hope, S. Tarantola, D. Gatelli, P. E. Dennison and M. A. Moritz
    Citation: Fire Ecology 2008 4:4010001
  14. The effects of 30 years (1972–2003) of Wildland Fire Use for Resource Benefit (WFU) fires on ponderosa pine forest stand structure were evaluated in the Gila Wilderness, New Mexico, and the Saguaro Wilderness,...

    Authors: Zachary A. Holden, Penelope Morgan, Matthew G. Rollins and Kathleen Kavanagh
    Citation: Fire Ecology 2007 3:3020018
  15. Wildland fire use as a concept had its origin when humans first gained the ability to suppress fires. Some fires were suppressed and others were allowed to burn based on human values and objectives. Native Ame...

    Authors: Jan W. van Wagtendonk
    Citation: Fire Ecology 2007 3:3020003
  16. Wildfire effects on the ground surface are indicative of the potential for post-fire watershed erosion response. Areas with remaining organic ground cover will likely experience less erosion than areas of comp...

    Authors: Sarah A. Lewis, Leigh B. Lentile, Andrew T. Hudak, Peter R. Robichaud, Penelope Morgan and Michael J. Bobbitt
    Citation: Fire Ecology 2007 3:3010109
  17. Vegetation response and burn severity were examined following eight large wildfires that burned in 2003 and 2004: two wildfires in California chaparral, two each in dry and moist mixed-conifer forests in Monta...

    Authors: Leigh B. Lentile, Penelope Morgan, Andrew T. Hudak, Michael J. Bobbitt, Sarah A. Lewis, Alistair M. S. Smith and Peter R. Robichaud
    Citation: Fire Ecology 2007 3:3010091
  18. The Forest Service Remote Sensing Applications Center (RSAC) and the U.S. Geological Survey Earth Resources Observation and Science (EROS) Data Center produce Burned Area Reflectance Classification (BARC) maps...

    Authors: Andrew T. Hudak, Penelope Morgan, Michael J. Bobbitt, Alistair M. S. Smith, Sarah A. Lewis, Leigh B. Lentile, Peter R. Robichaud, Jess T. Clark and Randy A. McKinley
    Citation: Fire Ecology 2007 3:3010064
  19. The development of continental-scale fire mapping using AVHRR since the early 1990s and, more recently, MODIS imagery, is transforming our understanding of Australian fire regimes—particularly the national sig...

    Authors: Jeremy Russell-Smith and Cameron P. Yates
    Citation: Fire Ecology 2007 3:3010048
  20. Elected officials and leaders of environmental agencies need information about the effects of large wildfires in order to set policy and make management decisions. Recently, the Wildland Fire Leadership Counci...

    Authors: Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle and Stephen Howard
    Citation: Fire Ecology 2007 3:3010003
  21. Fire ecologists face many challenges regarding the statistical analyses of their studies. Hurlbert (1984) brought the problem of pseudoreplication to the scientific community’s attention in the mid 1980’s. Now, t...

    Authors: Amanda L. Bataineh, Brian P. Oswald, Mohammad Bataineh, Daniel Unger, I-Kuai Hung and Daniel Scognamillo
    Citation: Fire Ecology 2006 2:2020107
  22. Prior to fire suppression in the 20th century, the mixed-conifer forests of the Sierra Nevada, California, U.S.A., historically burned in frequent fires that typically occurred during the late summer and early fa...

    Authors: Scott M. Ferrenberg, Dylan W. Schwilk, Eric E. Knapp, Eric Groth and Jon E. Keeley
    Citation: Fire Ecology 2006 2:2020079
  23. The effectiveness of low and high intensity prescribed fires in restoring the composition and spatial structure in a mixed conifer forest in the Northern Sierra Nevada is examined. The overstocked pre-fire sta...

    Authors: Lars Schmidt, Marco G. Hille and Scott L. Stephens
    Citation: Fire Ecology 2006 2:2020020
  24. Prescribed fire and low thinning were applied to dry forests dominated by ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) in the eastern Washington Cascades. Experimental design was an un...

    Authors: James K. Agee and M. Reese Lolley
    Citation: Fire Ecology 2006 2:2020003
  25. A geographic information system (GIS) was used to analyze the effects of six physical variables (redwood sub-region, slope, aspect, elevation, distance from the coast, and moisture regime) on the natural fire ...

    Authors: Christopher B. Oneal, John D. Stuart, Steven J. Steinberg and Lawrence Fox III
    Citation: Fire Ecology 2006 2:2010073
  26. After nearly a century of fire exclusion in many central and southern Sierra Nevada mixed-conifer forests, dead and down surface fuels have reached high levels without the recurring fires that consume the accu...

    Authors: MaryBeth Keifer, Jan W. van Wagtendonk and Monica Buhler
    Citation: Fire Ecology 2006 2:2010053
  27. In response to the needs of local fire managers, we developed a map of wildfire hazard for La Plata County in southwestern Colorado, USA. Our measure of fire hazard had two components: (i) the probability, sho...

    Authors: William H. Romme, Peter J. Barry, David D. Hanna, M. Lisa Floyd and Scott White
    Citation: Fire Ecology 2006 2:2010007
  28. Authors: Stephen J. Pyne
    Citation: Fire Ecology 2006 2:2010001

Affiliated with

Annual Journal Metrics